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Abstract

MicroRNAs are small non-coding RNAs involved in post-transcriptional regulation of gene expression. Due to the poor
annotation of primary microRNA (pri-microRNA) transcripts, the precise location of promoter regions driving expression of
many microRNA genes is enigmatic. This deficiency hinders our understanding of microRNA-mediated regulatory networks.
In this study, we develop a computational approach to identify the promoter region and transcription start site (TSS) of pri-
microRNAs actively transcribed using genome-wide RNA Polymerase II (RPol II) binding patterns derived from ChIP-seq data.
Based upon the assumption that the distribution of RPol II binding patterns around the TSS of microRNA and protein coding
genes are similar, we designed a statistical model to mimic RPol II binding patterns around the TSS of highly expressed,
well-annotated promoter regions of protein coding genes. We used this model to systematically scan the regions upstream
of all intergenic microRNAs for RPol II binding patterns similar to those of TSS from protein coding genes. We validated our
findings by examining the conservation, CpG content, and activating histone marks in the identified promoter regions. We
applied our model to assess changes in microRNA transcription in steroid hormone-treated breast cancer cells. The results
demonstrate many microRNA genes have lost hormone-dependent regulation in tamoxifen-resistant breast cancer cells.
MicroRNA promoter identification based upon RPol II binding patterns provides important temporal and spatial
measurements regarding the initiation of transcription, and therefore allows comparison of transcription activities between
different conditions, such as normal and disease states.
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Introduction

MicroRNAs are small (,22 nucleotides) non-coding RNAs

known to regulate the expression of target genes by promoting

mRNA degradation and suppressing translation [1,2,3,4]. The

discovery of microRNAs has identified new mechanisms of gene

regulation that play critical roles in multiple biological processes,

including cell cycle control, cell growth and differentiation,

apoptosis, embryo development, and so on [5,6,7,8,9]. While

several hundred precursor microRNAs (pre-miRNAs) and mature

microRNAs have been sequenced and annotated in human,

mouse, rat, and drosophila genomes [10], most primary micro-

RNAs (pri-miRNAs), which are transcribed by RNA Polymerase

II (RPol II) and further processed to pre-miRNAs in the nucleus,

have yet to be identified.

The regulation of microRNA biogenesis consists of three major

steps 1) pri-miRNA transcribed by RNA polymerase II and III; 2)

microRNA maturation, including nuclear cleavage of the pri-

miRNA to precursor microRNA and nucleocytoplasmic export,

and 3) RISC (RNA-induced silencing complex) assembly that

converts pre-miRNAs to mature microRNAs [11,12,13,14].

Although microRNA biogenesis can be regulated at any of these

three steps, identifying microRNA transcription start sites and

regulatory regions is critical to understanding transcription factor-

mediated regulation. Toward this objective, previous studies have

used individual genome features, such as transcription factor

binding site prediction [15], sequence conservation among

multiple species [16], expressed sequence tags (ESTs) [17], and

genome wide binding patterns of RPol II [18]. More recently,

epigenetic marks, including trimethylation of lysine 4 at histone
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H3 (H3K4me3), have been shown to be highly localized at gene

promoters [19], including microRNA promoter regions [20].

However, many of the previously identified pri-miRNAs have yet

to be fully or accurately annotated, and transcriptional mecha-

nisms governing microRNA regulation remain incompletely

understood.

In the current study, we designed a computational approach

using genome-wide RPol II binding patterns to identify the

promoter region and transcription start site of pri-miRNAs that

are actively transcribed. Because transcriptional regulation of

most intronic microRNAs is controlled by promoter sequences of

the corresponding host protein-coding genes [21], we focused on

‘‘intergenic’’ microRNA, i.e., microRNAs residing outside of

intronic regions of a host gene and previously demonstrated to be

primarily transcribed by RPol II [14]. Our model can be used to

scan the upstream regions of annotated microRNAs and identify

putative transcription start sites and active promoters, providing a

statistical framework for evaluating sensitivity and specificity of

the model prediction and for self-correcting experimental

variation in RPol II binding signals, thus making it possible to

compare microRNA promoter signals under different biological

conditions.

Results

The goal of this study was to use ChIP-seq derived RPol II

binding data to identify promoter regions of microRNAs actively

transcrbied. We develop a computational model to assess changes

in microRNA transcription and genome-wide RPol II binding

patterns in steroid hormone-treated breast cancer cells. Four

biological conditions and two breast cancer cell lines were utilized:

vehicle-treated (control) hormone-dependent MCF7, the anti-

estrogen resistant MCF7 subline MCF7-T (tamoxifen resistant,

described previously in Fan et al., 2006 [22]) and MCF7 and

MCF7-T treated with 17-b-estradiol (E2) for three hours. RPol II

patterns were determined using ChIP-seq (chromatin-immuno-

precipitation followed by next generation sequencing Illumina 1G

platform). ChIP-seq fragments that had either a poor quality score

or could not be mapped to a unique genomic locus were removed;

this analysis resulted in 5-7 million DNA fragments for each of the

four conditions (MCF7+/2E2; MCF7-T+/2E2). In addition,

mRNA expression levels were determined for the same conditions

using Affymetrix Human Genome U133 plus 2 GeneChip [22].

The overall procedure to systematically identify regulatory

regions of human microRNA genes is demonstrated in Figure 1.

Figure 1. Procedure for identifying microRNA promoters. The overall procedure includes four major steps: (1) using ChIP-seq experiment to
identify genome-wide RPol II binding patterns; (2) characterizing the features of the RPol II binding pattern surrounding the transcription start site
(TSS) of coding genes; and (3) scaning genomic regions upstream of all annotated microRNAs containing similar binding patterns as protein coding
genes; and (4) validating the identified microRNA regulatory regions.
doi:10.1371/journal.pone.0013798.g001
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As our approach assumes that the distribution of RPol II binding

patterns around the transcription start site (TSS) of microRNA

and protein coding genes are similar, we first designed a statistical

model to mimic RPol II binding patterns around the TSS of well-

annotated promoter regions of highly expressed protein coding

genes. To identify promoter regions of expressed microRNAs, we

systematically scanned the upstream regions of all the intergenic

microRNAs searching for genomic regions statistically similar to

RPol II binding patterns around the TSS of the coding genes. We

then validated our findings by examining the conservation, GC

content, and activating histone marks in the identified promoter

regions.

RPol II binding patterns around the TSS of expresed
protein coding genes

We first examined the RPol II binding pattern around the TSS

of expressed protein coding genes, whose express levels are

evaluated using Affymetrix Human Genome U133 plus 2

GeneChip [22]. The signal intensities were extracted using

Affymetrix Microarray Suite 5.0 (MAS5). MAS5 uses a non-

parametric statistical test (Wilcoxon signed rank test) to produce a

detection call (Absent (A), Present (P) or Marginal (M)) for each

probe set, based on whether the hybridization signal of perfect-

matched probes is significantly greater than their corresponding

mismatches. For the genes whose expression levels can be reliably

detected (Present), we calculated the total number of RPol II-

derived fragments within 5,000 base pairs (bp) upstream and

downstream of the TSS, producing a RPol II binding landscape in

the regulatory regions of expressed genes. Not surprisingly, we

observed significant enrichment of the RPol II signal on top of the

TSS (Figure 2A), which gradually declines towards both upstream

and downstream (transcript) regions. In the transcript region

(downstream), higher steady state RPol II signals are maintained

compared to upstream regions, eventually entering intergenic

regions (background). We further sub-classified expressed genes

based upon their expression levels, and genes with higher

expression levels tended to display higher the average RPol II

signals around the TSS (Figure 2A). For the coding genes with

undetectable (Absent) expression levels, RPol II enrichment

around the TSS was markedly lower; the minor enrichment of

RPol II signal around TSS is perhaps due to quiescent

mechanisms such as RPol II staling.

To mimic RPol II binding patterns surrounding the TSS of

expressed genes, a graphic model was used (Figure 2B). Intuitively,

for any given genomic region, the total number of RPol II binding

fragments should follow a Poisson distribution, and we therefore

focused on 200-bp genomic intervals. For each protein coding

gene, the genomic region was classified into three categories: one

central interval (centered at the TSS), 25 upstream intervals, and

25 downstream intervals. The Poisson parameter l for each interval

was based on the transcription level of the gene being studied and

the location of the interval relative to the transcription start site. As

shown in Figure 2B, five factors were used to model the Poisson

parameter l: S – the number of RPol II binding fragments in the

central interval (location of the TSS); T – the number of RPol II

binding fragments in the steady transcript region; B – the number

of RPol II binding fragments in the steady background region and;

Kp and Kt – decay factors of the number of RPol II binding

fragments in the promoter and transcription regions, respectively.

These five factors each follow a Gamma distribution genome wide

among all the expressed genes; therefore, we assume that the RPol

II binding patterns around the TSS of expressed genes were

determined by 10 Gamma parameters W (see methods).

For each of the four biological samples (MCF7+/2E2; MCF7-

T+/2E2), the 10 parameters were identified by maximizing the

posterior probability defined as Pr X,YDW½ � (for details methods see

Appendix S1), where X denotes the number of detected RPol II-

ChIP-seq fragments; Y stands for the five hidden variables that

determine the Poisson parameter li (Eq. 2) for each gene; and W
represents the ten parameters describing the distribution of the five

hidden variables. The optimal estimations for the 10 parameters in

four conditions (MCF7+/2E2; MCF7-T+/2E2) are shown in

Table S1. In all four samples, the expected promoter decay factors

Kp were larger than the expected transcription decay factor Kt,

indicating that RPol II binding quantities reached steady state

Figure 2. RPol II binding fragments surrounding TSS of protein
coding genes. (A) The ChIP-Seq-derived RPol II binding pattern
around theTSS of protein coding gene in MCF7 cells. Protein-coding
genes (n = 16,000) were separated into six groups, based upon their
expression levels, which are measured using microarray experiments.
(B) A statistical model of RPol II binding pattern surrounding the TSS of
expressed genes. The adjacent genomic regions are divided into
multiple 200-bp bins, in which the number of RPol II fragments is
assumed to follow Poisson distribution. For each gene, the overall
binding pattern can be characterized by five hidden variables, including
three variables describing the expected number of fragments in the
background region (B), the transcript region (T), and the bin that
contains TSS (S), and two variables modeling the signal decay rates in
both upstream and downstream of the TSS (Kp and Kt). Each hidden
variable follows a Gamma distribution genome-wide.
doi:10.1371/journal.pone.0013798.g002
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levels more rapidly in the transcript region (downstream of the

TSS) than in the promoter (upstream) region. If a higher-than-

background RPol II binding implies additional interaction(s) with

other transcription factors, the longer regulatory region upstream

of the TSS supports the concept that transcription factors initiate

transcription by binding regulatory elements upstream of the TSS;

this is due to the nature of ChIP-seq experiment, in which both

protein-DNA and protein-protein interactions will be cross linked.

We also observed that the expected quantities of RPol II in the

transcript region (T) were higher than the intergenic region (B),

indicating constant transcriptional activity in the expressed genes.

Predictive power of RPol II binding pattern and
transcriptional activity

To test the predictive power of our model for identifying

microRNA promoter regions, we constructed a ‘‘gold standard’’

by focusing only on genes with lengths of open reading frame

greater than 10,000-bp and with no other genes present within

10,000-bp of the TSS. These criteria avoid potential bias due to

the transcriptional activities of other genes, which could result in

an over estimation of the number of RPol II binding sites; this

analysis results in 4007 expressed genes (Present on the Affymetrix

array) and 2134 unexpressed genes (Absent genes) in MCF7 cells.

To identify model parameters, we randomly selected J of the

expressed genes, and the remaining L of expressed genes and all

the unexpressed genes were used as positive and negative control

sets, respectively. Based upon the parameters W identified from

1002 genes in the training sets, one score was calculated for each

gene by comparing the probability that the RPol II binding

pattern around its TSS fits expressed genes rather than genome-

wide unexpressed regions (Eq. 3 in the Methods); this is evaluated

by the ratio of the likelihood from distributions of expressed genes

and background regions, respectively. The probability of fitting the

genome-wide unexpressed regions was calculated by assuming that

the RPol II binding signals were from intergenic background

regions. Our model using RPol II binding patterns around the

TSS appeared to accurately distinguish between expressed and

unexpressed genes. The area under the curve (AUC) in the

Recursive Operating Characteristics (ROC) reached 0.81 in

differentiating all the expressed genes in the test set and

unexpressed genes (Figure 3A), and the predictive power of this

approach increased with gene expression level (Figure 3A),

reaching 0.93 for genes signal intensity levels .10,000 and

unexpressed genes in the Affymetrix array. The AUC dropped to

0.66 for genes with signal intensities ,1,000.

To assess whether the RPol II sequencing depth is adequate in

identifying active promoter regions, we performed saturation

analysis by analyzing how the prediction power change when only

a subset of sequencing reads are used for prediction. The same

4007 expressed genes and 2134 unexpressed genes in MCF7 cells

were used for saturation analysis. The AUC score was calculated

by randomly selecting 1 million to 6 million reads (Figure 3B).

The predictive power of our approach increased with the

sequence depth and reached a saturation point with more than

4 million reads. Similar results were achieved for other conditions

(Figure S1).

Identification of microRNA promoters
The objective of this study was to identify the TSS and

promoter regions of pri-microRNAs by searching for RPol II

binding patterns similar to those seen in expressed protein-coding

genes in the upstream regions of annotated mature microRNAs

(see methods for details). In brief, for each microRNA, we

searched the TSS of the primary microRNA up to 10,000-bp

upstream of the mature microRNA. Starting from the 59-end of

the annotated mature microRNA [10], we calculated the number

of RPol II-targeted DNA fragments detected in every 200-bp

genomic interval. For each interval within 10,000-bp upstream of

the mature microRNA, the probability that it contains a TSS was

calculated by comparing whether the RPol II binding patterns in

the surrounding bins fit the patterns deduced in the expressed

coding genes (Eq 3), defined as DF. We selected the interval with

the largest DF score as a potential TSS-containing bin. To

evaluate whether the microRNA was actively transcribed, a false

Figure 3. The ROC curve and saturation analysis for TSS
prediction of protein coding genes with different expression
levels. (A) The ROC curve shows the sensitivity and specificity of the
TSS prediction for genes with different expression levels. Genes were
separated into four groups, according to expression level. For each
group and total genes, the TSS was sorted by score DF, and the rate of
false predictions (X-axis) and true predictions (Y-axis) was plotted for
each possible score prediction threshold. The area under the curve
(AUC) for each gene group is shown, computed by extending each plot
to the upper right corner. Gene group is shown by a dotted line. (B) The
saturation analysis demonstrates the effects of sequencing depth to the
prediction. X-axis indicates the number of randomly selected reads from
the whole data set, and Y-axis shows the AUC score for identifying
actively transcribed promoters for the genes with different levels of
expression.
doi:10.1371/journal.pone.0013798.g003
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discovery rate (FDR) was calculated by comparing this score (DF)

to the values derived using RPol II binding patterns around

unexpressed genes. Here, the promoter regions of unexpressed

genes were used as background to estimate the FDR. This

background can also be estimated using randomly selected

genomic regions. A lower FDR indicated a higher possibility that

a particular microRNA was actively transcribed in the respective

biological system.

We focused our study on 419 intergenic microRNAs obtained

from miRBase microRNA sequence database (version 11.0). The

intronic microRNAs, based upon human RefSeq gene annotation

(hg18 genome assembly, [23]), were eliminated from the analysis,

because they might co-transcribe with host genes. Using an FDR

#0.2, we identified promoter regions for 49 and 68 microRNAs

actively transcribed in vehicle- and E2-treated MCF7cells,

respectively (Table S2). In the tamoxifen-resistant cells, 61 and

68 microRNAs were identified in vehicle and E2-treated MCF7-T

cells (Table S2). This list contains 72 microRNAs that were

detected in at least one sample, 47 of which (65%) were present in

all four samples; these 72 microRNAs are from 46 microRNA

clusters [10].

Based on the assumption that RPol II binding enrichment

around the TSS may be due to the interaction with transcription

factors in the regulatory region, for each microRNA, we

considered genomic regions with less than a 90% RPol II signal

decay compared to the ones in TSS-bin as a potential regulatory

region (Figure 4A). For the 46 microRNA clusters detected in at

least one sample, the width of the regulatory regions demonstrated

significant variation (Figure 4B). The median value of the width of

regulatory region was 1381-bp, with longest and shortest widths of

3877-bp and 575-bp, respectively. In addition, we also observed a

wide range of genomic distances between the identified TSS and

their corresponding microRNA (100’s–10000’s bp range;

Figure 4C), with a median distance of 3550-bp. Such findings

are consistent with other studies using sequence features [17] or

other types of genomic data [24].

RPol II binding patterns reveal microRNA predisposition
in tamoxifen-resistant breast cancer cells

In MCF7 cells, 49 microRNAs were actively transcribed (FDR

#0.2), and active transcription of an additional 19 microRNAs

was seen after E2 stimulation (Figure 5). Among the 19 E2-

induced microRNAs in MCF7 cells, 10 were constitutively active

in vehicle-treated MCF7-T cells, and 7 (out of19) were E2-

inducible in MCF7-T (Figure 5). These 7 microRNAs were a

subset of the E2-induced microRNAs in MCF7 cells, demonstrat-

ing that their induction was independent of tamoxifen resistance.

These results suggest that the 10 E2-inducible microRNAs in

MCF7 cells, which became constitutively upregulated in the

MCF7-T cells, may contribute to loss of estrogen sensitivity and

acquisition of the antiestrogen resistant pheonotype. Surprisingly,

E2 treatment did not repress transcriptional activity of any

microRNAs, both in MCF7 and MCF7-T cells. This suggests that

decreased expression of previously reported E2-suppressed micro-

RNAs [25] was more likely to be regulated in the RNA processing

level (microRNA maturation), rather than on the transcriptional

initiation level.

We further classified all 72 microRNAs into the following six

categories:

MicroRNAs identified in all four samples. This category

contains 47 microRNAs that are constitutively transcribed in both

MCF7 and MCF7-T cells (no effect of E2 treatment, Table S2);

E2- inducible, tamoxifen-insensitive. This category

contains 7 microRNAs induced by E2 in both MCF7 and

Figure 4. Features of identified microRNA regulatory regions.
(A) Schematics of the definition of microRNA promoter region. (B)
Histogram illustrating promoter length of the 46 microRNA clusters. (C)
Histogram illustrating the distance between 72 mature microRNAs and
their predicted microRNA TSS.
doi:10.1371/journal.pone.0013798.g004
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MCF7-T cells (hsa-miR-130b, hsa-miR-17, hsa-miR-18a, hsa-

miR-19a, hsa-miR-19b-1, hsa-miR-20a, and hsa-miR-92a-1).

Tamoxifen-inducible, E2-independent. This category

contains 4 microRNAs (hsa-miR-181c, hsa-miR-181d, hsa-miR-

195, and hsa-miR-497) that are transcribed in control and E2-

treated MCF7-T but not expressed MCF7 cells.

Tamoxifen-repressed, E2 independent. Two microRNAs,

hsa-miR-135b and hsa-miR-365-1, were transcribed in both

control and E2-treated MCF7 cells but not in either of the

MCF7-T groups. Transcription of these two microRNAs is thus

suppressed by the tamoxifen treatment and independent of E2

treatment.

Tamoxifen-repressed, E2 inducible. Two microRNAs,

hsa-miR-193b and hsa-miR-301b, were induced by E2 in MCF7

but not in MCF7-T cells.

Predisposed microRNA induction in MCF7-T. Ten

microRNAs, hsa-let-7a-1, hsa-let-7f-1, hsa-miR-148a, hsa-miR-

23a, hsa-miR-24-2, hsa-miR-27a, hsa-miR-550-2, hsa-miR-564,

hsa-miR-663, and hsa-miR-923, were induced by E2 treatment of

MCF7 cells, but showed a similar upregulated level of expression

in both vehicle- and E2-treated MCF7-T, suggesting that the

acquisition of tamoxifen resistance is associated with constitutive

activation of certain microRNAs.

The identified regulatory regions are evolutionarily
conserved

We further examined conservation levels of identified TSS and

promoter regions. For each microRNA, the conservation scores

(PhastCons scores), were retrieved for five genomic regions

(Figure 6A): the 200-bp bin that contained the identified TSS,

predicted regulatory regions (Figure 4A), 2,000-bp upstream of the

regulatory region, 2,000-bp downstream of the regulatory region, and

2,000-bp of randomly selected intergenic regions. The PhastCons

scores are downloaded from UCSC Genome Browser and reflect the

overall conservation among seventeen vertebrate species [23].

Importantly, the average conservation score in the TSS region and

transcript region are markably higher than the upstream regions.

Figure 5. Venn diagram of differentially transcribed microRNAs in breast cancer cells. With FDR #0.2, the identified active transcription of
microRNAs in four statistical comparisons, MCF7 control vs. MCF7 after treatment with 17b-estradiol (E2 treatment), MCF7-T control vs. MCF7-T after
E2 treatment, MCF7 control vs. MCF7-T control, and MCF7 after E2 treatment vs. MCF7-T after E2 treatment. The differentially transcribed microRNAs
in each comparison are showed in the middle of the figure.
doi:10.1371/journal.pone.0013798.g005
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The identified microRNA promoters are GC-enriched
regions

Approximately 70% of human promoters contain CpG islands

[23]. We observed high GC content within or around the

predicted regulatory regions, and among the 46 microRNA

clusters that contain predicted promoters, 37 (80%) were found to

contain or overlap with at least one CpG island; these clusters

include 59 out of 72 active microRNAs (Table S2). To examine

the distribution of the number of CpG islands at each genomic

locus for all the microRNAs, we aligned the identified TSS bin and

extended 10,000-bp in both upstream and downstream directions

(Figure 6B). We observed clear enrichment of CpG island

occupancy around the predicted TSS and regulatory regions.

Enriched H3K4Me2 signal around the predicted
regulatory regions

As an independent biological validation, we conducted ChIP-

seq experiments on one histone mark, dimethylation of lysine 4 at

histone H3 (H3K4Me2). Genome-wide study suggested that this

mark localizes around gene promoter and enhancer regions, and

forms a bi-peak shape centered at transcription start site [19].

Similar as GC analysis, we aligned the identified TSS bin and

extended 10,000-bp in both upstream and downstream directions,

and counted the number of H3K4Me2 ChIP-seq fragments on

each genomic locus. We observed a bi-peak pattern similar to that

reported in [19,26,27] (Figure 7).

Promoter regions for intronic microRNAs
It has been reported that most intronic microRNAs are co-

transcribed with their host genes, and therefore share common

promoter regions. However, several publications also suggested

that some intronic microRNAs could be transcribed independently

[18,28,29]. To this end, we conducted promoter identification on

the intronic microRNAs using our model. Among the 266 intronic

microRNAs, our algorithm identified 52 microRNA promoters in

at least one of the four conditions (MCF7+/2E2, and MCF7-

T+/2E2). Forty nine of the identified promoter regions overlaps

with the promoters of their host genes. This is consistent with

previous reports. There are, however, three exceptions (hsa-9-1,

hsa-miR-935, and hsa-miR-661); their promoter regions locate

inside of their host gene. The annotations of the identified

promoter and their host genes can be found in Table S3.

Discussion

High throughput DNA sequencing is rapidly changing the

landscape of genomic research [30]. Recent studies using ChIP-

seq technology have revealed genome-wide transcription factor

binding sites [31,32,33], the distribution of histone modifications

across the genome [19], and RPol II binding sites and patterns

associated with active transcription of coding genes [19,33]. In this

study, we used ChIP-seq-derived RPol II binding data to identify

regulatory regions of microRNAs, an important step toward

understanding the cis-acting element and trans-acting factors that

control the microRNA expression levels.

We hypothesized that RPol II binding distribution around the

TSS is similar for microRNAs and protein coding genes. To test

this assumption, we designed a statistical model to characterize

RPol II binding patterns using the signals associated with highly

expressed coding genes. Briefly, the RPol II ChIP-seq data was

used to determine 10 parameters W that describe 5 Gamma

distributions, from which the 5 parameters S, B, T, Kp, and Kt of

every expressed coding genes are selected. These 5 parameters

determine a Poisson parameter (lij) associated with the distribution

of the number of RPol II binding fragments in bin j of gene i.

Rather than being fitted for every expressed gene, these 5

parameters were treated as hidden variables and bounded by five

Figure 6. Sequence conservation and CpG islands distribution
pattern near the predicted microRNAs TSS and in random
intergenic sequences. (A) Sequence conservation around all micro-
RNA TSS in four cell types. (B) CpG islands distribution within 10 kb
upstream and downstream of microRNA transcription start sites.
doi:10.1371/journal.pone.0013798.g006

Figure 7. H3K4Me2 binding patterns near the predicted
microRNA TSS.
doi:10.1371/journal.pone.0013798.g007
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Gamma distributions; this effectively characterized their between

gene variations.

To predict the genomic loci of microRNA transcription start

sites, we applied the model on the RPol II binding patterns in the

upstream region of all annotated microRNAs. We further used this

model to investigate the transcription of microRNAs in response to

hormone treatment of two breast cancer cell lines, estrogen-

dependent breast cancer cells (MCF7) and the anti-estrogen

(tamoxifen) resistant subline (MCF7-T). Our model identified TSS

for 72 microRNAs in at least one of four conditions (treatment of

MCF7 or MCF7-T with either vehicle or 17b-estradiol). Our

results suggest that microRNA predisposition can contribute to the

development of antiestrogen resistance in hormone-dependent

breast cancer cells. It should be noted that while comparing the

predictions between two conditions, we did not take the RPol II

binding intensity into account; only two states, ‘‘active’’ and

‘‘inactive’’ promoters, were considered. This is to avoid the

potential bias caused by the conditional differences between

samples, such as sequencing depth, library preparation errors, and

so on. It is possible that for certain active promoters, RPol II

binding intensity changes but the signal in both conditions are

higher comparing to the background (active in both conditions).

Our model cannot distinguish such differences. In addition, RPol

II enrichment at the promoter region does not guarantee the

expression of downstream gene; many mechanisms can contribute

to such deviation, such as RPol II stalling, RNA binding protein-

induced post-transcriptional regulation, and so on.

Promoter regions and TSS of non-coding RNAs have recently

been identified using strategies based on three types of informa-

tion: 1) sequence composition upstream of the microRNA, such as

GC content, level of conservation, transcription factor binding

sites and expressed sequence tags [15,16,17,24,34]; 2) the

distribution of epigenetic marks that encode regions of transcrip-

tional initiation [20,29], or 3) ChIP-chip-derived RPol II binding

data using custom tiling arrays designed to target ,50kb upstream

the microRNA genes [18]. Our approach differs from those

studies in several ways. First, we did not use sequence composition

as the model base for promoter prediction; instead, that type of

information is used, in part, for model evaluation. We found that

,80% of the identified promoter regions overlap with at least one

CpG island. In addition, the regions we identified tend to be more

evolutionarily conserved. In contrast to sequence information,

RPol II binding patterns provide important temporal and spatial

measurements regarding the initiation of transcription, important

for understanding the mechanism of microRNA transcriptional

regulation. Second, our strategy differs from previous efforts using

H3K4Me3 marks for successfully identifying microRNA promoter

regions [20]. H3K4Me3 highly localizes to promoters [19] and

therefore serves as an excellent transcriptional initiation mark.

Therefore, we applied our model to one of the datasets containing

both H3K4Me3 and RPol II binding data ([19]; from a published

study measuring the binding patterns of 20 histone modification

markers in human CD4+ T-cells). A detailed comparison between

the two strategies revealed several interesting features (Appendix

S1), but perhaps most important was that H3K4Me3 maintains a

permissive chromatin state that allows for transcription factor

binding. However, the permissive chromatin state appears to be

necessary, but not sufficient, for transcriptional initiation, as only

23% H3K4Me3-predicted microRNA promoters are recovered by

our RPol II strategy (Figure S2). This observation, however, can in

part be caused by the differences of experimental conditions, such

as sequencing depth. Third, our approach differs from a recent

study attempting to identify TSS-containing regions in pri-

microRNAs using RPol II ChIP-chip data from a tiling array

platform targeting microRNA upstream regions of up to 50KB.

Instead of only examining the microRNA upstream RPol II

signals, we first trained our model using the RPol II binding

patterns around the TSS of protein coding genes, providing a

statistical framework for evaluating the sensitivity and specificity of

the model prediction (Figure 3). In addition, this framework allows

for self-correcting of variable RPol II binding signals from different

experiments, due to parameter identification for individual

samples, making it possible to compare microRNA promoter

signals under different biological conditions.

Despites these advantages, RPol II binding patterns around the

TSS can only be used to identify regulatory regions of intergenic

microRNAs, which account for approximately half of all

microRNAs. Current evidence is lacking as to whether intronic

microRNAs use their own TSS and promoter sequences or share

the same regulatory components with the host gene. Our results

suggest that most of the intronic microRNAs share promoter

regions with their host genes, with a few exceptions. Similarly, our

TSS search focus on 10kb upstream of microRNA annotation.

Recent studies suggest that some microRNA promoters are far

away from their mature product on the genome; they will not be

predicted by the current strategy. Technically, increasing the

searching scope is possible; however, the prediction accuracy will

be decreased due to the interference with the RPol II signals of

surrounding genes. It should also be noted that the model

presented here only focuses on the transcriptional regulation in the

microRNA biogenesis process; the microRNA expression can also

be affected by other steps, including Drosha-involved nuclear

processing [35,36], nuclear export [35,37], and Dicer-involved

cytomastic processing [35,36,37]. In addition, the computational

model proposed here cannot be used to identify regulatory regions

of the small percentage of microRNAs transcribed by RNA

polymerase III [38].

As shown in Eq. 2, the current model did not incorporate the

potential correlation among 5 parameters that characterize

genome-wide RPol II binding patterns around active promoters.

Neglecting such correlations will potentially affect the likelihood

estimation, and therefore result in less than optimal promoter

prediction. However, ROC curve on our current model suggested

that the AUC has reached ,0.9 in predicting promoter regions of

highly expressed genes (Figure 3). Hence, additional improvement

with better model won’t be significantly beneficial. In order to

model the correlations among S, B, and T, at least two more

random effects need to be introduced into the model to

characterize their shared variations. This additional level of

hierarchical model will lead to one more layer of integration in the

E-step. The numerical integration scheme will be very different,

and computational expense will be much higher. Its complexity

will exceed the current scope of this paper, and it is a challenging

research question.

Our model differs from regular ‘‘peak finder’’ algorithms that

are often used to identify binding sites of transcription factors

derived from ChIP-seq experiments. An underlying assumption of

regular peak finder algorithms is that DNA-binding proteins, such

as transcription factors, contain sequence-specific DNA binding

domains that target a cluster of cis-acting DNA elements sharing

certain sequence features. While such algorithms can identify

DNA binding sites for highly specific transcription factors, they are

not appropriate for identifying binding sites for the general

transcriptional machinery, such as RPol II, which typically does

not display high sequence specificity. In addition, as RPol II

activity likely extends beyond the promoter/transcription start site

of active genes, algorithms for assessing long-range RPol II

binding are needed. Our data demonstrated that RPol II binding
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pattern around the gene transcription start site follows distinct

patterns (Figure 2A), and our model is designed to jointly describe

the number of RPol II binding fragments surrounding the TSS,

including both promoter and transcript regions; this allows for a

more accurate description of RPol II binding pattern features.

Finally, the model framework described here can also be used to

study the activities of other RPol II-related transcriptional events,

such as tissue/condition-specific alternative promoter usage [39],

bi-directional promoters [40], and regulatory regions of other

RPol II-transcribed non-coding RNA in normal and disease states.

Methods

ChIP-seq protocol (for both RPol II and H3K4Me2)
Chromatin immunoprecipitation (ChIP) for PoI II (Santa Cruz,

sc-899X; 10mg) and H3K4me2 (Upstate, 07-030, 10mg) was

performed as previously described [41]. ChIP libraries for

sequencing were prepared following standard protocols from

Illumina (San Diego, CA) as described in [42]. ChIP-Seq libraries

were sequenced using the Illumina Genome Analyzer II (GA II) as

per manufacturer’s instructions. Sequencing was performed up to

36 cycles for mapping to the human genome reference sequence.

Image analysis and base calling were performed with the standard

Illumina pipeline, and with automated matrix and phasing

calculations on the PhiX control that was run in the eighth lane

of each flowcell. Eland_extended algorithm was used to map the

sequences to human genome (hg18). This algorithm is fully

sensitive to 2 mismatches in first 32 bases and allows up to 6

mismatches in whole read length. Only the sequences that

uniquely mapped are reported in export or sorted files.

Modeling promoter features using coding genes
ChIP-seq experiment revealed that RPol II followed distinct

binding patterns around transcription start site of coding genes

(Figure 2). In order to model the genome-wide RPol II binding

pattern around TSS of coding genes in a statistical framework, we

first divided the genomic regions neighboring TSS into 200-bp

bins. The bins were classified into three categories, a TSS bin,

where the annotated TSS locates in the center of the bin,

promoter bins, which locate upstream of the TSS bin, and

transcript bins, which locates downstream of the TSS bin.

Intuitively, the number of RPol II fragments detected in each

bin should follow a Poisson distribution:

Xij*
e{lij l

Xij
ij

Xij !
,lij§0 ð1Þ

where Xij denotes the number of detected fragments in the j-th bin

of the i-th gene, and lij is the expected RPol II quantity for the

same bin. We assumed that the expected RPol II quantity lij is

determined by the expression levels of the i-th gene, and the

relative location of the j-th bin from the transcription start site.

lij~ Biz Si{Bið Þe{Dpj
�
Kpi

h iI Rj in Pro

h i
Si½ �

I Rj in TSS

h i

Tiz Si{Tið Þe{Dtj
�
Kti

h iI R in TRA½ �
ð2Þ

where Si stands for the expected number of RPol II fragments in

the bin that contains the TSS of the i-th gene; while Bi and Ti

denote the expected RPol II fragments in the bins that locate

distantly upstream or downstream of the TSS, which represents

the expected signals for the intergenic background and stead

transcript regions, respectively (Figure 2B). Dj stands for the

distance between the j-th bin and the TSS, represented through

the number of bins away from the TSS bin. Kpi and Kti denote the

decay rate of RPol II signal in the upstream and downstream of

TSS of the i-th gene. The five parameters, Si, Bi, Ti, Kpi, and Kti,

are all gene specific and are assumed to follow respective Gamma

distributions genome-wide. The probability of observing the

experimentally-determined RPol II binding patterns around the

TSS of coding genes can be described as Pr X,YDW½ �, where X
denotes the number of RPol II fragments observed in each bin; Y
is missing data that represent five gene specific parameters, Si, Bi,

Ti, Kpi, and Kti; and W denotes the ten parameters for the Gamma

distributions of the five missing values. The parameter vector W
was estimated from number of RPol II fragments in each bin

around the TSS of the coding genes. See Appendix S1 for details

on numerical calculations.

Identification microRNA regulatory regions
We identified TSS of pri-miRNAs and its regulatory region

using the ten parameters W estimated from RPol II binding

patterns surrounding the TSS of coding genes. For each annotated

intergenic pre-miRNA in miRBase database, we retrieved the

RPol II binding data from 15,000-bp upstream and 5,000-bp

downstream of its start genomic locus, allowing for searching for

TSS within 10K upstream of the annotated pre-miRNA. As

described above, the genomic regions will be divided into a series

of 200-bp bins. For each bin, we evaluated the likelihood of

containing a TSS by calculating a score that describes the

differences between the probability of containing a TSS or not

(background); the background model only incorporates hidden

value (B) since the gene is assumed not to be expressed

DFij~
Pr Xi,YiDWð Þ

Pr Xi,BiDaB,bBð Þ ð3Þ

where W is the estimated parameter vector identified from the

RPol II binding data for the coding genes; Xi represents number

of RPol II binding fragments in the 50 upstream and downstream

bins that surrounding the j-th bin (the bin being evaluated). aB and

bB represents the two parameters that describing the Gamma

distribution of genome-wide background signals. See Appendix S1

for detail procedures.

Data and model availability
All the data are made available in the NCBI Gene Expression

Omnibus (GEO) database with accession number GSE21068 for

the ChIP-seq data for RPol II and H3K4me2, and GSE5840 for

the microarray data for MCF7 and MCF7-T with and without E2

treatment. In addition, both the R-code for the promoter

identification and ChIP-seq data are available in the project

website: http://compbio.iupui.edu/liu/miRpromoter.

Supporting Information

Appendix S1 Supplementary methods and results.

Found at: doi:10.1371/journal.pone.0013798.s001 (0.14 MB

DOC)

Figure S1 The saturation analysis on (A) E2-treated MCF7cells,

(B) vehicle MCF7-T cells, (C) E2-treated MCF7-T cells, and (D)

CD4+ T-cells. Because the gene expression measurements were
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achieved using different microarray platforms, the expression level

for MCF7 and T-cell were sub-classified on different scales.

Found at: doi:10.1371/journal.pone.0013798.s002 (0.20 MB TIF)

Figure S2 Congruity between promoter predictions based upon

RNA polymerase II and H3K4Me3.

Found at: doi:10.1371/journal.pone.0013798.s003 (0.13 MB TIF)

Table S1 The optimal estimations for the 10 parameters in four

conditions.

Found at: doi:10.1371/journal.pone.0013798.s004 (0.02 MB

XLS)

Table S2 The predicted transcription start sites and promoter

regions of 72 microRNAs, and their association with CpG islands.

Found at: doi:10.1371/journal.pone.0013798.s005 (0.04 MB

XLS)

Table S3 Annotations of predicted promoters of intronic

microRNAs.

Found at: doi:10.1371/journal.pone.0013798.s006 (0.05 MB

XLS)
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