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Abstract

Bipolar Disorders affect a substantial minority of the population and result in significant personal, social and economic costs.
Understanding of the causes of, and consequently the most effective interventions for, this condition is an area requiring
development. Drawing upon theories of Bipolar Disorder that propose the condition to be underpinned by dysregulation of
systems governing behavioural activation or approach motivation, we present a mathematical model of the regulation of
behavioural activation. The model is informed by non-linear, dynamical principles and as such proposes that the transition
from ‘‘non-bipolar’’ to ‘‘bipolar’’ diagnostic status corresponds to a switch from mono- to multistability of behavioural
activation level, rather than an increase in oscillation of mood. Consistent with descriptions of the behavioural activation or
approach system in the literature, auto-activation and auto-inhibitory feedback is inherent within our model. Comparison
between our model and empirical, observational data reveals that by increasing the non-linearity dimension in our model,
important features of Bipolar Spectrum disorders are reproduced. Analysis from stochastic simulation of the system reveals
the role of noise in behavioural activation regulation and indicates that an increase of nonlinearity promotes noise to jump
scales from small fluctuations of activation levels to longer lasting, but less variable episodes. We conclude that further
research is required to relate parameters of our model to key behavioural and biological variables observed in Bipolar
Disorder.
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Introduction

Mood disorders such as bipolar disorder have not yet attracted

substantial interest in the community of dynamical modelling. This

is surprising, since bipolar disorder is one type of affective disorder

exhibiting strikingly complex switch-like dynamics between

normal, depressive and manic or hypomanic states. These state

transitions may be regular, but may also lead to chaotic behaviour.

Diagnostically, several forms of Bipolar Disorder exist, including:

Bipolar I Disorder (BD-I), often considered to be the most severe

form of the disorder and the only one to include presence of full

manic episodes; Bipolar II Disorder (BD-II), which comprises both

hypomanic and major depressive episodes; Cyclothymia, which

involves periods of hypomania and minor depression over at least

two years with little time spent in a euthymic state; variants of

Bipolar Disorder classified as Bipolar Disorder not otherwise

specified, which involve fluctuations in levels of depressive and

hypomanic symptoms that are not sufficiently severe or prolonged

to represent full affective episodes, yet fall outside the person’s

normal range of behaviour [1]. Bipolar disorder is a considerable

public health problem. Worldwide, the estimated prevalence of

ilnesses from the bipolar spectrum is an estimated 2.4% [2].

Compared to the population average, patients suffering from

bipolar disorder have a 12.3 times higher rate of suicide [3].

Moreover, bipolar disorder is also associated with increased risks

of other illnesses, such as coronary heart disease or cancer [4].

Given that the precise cause of this illness is not yet known, and

there is considerable room for improvement in terms of treatment

[5], dynamical modelling seems to be a useful way to integrate the

knowledge from many levels of research and rigorously test

hypotheses of our current understanding of this illness. The pursuit

of such an approach has so far been hindered by lack of suitable

data, and only a few attempts have been made in this direction. In

one mathematical modelling study, bipolar disorder is described in

terms of oscillatory behaviour of emotional states using a van der

Pol oscillator [6]. In this model, a stable limit cycle is reached at

the onset of the illness, which can be reduced in amplitude upon

treatment. Aside from this deterministic approach, there are also a

few models dealing with stochasticity in affective disorders and the

role of noise in episode sensitisation [7–9]. These studies

implement aspects of the kindling model, which is used in several

neuropsychiatric contexts [10], describing the progression from

externally induced disease episodes to autonomously occurring

episodes following sensitisation. Modelling a positive feedback

between sensitisation and an unspecific disease system, these

studies provide a conceptual understanding and are able to
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reproduce some phenomena known from bipolar disorder such as

transient events and chaotic behaviour.

One recently published mathematical model describes bipolar

disorder by means of a dynamical system of a double negative

feedback loop which gives rise to bistability [11]. Similar to

previous deterministic approaches, it limits itself to the description

of sustained oscillations between extreme mood states. However,

while mood is often alternating in bipolar disorder, there is

evidence based on the investigation of longitudinal studies that this

alternation it is not truly oscillatory but is instead directed by

chaotic attractors [12,13]. Moreover, patients typically exhibit

often quite extended episodes of normal mood between manic and

depressive episodes. These intermediate phases and the events

triggering a transition to depressive or hypomanic/manic episodes

are of high interest for clinical treatment.

In this paper, we present a minimal mathematical model of

mood regulation in bipolar disorder, implementing hypotheses

regarding the auto-regulatory nature of the Behavioural Activa-

tion/Approach System (BAS), and predicting that increasing

nonlinearity in this system leads to multistability and switch-like

transistions between activation or engagement levels in an

individual. This model is informed by data on BAS activity in

bipolar patients and is able to reproduce some typical dynamics of

bipolar disorder, such as a slower recovery time after frustrating or

rewarding events in bipolar patients. This effect has been

associated with the number of previous episodes in empirical

studies [14]. In our model this can be reproduced by increasing the

nonlinearity parameter n.

The BAS promotes active engagement with the environment

following signals of reward [15–18]. With increasing BAS activity,

an individual experiences increased cognitive activity that aims

towards achieving goals and approach behaviours, corresponding

to positive emotions (such as motivation or elevated mood), but

also potentially irritability and anger if goal progress is thwarted

[15,19,20]. The BAS is mainly activated by rewarding stimuli,

such as food, social contact, sex or novelty. Following such stimuli,

it increases further engagement with the environment. Typical

behaviours associated with high BAS levels are high energy,

locomotion and motivation [15]. Neurobiologically, the BAS is

thought to be related to the dopaminergic reward pathways

[15,16]. There is evidence from electroencephalographic and

neuroimaging data that higher relative activity in the left

prefrontal cerebral cortex is associated with approach-related

motivation [21], possibly implicating it in the BAS circuitry. There

are a number of studies supporting the idea that hypomanic/

manic and depressive symptoms in bipolar spectrum disorders are

both related to hypersensitivity of the BAS [15,22–25], however

the mechanistic basis of such hypersensitivity is still unclear.

Here, we define the BAS to act as an auto-activation system,

controlling behavioural activity or engagement and exhibiting

inherent properties of nonlinearity. Our minimal model shows that

increase in nonlinearity of this system alone is sufficient to model

the transition from normal-type activity dynamics to those found

in bipolar patients. With the addition of an auto-inhibitory

component, this system is multistable at higher degrees of

nonlinearity. We can show that the continuous transition between

normal-type and bipolar-type dynamics is due only to variation in

the nonlinearity parameter in the system.

This hypothesis is directly informed by an empirical study on

behavioural dynamics in bipolar patients which shows that time

taken for behavioural activation levels to recover from rewarding

or frustrating events increases with increasing number of manic

and bipolar episodes respecitvely [14]. Data from this study have

been re-analysed and the model has been scaled to fit these

empirical findings. Deterministic and stochastic simulations of the

model have been implemented using numerical integration of the

system. Results from the stochastic simulations elucidate the roles

of extrinsic and intrinsic noise in an individual’s development of

bipolar disorder. As known from other control systems based on

positive feedback, nonlinearity tends to increase noise in the

system. Our results indicate that increasing noise levels lead to a

transition from lower-scale variability (local fluctuations in

activation levels around a steady state) to higher-scale variability

(occurrence of episodes with lower local fluctuations).

Methods

Model Formulation
The model has one variable, E, which stands for the

engagement or level of behavioural activation and describes the

propensity of an individual to interact with its environment. It

should be noted at this point that while high activation levels might

correlate with positive or elevated mood and low activation levels

correlate with low moods, our intention is not to model mood

states, but to specifically model behavioural activation/approach

levels, which have been shown to correlate with manic, hypomanic

and depressive episodes in bipolar disorder [22,23,26,27]. By

doing so, we allow for the occurrence of so-called mixed states

[28], and moreover account for the finding that manic or

hypomanic episodes can manifest themselves as increase in

irritability or anger, which can be an output of high BAS activity

[20].

The regulation of E is here understood as being regulated by

two feedbacks: one auto-activation feedback, mirroring the BAS

and incorporating the function of self-activation, expressed as the

up-regulation of E by itself, and an additional auto-regulatory

negative feedback, which stands for a tendency to keep E at

normal levels. Here, E is treated analogously to a substance being

produced and degraded in certain processes. This mathematical

formalism is very common in theoretical approaches to describe

regulatory networks on molecular or cellular levels, such as in gene

expression or metabolic networks [29]. Since we are interested

only in the dynamical relationship of the variables of interest at a

very high organisational level, without attempting to capture the

exact biological underpinnings of these phenomena, we borrow

the terminology of systems biology to describe BAS regulation.

This approach allows us to minimise the level of complexity in the

system and focus on specific dynamics of interest, which in this

case is the role of nonlinearity in mood regulation. The system is

open, such that there is a constant influx of E at the rate b, and a

decay of E with the rate k2. The constant influx rate b determines

the baseline level of the fixed point, especially for the lower fixed

point in the region of multistability at high n. Thus, if b~0, the

lower fixed point at high n would be E~0, which corresponds to a

non-existing level of activation. While this would not change the

system behaviour qualitatively, we chose b to be a positive rate to

ensure a less extreme steady state level for E. Overall, this can be

written as

dE

dt
~Fp(E)zFn(E)zb{k2E ð1Þ

where Fp stands for the positive feedback and Fn stands for the

negative feedback in which E is involved. Auto-activation of E is

expressed as a Hill function, such that

Computational Modelling of Bipolar Disorder
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Fp~
k1En

KnzEn
ð2Þ

with k1 being the maximum rate of E ‘production’, K being the

rate at which E production is half of the maximum rate, and n

being the nonlinearity parameter. In molecular systems, n usually

corresponds to the cooperativity of an enzyme. In our case, it

could be interpreted as the effectiveness of the system to activate

E, with n defining the shape of its activation curve Fp(E). Thus,

low levels of nonlinearity lead to hyperbolic response dynamics of

Fp(E), whereas high levels of nonlinearity lead to a sigmoidal-

shape ultrasensitive response (see fig. S1) [30]. As a consequence,

at certain levels of E the responsiveness of the activation is low,

whereas at a given level determined by the parameter K the

responsiveness is high. This renders certain parts of the mood

regulation system more sensitive than others. This is in line with

the idea that the BAS is poorly regulated in individuals with

bipolar disorder, linking depression to an inactive BAS and mania

to an overactive BAS [15,22,31]. We also propose the existence of

an additional negative feedback mechanism, stabilising the system

around normal activity levels. This negative feedback loop is

expressed as

Fn~
mh

2
{

mh

1zes(xh{E)
ð3Þ

where mh=2 is the maximum rate of the feedback, s is the

nonlinearity parameter for the negative feedback and xh is the

level of E at which half of the maximum rate is reached, which in

our system is defined to be the normal activity level E~100, in the

following referred to as Eeq. The nonlinearity parameter s in the

negative feedback loop has a similar role for the shape of this

response function as n has for Fp(E), such that higher values for s

lead to sigmoidal response functions, whereas lower values

approach a linear response function. We choose xh and K to

have the same value. Moreover, the decay parameter k2 is defined

to be at a value which allows the positive feedback to be at

equilibrium on Eeq at n~1 (no nonlinearity), such that

k2~
k1

KzEeq

z
b

Eeq

ð4Þ

If the nonlinearity parameter n is increased to a level which allows

for bistability in the auto-regulatory feedback system, the unstable

fixed point lies at Eeq. By introducing the negative feedback, this

instability is locally stabilised. This leads to tristability with a high,

low and medium activity level (see figure 1 and figure S2).

Speculatively, this negative feedback could correspond to behav-

ioural attempts by individuals to avoid extreme levels of

behavioural activation (in other words, implementation of active

coping strategies [32]). The limited effectiveness of such a

mechanism is accounted for by saturating this feedback on its

upper and lower bounds, such that it is not sufficient to equilibrate

activation levels that are beyond a threshold value that is defined

by the dynamical properties of the system (figures 1 and 2). The

susceptibility of the BAS system to events of reward or frustration

is accounted for by introducing the variable R, which feeds in and

is consumed by levels of E with the rate k3. Note in this context

that frustrating events do not need to be associated with negative

directions in R, such that frustrations could also increase E. We

however tested negative and positive directions in R to ensure that

all potential external effects on the regulation of E in our system

could be accounted for. Therefore, in the following we refer to the

effect of R on levels of E as inhibiting or activating events rather

than as events of reward or frustration. The complete system is

thus written as.

dE

dt
~ Fp(E)zFn(E)zb{k2Ezk3R

dR

dt
~ {k3R

ð5Þ

Figure 1. Bifurcation diagram of the system, showing a saddle-
node bifurcation; and susceptibility to parameter changes.
Thick squared markers signify stable branches of the system, smaller
dots signify unstable branches. A: increasing values of K are
corresponding to darker colors. B: Change in model parameters and
their effects on shifting branches in the bifurcation diagram. Increasing
a parameter is indicated by arrow direction.
doi:10.1371/journal.pone.0063345.g001
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All typical parameter values employed in the simulations are given

in table 1.

Simulation
The system of differential equations was numerically solved

using Scientific Python [33] and its implementation of the LSODA

solver (scipy.odeint). For stochastic simulations, the Euler-Mar-

uyama scheme [34] was applied by adding a noise term to each

equation, defined by the Gaussian distribution N(0Ds) and scaled

by the square root of the timestep size,
ffiffiffiffi
dt
p

. Inhibiting and

activating events are chosen to occur spontaneously with the

probability probR, and the amplitude of these events is defined to

take a value from a continuous random distribution between 0 and

the maximum event amplitude ampR. For an analytic description

of the time-series data generated by simulations, we introduce the

measure E, which is an indicator for the ‘‘episodicity’’ of the

activity dynamics. By moving an averaging window with the

length of 7 days over the time series data, the number of times in

which the average activation level in this window is within defined

bounds is recorded. Subsequently, the ‘‘episodicity’’ of a solution is

defined as

E~
w2

P
nstateð Þ2

ð6Þ

where w is the number of averaging windows, corresponding to

the total duration of the simulation in days minus the size of the

window (w~dtot{7), and nstate is the amount of occasions at

which one of three activity levels is detected: low activity or

depression is defined for window averages below 80, high activity

or mania is defined for window averages above 120, and medium

activity is defined for values between 80 and 120. These values are

arbitrary units on our activation level scale. By doing so, we are

able to distinguish between solutions that show a high variance,

captured by the global signal to noise ratio SNR of the time-course

data, and which still stay around one steady state of the system;

and solutions that frequently switch between steady states.

For time-series data of single individuals, single stochastic

simulation runs were recorded. For analysis of dynamical features,

such as return to baseline E levels after activating or inhibiting

external events or measures such as episodicity, the signal-to-noise

ratio or the number of switching events per simulation, multiple

simulations were performed for each parameter set and the

average outcome for each respective analysis was recorded. If not

explicitly stated otherwise, the parametric noise value s was set to

0.1 and the probability for external events to occur, probR was set

to 0.015. The maximum amplitide of external events occuring,

ampR, was set to vary between [220, 20].

Results

Our main hypothesis is that the degree of nonlinearity in the

auto-activation feedback system (the BAS) is a proxy for the stage

of illness, such that a value of 1 for the nonlinearity parameter n
corresponds to an unaffected individual and higher values of n
stand for an increased propensity for developing the illness. Once

the individual is already bipolar, even higher values of n may

correspond to the number of previous depressive or manic

episodes. It has to be noted, however, that our model does not

make predictions about how this progression in nonlinearity

occurs, and therefore only captures the behaviour of the modelled

system at set level of n. In the bifurcation analysis of our model the

critical values of n are shown to correspond to mono- and

multistable solutions of the system as a function of n (see figure 1A).

At low values of n, the system is monostable, whereas with

increasing n bifurcation into bistability and further into tristability

happens. The influence of changes in parameter values other than

n is shown in figure 1B. Parameters k1, b and mh determine the

level of n at which bifurcation occurs, and the activity maxima that

the system allows for. Parameter s, the nonlinearity parameter in

the negative feedback standing for behavioural counteraction of

mood swings, determines the range of stability for the branch at

medium activity levels: Increasing s extends this range to higher n,

but also decreases the range between this middle stable branch to

the neighbouring unstable branches at the onset of tristability,

compared with lower s values.

We expect our model to be robust against parameter changes

insofar the potential for multistability is given and the middle

stable branch in the bifurcation diagram remains stable. For

example, if the parameter k1 were decreased, bifurcation of the

system would happen at higher levels of n, as can be seen from the

outcome of our bifurcation analysis in figure 1, and thus higher

levels of n would be needed to compensate this effect for

maintaining a qualitatively similar simulation output.

While auto-regulation of behavioural activity by the negative

feedback loop is effective for all values of n, the attractor for this

regulator is identical to the attractor for the positive feedback loop

prior to bifurcation. This can be interpreted as a tendency of

avoiding fluctuating activity levels related to mood swings that is

only observable in bipolar patients already having experienced

extreme changes in behavioural activity.

Number of Previous Bipolar Episodes is Associated with a
Slower Return to Baseline Mood After Disturbing Events

Our model is able to reproduce the results that as number of

previous bipolar episodes increases, so does time taken to recover

from frustrating or rewarding events, solely by increasing the

nonlinearity parameter n (see figures 2 and 3). This indicates that

only by changing nonlinearity in the system, we are able to capture

typical response behaviours for several stages in bipolarity, such as

found in a previous empirical study [14]. Time series data from

this study were re-analysed to infer rate constants for the decay of

activation levels employed by our model, which is expressed by the

parameter k3, justifying exponential decay of activation levels in

the time domain after disturbing events (figure 2). For this, only the

top 20 percent of frustrating or rewarding events recorded in the

data were taken from empirical data based on self-report

questionnaires (for methods of data collection see [14]). Of these

data, the BES (Behavioural Engagement Scale, expressing a scale

of activation level) of the actual and following days of the event

Table 1. Parameter values in the model.

Parameter Value Unit

k1 1.5 hr21

k2 0.0125 hr21

k3 5 hr21

b 0.5 hr21

K 100 –

mh 0.26 –

s 5 –

xh 100 –

doi:10.1371/journal.pone.0063345.t001
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were traced until the return to the median BES, to give as the time

of return to baseline, in terms of number of days. The empirical

data points shown in figure 2 represent a normalised curve of the

amount of individuals still above their median BES after a

rewarding or frustrating event. The time trajectory of these data

show a clear exponential decay, justifying our use of k3 which

mirrors exponential decay of perturbed E levels after external

activating or inhibiting events. In the simulations, return to

baseline was defined as the time taken after disturbance of

activation levels by a inhibiting or activating event to fall below the

threshold of mean BES +1%. Disturbance in behavioural activity

was 10 units on our scale of activity levels in these simulations. The

time course data of our simulation show a similar behaviour in

activation level decay, compared to the empirical data (figure 2).

In general, for a larger range of n, we find the trend of increasing

time to return to baseline after disturbing events both for events of

inhibition and activation (figure 3). This value increases exponen-

tially towards values of n that lead the system to bifurcation, at

which point disturbances can kick the solution to a higher or lower

stable branch. A further set of simulations using the stochastic

version of our model yielded similar results, confirming the trend

of slower return to baseline for higher degrees of nonlinearity in

the auto-activation feedback loop (see figure 4).

Stochastic Simulations of Behavioural Activity Regulation
Reveal Realistic Time-course Data

Given different settings of parametric noise s, event noise (the

maximum amplitude of inhibiting and activating events externally

influencing the system) and nonlinearity, our stochastic simulations

are able to reproduce realistic time course data of mood dynamics

for normal individuals and bipolar patients (figure 5). For lower

levels of n, activity remains stable around a medium level, despite

regular changes due to parametric and event noise. At levels for n
which lead the system to bifurcation, events are most likely to drive

jumps in behavioural activity, whereas parametric noise is

sufficient to achieve this at higher n. Our model is able to

reproduce mood patterns that are not truly oscillatory, yet showing

cyclic and regular shifting between extreme mood levels and

intermediate mood.

With Increasing Nonlinearity, Noise Moves between
Scales

Stochastic simulations under different ranges of parametric

noise s, and event noise, expressed as variations of the maximum

inhibiting or activating amplitude of events show that both types of

noise are able to account for the increase in intrinsic system noise

levels (figure 6). Also, both are able to lead to episodes, as indicated

by an increase of our measure for episodicity, E. However, while

intrinsic noise alone is able to generate episodes at higher n, lower

n requires event noise to be high to generate switches into episodes

(figure 7). Nonlinearity increases noise at a given behavioural

activity level, which decreases the global signal-to-noise ratio

(SNR). We calculated the ratio of this global SNR (SNRg) against

the summed SNR on the moving average windows (SNRw). This

ratio is close to zero at low n and increases rapidly as n leads the

system to bifurcation (see figure 8). This indicates that the level on

which noise occurs switches from a smaller scale to larger scales.

At below-bifurcation values for n, small scale noise occurs, causing

various degrees of instability in activity, which seen from a

dynamical viewpoint are fluctuations around one steady state. As n
grows sufficiently large to allow for switches between several steady

states, this leads to longer lasting episodes, and noise is expressed

as flipping between steady state solutions, rather than as

fluctuations around each of these solutions. Interestingly, this

ratio drops back again for even higher values of n. We propose

that this is due to decreased global noise, since switching between

states gets less frequent and episodes are longer and steadier. This

is corroborated by an additional analysis that counts the switches

between states during an individual stochastic simulation, follow-

ing the definition of state boundaries in the episodicity measure.

Figure 2. Return of mood to baseline after activating and
inhibiting events. A: return to baseline levels after activating events.
B: return to baseline levels after inhibiting events. Empirical data (thick
black lines) are compared to simulation data (coloured lines). BES
(Behavioural Engagement Scale) levels are normalized to maximum
value after disturbance of reward and frustration. Zero on the y axis
corresponds to the baseline BES level. Solid black line: Control group
(N = 18 for reward, N = 51 for frustration plot) Dashed black line: Patients
with less than 10 previous episodes. (N = 8 for reward, N = 26 for
frustration plot) Dotted black line: Patients with 10 previous episodes or
more. (N = 7 for reward, N = 14 for frustration plot). For the simulation
data: Black and gray lines correspond to n~1 and n~4, respectively. N
represents the sample size.
doi:10.1371/journal.pone.0063345.g002
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The distributions of switching events and episodicity for different

degrees of nonlinearity are shown in figures S3 and S4.

Discussion

Our model captures important features known from bipolar

disorder such as transition between states of normal, high and low

behavioural activation and traces these back to nonlinear auto-

regulation feedback in underlying control systems of behavioural

activity and emotional regulation. Without an exact knowledge as

to what causes such behaviour mechanistically, we expect

nonlinearity to be an inherent property of the control system, as

is the case in most biological systems. Our model is able to

reproduce typical time course evolution of normal and bipolar-

type activity levels under the assumption that an increase in

nonlinearity in their BAS renders an individual more prone to

develop bipolar disorder. This hypothesis is further corroborated

by showing that such an increase in nonlinearity is sufficient to

explain slower recovery from rewarding or frustrating events

individuals with a large number of previous episodes. Memory of

previous states is not inherent in our model, thus progression in

nonlinearity does not appear automatically during simulations.

Rather, the nonlinearity parameter n is set as a fixed parameter

value for every simulation.

Our analysis of intrinsic noise with respect to parametric and

event noise indicate that the positive auto-regulation of the BAS

leads to an increase of noise in the system with increasing

nonlinearity. Further, our analysis indicates that there are distinct

scales on which the effect of noise manifests itself, and, more

importantly, that nonlinearity leads to shifts between these scales.

Thus, while lower nonlinearity leads to small-scale fluctuations

around steady states of behavioural activation, higher nonlinearity

leads to noise on the larger scale of fluctuations between extreme

and intermediate activation states, together with a decreased level

of fluctuations around the respective steady states. In our

stochastic simulations, we distinguished between parametric noise

and event noise and find that our results are not critically

dependent on the source of noise insofar our measures of

episodicity and SNR are concerned.

While some mathematical models of positive feedback and the

effects of noise on occurrences of episodes in recurrent affective

disorders have already been undertaken [7–9], the role of

nonlinearity has not been elucidated specifically in these studies.

In our model, nonlinearity is inherent in the system, expressed by

auto-activation of the BAS, which is a simplification in terms of the

modelling process and reduces the number of involved parameters

substantially. Nonlinearity not only triggers the onset of episodes

by an increase of noise in the system, but also drives the system

into multistability. In contrast to the model of Huber et al., illness

progression does not inevitably lead to rapid cycling and chaotic

Figure 3. Return to base engagement levels after inhibiting
and activating events in deterministic simulations with differ-
ent values for the nonlinearity parameter n. Disturbances were of
magnitude R~10 (activating events) or R~{10 (inhibiting events)
The solution is defined to have returned if it has fallen under the 1%
threshold difference to the base level BES.
doi:10.1371/journal.pone.0063345.g003

Figure 4. Return to base level E levels after activating and
inhibiting events in stochastic simulations with different
values for the nonlinear parameter n. A: return to E base levels
after activating events, B: return to E base levels after inhibiting events.
Boxplots show the outcome of 50 individual runs per n. Disturbances
were of magnitude R~10 (activating events) or R~{10 (inhibiting
events) The solution is defined to have returned if it has fallen under the
1% threshold difference to the base activity levels.
doi:10.1371/journal.pone.0063345.g004
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behaviour. Rather, the increase of system noise could either lead

to unstable behaviour by keeping the system close to bifurcation

with rapid fluctuations of behavioural activation levels, mirroring

typical dynamics of cyclothymia or rapid cycling; or to a more

stable behaviour and temporal fixation of activation levels in any

of the three attractant steady states with a remaining susceptibility

to slower variation between the three fixed points, potentially

corresponding to BD-I or BD-II. This is in accordance with

findings from empirical research that episode cycle lengths vary

inversely with total number of cycles [35] and that there is less

rapid cycling in BD-I than in BD-II [36]. Despite our model

allowing for the finding that a substantial proportion of individuals

with cyclothymia progress to experience BD-I or BD-II [37], we

are cautious to postulate that nonlinearity increases in the time

domain for every individual, thereby leading to an orderly

succession along the spectrum from cyclothymia over BD-II to

BD-I. In fact, our model is limited to providing a description of the

system dynamics at certain levels of nonlinearity, but does not

make assumptions of how the evolution of nonlinearity is

structured, whether it increases or decreases continuously or in

jumps, such as in the manner of a biased or unbiased random

walk. Further investigations on potential candidates for the

functional nonlinear relationship within the BAS will be needed

to elucidate this question.

Most other mathematical models brought forward so far deal

with oscillatory dynamics and therefore lack a description of how

intermediate episodes or intermediate periods between bipolar

episodes are possible, which is of importance for clinical research

[38,39]. Our model is able to reproduce this common phenom-

enon and also accounts for the finding that, while apparently cyclic

in nature, episodes are not oscillatory [12,13].

While some parameters in our model have been estimated due

to lack of time-course data, some potential underpinnings of their

meanings can be elucidated in the context of empirical findings.

The parameter K , mirroring the half activation of the BAS auto-

activation feedback, relates to the relative onsets of the upper

Figure 5. Typical outcomes of stochastic simulations for different settings of n with different settings for s. From A to D the
‘‘episodicity’’ value E increases (E~1:00, 1:09, 2:28, 2:34), an indicator that the time course captures real episodes and not just fluctuations in
behavioural activity. Gray lines are simulated activity levels, black lines are moving averages with a window of 7 days, dotted lines signify activating
and inhibiting events. The time course spans 2 years.
doi:10.1371/journal.pone.0063345.g005
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versus the lower branch in our bifurcation analysis with respect to

the bifurcation parameter n. Thus, at higher levels of K , increasing

nonlinearity will introduce a switch from normal to low activity

levels at bifurcation, whereas at lower K a switch to high activity

levels is more likely. This seems to relate to the finding that the

type of the first episode (manic/hypomanic or depressive) predicts

the predominant course of following episodes [35,36], and suggests

that variations in K between individuals are able to capture these

predominant trajectories.

Our model incorporates and predicts varying degrees of

nonlinearity in BAS regulation, however its mechanistic basis

remains unclear and needs further investigations. High levels of

noise at degrees of nonlinearity that allow for multistability, yet

also for the system to remain close to bifurcation, might

correspond to a finding from BP-II individuals that inter-episode

lability was higher than for unipolar depression samples [40]. Our

model is also in line with findings which suggest that regulation of

the BAS of bipolar patients is impaired in individuals with Bipolar

Disorder [15,22–25]. Recent developments in the understanding

of the pathophysiology of bipolar disorder, based on neuroimaging

studies, point towards potential roles of feedback pathways in

prefrontal cortical neural regions implicated in emotion regulation

[41]. Among other subregions within this area, the medial

prefrontal cortex (MPFC) and the orbitofrontal cortex (OFC)

might play a role in the reward processing activities attributed to

the BAS [42–44]. While we currently lack sufficiently detailed

knowledge about functional connectivities and dynamics of such

Figure 6. The signal to noise ratio of the solutions as a function
of different settings for intrinsic and extrinsic noise in the
stochastic simulations. A: The situation for n~2, B: the situation for
n~5. Parametric noise is the value of s for the added Gaussian noise in
the numerical integration of the system, with s varying in the interval
s~½0,1�. Event noise is defined as the maximum amplitude of activating
and inhibiting events hitting the system, with ampR varying in [0,25].
Signal to noise ratios were averaged for 10 simulations at each
parameter setting.
doi:10.1371/journal.pone.0063345.g006

Figure 7. The ‘‘episodicity’’ e as a function of intrinsic and
extrinsic noise in the stochastic simulations. A: The situation for
n~4, B: the situation for n~5. Parametric noise is the value of s for the
added Gaussian noise in the numerical integration of the system, with s
varying in the interval s~½0,1�. Event noise is defined as the maximum
amplitude of activating and inhibiting events hitting the system, with
ampR varying in [0,25]. Episodicity was averaged for 10 simulations at
each parameter setting.
doi:10.1371/journal.pone.0063345.g007
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connectivities between respective pathways to allow for conclu-

sions about the mechanistic basis of the postulated nonlinearity in

our model, we expect this nonlinearity to be dependent on the

neurophysiological basis of emotional regulation and dysregula-

tion, which are commonly associated with bipolar disorder. In a

similar manner, the role of dopaminergic pathways that have been

associated with the BAS [15] and the question of whether

dopamine plays a role in putative increased ultrasensitivity due to

high nonlinearity in the regulation of the BAS, lies outside the

scope of our model and would require further research.

In conclusion, we present a mathematical model to describe a

spectrum of variation in behavioural activation regulation, parts of

this spectrum corresponding to the presence of clinically-diagnos-

able Bipolar Disorder. A strength of this model is its ability to

reflect patterns revealed by observational studies of Bipolar

Disorder, including the apparent non-oscillatory nature of mood

swings, increasing episodicity for subtypes of Bipolar Disorder that

are further along the putative spectrum, and an association

between initial episode type and subsequent course of the disorder.

Furthermore, the model was developed and refined with direct

reference to an existing set of data concerning behavioural

engagement functioning amongst individuals with and without

Bipolar Disorder. A further strength of the model could also be

considered a limitation: at this point the precise biological and

behavioural variables corresponding to its parameters are not

determined, meaning that whilst the model has considerable

potential for application to multiple levels of organisation, its

explanatory power is limited. Future research should seek to test

predictions about the behaviour of candidate variables corre-

sponding to the parameters of the model. This could be in terms of

fluctuations in symptoms in relation to dimensions such as BAS

sensitivity, implementation of coping strategies, and the action of

medications, but could also be in terms of the functioning of brain

areas involved in heightening approach motivation in response to

signals of potential reward, and in the inhibition of such activity.

Supporting Information

Figure S1 A steady state analysis showing production
and decay terms in the systems. Where production (solid

lines) cross degradation terms (dotted line), the system is at steady

state. At higher degrees of nonlinearity (here at n~8), the system is

tristable with three stable and two unstable steady states.

(TIFF)

Figure S2 The terms of positive feedback (dashed lines)
and negative feedback (solid line) as functions of
behavioural engagement levels. Negative feedback gives a

saturated function with direction towards a medium engagement

(E~100).

(TIFF)

Figure S3 The distribution of episodicity for a set of 100
simulations for every value of the nonlinearity param-
eter n. With increasing n, median episodicity and episodicity

variance first increase, then median episodicity falls again with

variance remaining high for even higher n.

(TIFF)

Figure S4 The distribution of switching events per
simulation for sets of 100 simulations at different values
of the nonlinearity parameter n. Switching events are

defined as times the average level of E on the moving averaging

window of 7 days shifts between high, medium and low states,

defined as Eƒ80 for low state, 80vEv120 for medium state and

E§120 for high state. These state boundaries are also at the base

of our episodicity measurement (see main text). Our analysis shows

that as n increases, the number of switching events first goes up

and decreases again at values for n that lead deeper into the

multistable regime.

(TIFF)
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