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Abstract

DREAM is an initiative that allows researchers to assess how well their methods or approaches can describe and predict
networks of interacting molecules [1]. Each year, recently acquired datasets are released to predictors ahead of publication.
Researchers typically have about three months to predict the masked data or network of interactions, using any predictive
method. Predictions are assessed prior to an annual conference where the best predictions are unveiled and discussed. Here
we present the strategy we used to make a winning prediction for the DREAM3 phosphoproteomics challenge. We used
Amelia II, a multiple imputation software method developed by Gary King, James Honaker and Matthew Blackwell[2] in the
context of social sciences to predict the 476 out of 4624 measurements that had been masked for the challenge. To chose
the best possible multiple imputation parameters to apply for the challenge, we evaluated how transforming the data and
varying the imputation parameters affected the ability to predict additionally masked data. We discuss the accuracy of our
findings and show that multiple imputations applied to this dataset is a powerful method to accurately estimate the missing
data. We postulate that multiple imputations methods might become an integral part of experimental design as a mean to
achieve cost savings in experimental design or to increase the quantity of samples that could be handled for a given cost.
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Introduction

DREAM is an initiative that is quite essential in the field of

methods development to critically evaluate current computational

methodologies (http://wiki.c2b2.columbia.edu/dream/index.php/

The_DREAM_Project). In this respect, it follows the well-

established Critical Assessment of methods of protein Structure

Prediction (CASP) [3,4,5,6,7,8], which has spurred innovation in

this field. DREAM is now at its 4th instance, and there is no doubt

that it will become as beneficial for the Systems Biology world as

CASP already is for the structural biology domain. We participated

in the 3rd instance of the DREAM challenge, in the phosphopro-

teomics section. Briefly, this challenge is based on a data set

provided by Peter Sorger et al[9], where the authors measured the

difference in signaling between normal and cancerous cells using

phosphoproteomics assays. Predictors were given only 90% of the

data and had to predict the value of the remaining measurements,

which had been masked by the authors. This consisted in predicting

the concentration of 17 phosphoproteins at two time points

for 7 combinations of stimuli and inhibitors applied to normal

and cancer hepatocytes (Figure 1). For each of the 17

phosphoproteins, 42 distinct combinations of stimuli and inhibitors

measurements were given, in addition to un-stimulated and un-

inhibited controls.

In this article, we describe the approach we took to analyze the

data and make a winning prediction, and discuss the applicability

of the process to other data sets. Given the complexity of the

biological networks affected by the various stimuli and inhibitors,

we decided to approach this challenge by imputing the missing

data based solely on the exiting measured data. We took

advantage of the Vital-IT high-performance computing center to

run thousands of simulations to determine the best multiple

imputation parameters to apply for our final prediction. This

article will describe our approach in details. It is important to

mention that, although our multiple imputations strategy resulted

in a winning contribution, it does not provide any insights into the

biomolecular system underlying the data. In other words, it does

not infer nor uses the wiring structure of the signaling network. As

a consequence, it would not be possible to infer the outcome of

multiple simultaneous perturbations on the phosphoproteomics

measurements using this approach. To this end, other methods

that implicitly take advantage of the signaling network using

kinetic modeling or logical modeling should be used [10]. These

methods will likely be used in the 2009 DREAM challenges, as

several groups are focusing their attention towards methodologies

to infer and reconstruct regulatory networks and evaluate their

dynamical behaviour.

Analysis

One interesting aspect of the DREAM challenge is that there is

only about three months between the time the data are released

and the due date for the analysis. This does not leave much time to

develop and validate novel methods, and predictors typically apply
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methods they have been developing in their laboratory over time.

We took a slightly different approach, which consisted in analyzing

the problem, identifying a suitable tool to perform the analysis,

tuning the parameters during the time allowed and performing our

final prediction. The summary of the analysis workflow is

described in Figure 2. Each step is described in more depth in

the following sections.

Step 1: Understanding the Challenge
We immediately recognized that the masked data could be

assimilated to missing data. Missing data is a recurrent and very

annoying problem, as most statistical tools do not tolerate missing

data. Common ways to deal with this issue include ignoring samples

as soon as one measurement is missing, which prunes the dataset.

Although applicable in cases of large datasets with few missing

values, this is far from ideal and inapplicable in our case, as it is

indeed the objective of the challenge to predict the masked data.

The other common approach is to replace the missing data either

with random values, or by the mean or median of non-missing

values. Both approaches can lead to biases and inefficiencies.

Fortunately, solutions to impute the missing data have been

developed, in particular in the field of social sciences, where

multiple questions polls are usually only partially filled and where

removing any sample partially filled would amount to discarding

most of the dataset. We elected to use the Amelia II package[2] of

R[11], a multiple imputation method described in depth in a report

entitled ‘‘What to do About Missing Values in Time Series Cross-

Section Data’’, available at http://gking.harvard.edu/amelia/.

Step 2: Performing Exploratory Data Analysis
To get a ‘‘feel’’ for the data, we performed a principal

component analysis (PCA) using the dudi.pca module of the ade4

package[12] of R (Figure 3). It is obviously apparent that there is

a large difference between Cancer and Normal cells. Likewise,

some grouping is also apparent for the various time points.

Measurements at time zero and 180mn cluster in relatively tight

neighboring regions of the PCA space. In contrast, there is a large

dispersion of the measurements for time 30 mn. Moreover, those

measurements tend to be further away from measurements at time

zero than measurements at time 180 mn are. Those observations

led us to try various parameters that would account for time effect

and cell type effect (cross-section Normal vs Cancer) during the

multiple imputation process.

Step 3: Optimizing the Multiple Imputation Parameters
Although any additional prior data already present in the

literature could be used to help solve the challenge, we decided to

use only the rich dataset at our disposition to make our

predictions, since the conditions, laboratories and experimentalists

affect experimental readouts. Therefore we committed to two

principles before starting the analysis: (1) let the data drive the

prediction process and (2) do not correct our predictions based on

any particular biological knowledge. Amelia II has several input

parameters, and can apply various transformations to the input

data. To determine the best combination of parameters to use to

impute the missing data of the challenge dataset, we randomly

chose three Stimuli/Inhibitors pairs among the 42 combinations of

Stimuli/Inhibitors for which we had data, with the restriction that

a given Stimulus or Inhibitor could not be picked more than once.

We then masked the 17 phosphoproteomics measurement data

associated with those three pairs at time points 30 and 180 mn for

Cancer and Normal cells. This corresponded to the masking of

204 (17636262) measurements. We then used Amelia II to

impute the 204 masked data with various input parameters and

Figure 1. Description of the DREAM3 phosphoproteomics challenge. 17 phosphoproteins have been measured in Normal and Cancer Cells,
following various combinations of Stimulus and Inhibitor at various time-points. A series of measurements (476 out of 4624) have been masked
(diagonal). The challenge consisted in providing the most accurate prediction of those missing data.
doi:10.1371/journal.pone.0008012.g001
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assessed the performance of the prediction by computing the

Pearson correlation coefficient between the median of multiple

imputations and the actual measurement (Figure 4). The process

was repeated 50 times, selecting different combinations of masked

Stimulus/Inhibitors pairs. Thus, we collected 50 correlation

coefficients for any set of multiple imputations parameters tested.

To make our prediction for the challenge, we chose the set of

parameters for which the median of the 50 Pearson Correlation

coefficients was the highest. We then applied those parameters to

the 476 masked data of the challenge.

As can be seen in Figures S1 and S2, the variation of the

multiple imputations parameters influenced the ability to predict

the masked data. In particular, increasing the number of multiple

imputations improved the correlation (Figure S1). Likewise,

increasing the polynomial order used to model the time effect was

beneficial (vectors are parallels in the PCA space; Figure S2).

Actually, we determined that the best correlation was achieved

using a second order polynomial (data not shown). This is

consistent with the observation that time points zero and 180 mn

were close in the PCA space, whereas measurements belonging to

the 30 mn time point were more distant and scattered (Figure 3).

We also observed that when the cell status (Cancer, Normal) was

considered as a cross-section, it was absolutely necessary to allow

modeling of the time effect differently for each cell type. On

another hand, the method used to initialize the imputation process

(listwise deletion or identity matrix) had no effect. The best overall

correlation (0.94) was obtained with 50 multiple imputations, a

cross-section on the cell type and the possibility to apply a different

model of the time effect for each cell type using a second order

polynomial on the raw (untransformed) data.

Discussion

When the number of imputations was large, we did not observe

a statistical difference between imputing the missing data using

untransformed or squared root transformed measurements,

although we noticed a slightly tighter variance when untrans-

formed data was used. Log transforming the data consistently gave

inferior results (data not shown). However, we anticipated a

beneficial effect of transforming the data, because during our

initial data exploration phase, we observed that the measurements

acquired for several of the 17 phosphoproteins were not normally

distributed (data not shown). This violated the assumption made

by the imputation model implemented in Amelia II, which

optimally requires multivariate normally distributed data. During

our search for optimal parameters, we either used the data as-is, or

applied a squared root transformation on all measurements. As the

various phosphoprotein measurements follow distinct distribu-

tions, we reasoned that the putative improvement obtained by

transforming some measurements was compensated by the

detrimental effect of transforming measurements that should have

been left untransformed. Thus, we kept the multiple imputation

parameters that gave us the best correlation with our own masked

data and further evaluated the effect of transforming measure-

ments for just some of the 17 phosphoproteins. We identified that

a squared root transformation of Akt, IkBa, p38, p70S6 and

HSP27 measurements modestly but significantly improved the

overall correlation from 0.94 to 0.95 (unpaired t-test P-value 0.02).

This is what we used for our final prediction.

Overall, the median of the multiple imputation process

produced an extremely accurate estimation of the actual measured

data. Representative predictions examples are provided in

Figure 5. The jury evaluated the predictions using a normalized

square error by comparing the predictions with a null-model in

which the missing values were sampled from the dataset to

estimate a p-value. In our case, the chance to obtain such a

prediction randomly was of 10222. The main advantage of using

multiple imputations is that it naturally gives a prediction range for

each missing value. We observed that the actual measurement fell

out of this range for only 30 out of the 476 predictions, that is

6.3% of the time (Table S1). Interestingly, 14 of those ‘‘outliers’’

concern the combination of IL-1 stimulation with PI3K inhibition,

and 10 (e.g. a third) are more specifically under-predicted for this

specific combination of stimulus/inhibitor at 30 mn in cancer

cells. The fact that a third of the ‘‘outliers’’ are found in this

combination (out of the 28 distinct combinations of Stimulus/

Inhibitor/CellType/Time for which the data had been masked)

might reflect that PI3K inhibition can affect the apparent

concentration of the IL-1 stimuli perceived by the cell. Indeed

PI3K is linked in part with the rapid induction of IL-1R1[13]. The

combination of TGFa stimulation with GSK3 inhibition also takes

its share of outliers (4 out of 30), and there is evidence that both

play an antagonizing role in the case of keratinocyte migration in

HaCat cells, a cell type similar to the HepG2 cells used to produce

the challenge data[14].

Figure 2. Analysis workflow summary. Description of the different
steps applied to the DREAM challenge.
doi:10.1371/journal.pone.0008012.g002
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Figure 3. Inspection of the challenge data through Principal Component Analysis (PCA). All measurements classes were pooled together,
irrespective of the CellType, Time, Stimulus and Inhibitor. Scatter plots with representation of the various classes were produced with the s.class
command of the ade4 R package. The various classes are: Top left: CellType (Normal, Cancer). Top right: Time (0, 30, 180 mn). Bottom left: The seven
stimuli. Bottom right: The seven inhibitors.
doi:10.1371/journal.pone.0008012.g003

Figure 4. Identification of the best multiple imputation parameters. A. Selection of three Stimulus/Inhibitor pairs and masking (red) of the
17 associated phosphoproteomics measurements at 30 and 180 mn in both normal and cancer cells (17636262 = 204 masked measurements). B.
Example of multiple imputations results with a given set of Amelia II parameters for the 17 masked phosphoproteomics measurements associated
with an IFNc stimulation and JNK inhibition at 30 mn in cancer cells. The boxplots show the spread of the 14 multiple imputations performed for
each phophoprotein and the median of the prediction (black) can be compared to the actual measurement (red). C. The correlation between the
median of each of the 204 predictions and the 204 actual measureents which have been masked is computed and provides an evaluation of the
prediction performance for a given set of Amelia II input parameters.
doi:10.1371/journal.pone.0008012.g004
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Interestingly, both IL-1 and TGFa stimuli clearly behave

differently from the other stimuli in our preliminary PCA

(Figure 2). Based on this observation, it was expected that it

would be more challenging to accurately predict the missing values

for those stimuli. To come with a more sensible prediction of IL-1,

it might have been useful to benefit from results of other

interleukin stimuli such as IL-8 or IL-6 to better cover the

signaling space. The PCA (Figure 2) does not discriminate the

various inhibitors, which appear superposed. This is consistent

with the presence of biological cross-talks between those inhibitors,

such as for example GSK3i and PI3Ki[15].

For the DREAM3 challenge, about 10.3% of the measurements

had been masked. Once all of the actual measurements were made

available, we masked 952 out of 4624 measurements (e.g. about

20.6% of the data) randomly drawn from time points other than

zero. We then used the optimal prediction parameters determined

earlier to predict the masked data. Here again, we observed that

the multiple imputation process defined a range in which the

actual measurement almost always fell. Indeed, the actual

measurement fell out of this range for only 49 out of the 952

predictions, that is 5.1% of the time (Table S2). This time, no

clear pattern of misprediction could be identified for the 49

‘‘outliers’’. This absence of clear pattern might be due to the fact

that the masked data was missing completely at random in this

case, which is the best situation for multiple imputations.

After the DREAM conference, out of curiosity, we also tested

the multiple imputation method on another challenge dataset: The

gene expression prediction challenge, whose dataset was gener-

ously provided by Neil Clarke et al. Briefly, the challenge consisted

in predicting the expression level of 50 genes in a gat1D yeast

strain, for different time points following the addition of an

histidine synthesis inhibitor. The expression level of these 50 genes

as well as 9285 others was provided for wild type and 3 other

mutant strains. We first back transformed the data to obtain raw

measurements from the log transformed data supplied, and

formatted the data to place genes in rows and mutants in columns.

Contrarily to the phosphoproteomics challenge, we did not

attempt to identify the optimal multiple imputations parameters

by predicting the measurements of additionally masked genes. We

directly imputed the missing data using just one set of (arbitrary)

parameters: cross-section on the various genes, modeling the effect

of time with a 2nd order polynomial not varying across the cross-

section, and 100 multiple imputations. We then evaluated what

would have been our performance using the evaluation scripts

used by the assessors, which are available from http://wiki.c2b2.

columbia.edu/dream/index.php/D3c3. Although the prediction

might probably have been improved by careful tuning of the

parameters, it turns out that with this simple protocol, we would

already have achieved the 3rd best prediction (Table S3), with a

score significantly better than several other predictors. Unfortu-

nately, we cannot comment on the merit and pitfalls of the various

methods used by the participating teams, because only anonymous

rankings are provided by the organizers, so as to encourage

submissions of experimental methods. However, a thorough

comparative study of the different submissions is under prepara-

tion: Robert J. Prill, Daniel Marbach, Julio Saez-Rodriguez,

Gregoire Altan-Bonnet, Peter Sorger, Neil Clarke, Gustavo

Stolovitzky, Lessons from the DREAM3 challenges (this title

may change), DREAM3 collection, PLoS One (to be published).

From this work, we conclude that the multiple imputation

method is a powerful technique that can be generally applied to

many situations relevant to large-scale biological data acquisition

where missing data are encountered, such as microarrays

experiments [16]. This is also particularly relevant to longitudinal

studies where patients might not come to every appointment, or

where measurements might be missing for a variety of reasons. For

example, in a longitudinal study examining 13 biomarkers as

predictors of mortality, about 40% of the participants were missing

information on one or more biomarker [17]. Although we applied

multiple imputations to somewhat artificial conditions where

known data are removed from a set, this work could be extended

to influence the experimental design phase of new projects.

Indeed, most of the current approaches rely on the use of

checkerbox design (combinations of stimuli and inhibitor), which is

very expensive both in time and in consumable price. Knowing

that, for some datasets, as much as 20% of the data could be

imputed could be used to reduce the amount of data to actually

measure to reach a biological conclusion. This approach could

also be used to plan a multi-step experiment approach in which

the best combinations of stimuli and inhibitors worth measuring in

the next experiment are ‘‘imputed’’ from the current experiment,

reminiscent to the ‘‘pay as you go’’ strategy suggested for example

in the protein-protein interactions field[18]. An other potential

application could be to circumvent inherent limitations of some

technologies. For example, flow cytometry cannot simultaneously

quantify more than 10 cell surface markers. This is due to the

difficulty to find fluorescently labeled antibodies whose emission

spectra does not overlap, or to the lack of antibodies coupled to

different fluorophores. It might be possible to design experiments

Figure 5. Evaluation of the quality of the DREAM3 challenge
prediction. The multiple imputation process generated 50 predictions
for each measurement, which are represented as boxplots. The median
(black) was submitted as our prediction. In red, actual experimental
measurement unveiled shortly before the DREAM3 conference. Top:
example of high quality prediction. Bottom: Worse prediction.
doi:10.1371/journal.pone.0008012.g005
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where cells would be split in batches marked with near complete

set of antibodies. For example, assuming that antibodies A and D

cannot be used simultaneously, an experiment splitting cells into a

first batch marked with antibodies A,B and C and a second batch

marked with antibodies B,C and D, should make it possible to

impute the missing measurements and thus obtain a prediction of

markers A,B,C and D for each cell.

To conclude, we believe that initiatives such as DREAM and

ENFIN[19], which both provide a framework where the predictive

power of computational methods can be rigorously benchmarked

against experimental data should be encouraged. The structural

biology community benefited strongly from CASP, and the

systems biology and reverse-engineering fields will without doubt

benefit from such initiatives.

Supporting Information

Figure S1 Overall effect of varying the multiple imputation

parameters. The process presented in Figure 4 has been repeated

50 times, masking different selections of 3 pairs of Stimuli/

Inhibitors. In each case, 32 distinct combinations of parameters

were tested, with 18 distinct number of multiple imputations (1–

10, 15, 20, 25, 30, 35, 40, 45 and 50). For each of those 576

(32x18) parameters (x axis), the distribution of the 50 correlations

computed as described in Figure 4C is presented as a boxplot. It is

immediately apparent that for any of the 32 combinations of

parameters tested, increasing the number of multiple imputations

improves the prediction accurracy, but reaches a plateau after

about 40 multiple imputations.

Found at: doi:10.1371/journal.pone.0008012.s001 (0.14 MB

DOC)

Figure S2 Principal Component Analysis of the multiple

imputation parameters effect. #imputations: number of multiple

imputations. Sqrt: Effect of applying a squared root transformation

on all input data. Polytime: Effect of increasing the polynome

order used to model the effect of time. Cross-section: indicates

whether we should consider the cell status (Cancer, Normal) as a

cross-section. Model cross-section time indicates whether the effect

of the time should be modeled differently for Cancer and Normal

cells.

Found at: doi:10.1371/journal.pone.0008012.s002 (0.06 MB

DOC)

Table S1 List of the 30 combinations of Stimulus/Inhibition/

timepoint/CellType measurements (out of 476) whose actual value

falls outside of the min-max prediction range defined by the

multiple imputation process.

Found at: doi:10.1371/journal.pone.0008012.s003 (0.09 MB

DOC)

Table S2 List of the 49 combinations of Stimulus/Inhibition/

timepoint/CellType measurements (out of 952 measurements

masked completely at random) whose actual value falls outside of

the min-max prediction range defined by the multiple imputations

process.

Found at: doi:10.1371/journal.pone.0008012.s004 (0.13 MB

DOC)

Table S3 Assessment of how the multiple imputation method

would have performed on the DREAM3 Expression Challenge.

Score: log-transformed ‘‘average’’ of the overall gene-profile p-

value and the overall time-profile P-value, computed as -0.5 log10

(GeneProfile*TimeProfile); larger scores indicate greater statistical

significance of the prediction. Overall Gene-Profile P-value:

geometric mean of the 50 gene-profile P-values for a given time

point. Overall Time-Profile P-value: geometric mean of the 8

time-profile p-values for a given gene. Assessment details can be

found on the DREAM website at http://wiki.c2b2.columbia.edu/

dream/results/DREAM3/?c = 3_1

Found at: doi:10.1371/journal.pone.0008012.s005 (0.04 MB

DOC)
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