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Abstract

The risk of type 2 diabetes is approximately 2-fold higher in African Americans than in European Americans even after
adjusting for known environmental risk factors, including socioeconomic status (SES), suggesting that genetic factors may
explain some of this population difference in disease risk. However, relatively few genetic studies have examined this
hypothesis in a large sample of African Americans with and without diabetes. Therefore, we performed an admixture
analysis using 2,189 ancestry-informative markers in 7,021 African Americans (2,373 with type 2 diabetes and 4,648 without)
from the Atherosclerosis Risk in Communities Study, the Jackson Heart Study, and the Multiethnic Cohort to 1) determine
the association of type 2 diabetes and its related quantitative traits with African ancestry controlling for measures of SES and
2) identify genetic loci for type 2 diabetes through a genome-wide admixture mapping scan. The median percentage of
African ancestry of diabetic participants was slightly greater than that of non-diabetic participants (study-adjusted
difference = 1.6%, P,0.001). The odds ratio for diabetes comparing participants in the highest vs. lowest tertile of African
ancestry was 1.33 (95% confidence interval 1.13–1.55), after adjustment for age, sex, study, body mass index (BMI), and SES.
Admixture scans identified two potential loci for diabetes at 12p13.31 (LOD = 4.0) and 13q14.3 (Z score = 4.5, P = 6.661026).
In conclusion, genetic ancestry has a significant association with type 2 diabetes above and beyond its association with non-
genetic risk factors for type 2 diabetes in African Americans, but no single gene with a major effect is sufficient to explain a
large portion of the observed population difference in risk of diabetes. There undoubtedly is a complex interplay among
specific genetic loci and non-genetic factors, which may both be associated with overall admixture, leading to the observed
ethnic differences in diabetes risk.
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Introduction

Approximately 13% of the U.S. adults have type 2 diabetes [1],

representing a significant burden on public health in the United

States. Type 2 diabetes is approximately twice as prevalent in

African Americans as in European Americans. In the Multiethnic

Cohort (MEC), this racial/ethnic difference persisted after stratifi-

cation by body mass index (BMI) [2]. Data from the National

Health and Nutrition Examination Survey (NHANES) confirm the

substantial racial disparity in diabetes across the U.S. [1,3]. In the

Atherosclerosis Risk in Communities (ARIC) Study, African

Americans are twice as likely as whites to develop incident type 2

diabetes—a disparity which persists even after extensive adjustment

for socioeconomic status (SES) and behavioral risk factors [4]. This

persistent disparity suggests that genetic factors may contribute to

ethnic differences in susceptibility to type 2 diabetes.

Despite remarkable efforts in the past three years that have led

to the discovery of more than 30 susceptibility loci for type 2

diabetes and related quantitative traits [5–18], there has been only

one genome-wide association study of type 2 diabetes in African

Americans [19]. The disparity in diabetes prevalence between

Americans of African and European ancestry makes diabetes an

attractive phenotype to study by admixture mapping, a method

that systematically scans the genomes of groups of recently

admixed individuals (e.g., African Americans) to search for genetic

loci where persons with a disease or trait, in aggregate, have more

(or less) African ancestry than their genome-wide average.

Admixture mapping and subsequent fine-mapping studies have

been successful in identifying genetic variants for other complex

phenotypes, including prostate cancer [20,21], end stage renal

disease [22], white blood cell count [23,24], and circulating levels

of interleukin 6 soluble receptor [25].

Given the observed ethnic/racial disparities in diabetes

prevalence, we hypothesized that some diabetes susceptibility

alleles are present at higher frequency in African Americans than

in European Americans, resulting in association between genetic

ancestry and diabetes risk that is independent of its association

with other non-genetic risk factors for type 2 diabetes. Thus we

sought 1) to establish the association of genetic ancestry with

diabetes and related quantitative traits in African Americans, after

accounting for the non-genetic risk factors, and 2) to identify

diabetes susceptibility loci by conducting a genome-wide admix-

ture mapping scan. To maximize power to detect genetic

association, we performed a pooled analysis of 7,021 African-

American participants, including 2,373 diabetic cases, from three

U.S. population cohorts, including the ARIC Study, the Jackson

Heart Study (JHS), and the MEC study.

Results

Characteristics of participants
The characteristics and genetic ancestry of the 7,021 African

Americans (including 2,373 with type 2 diabetes) included in the

study are shown in Table 1 and Figure S1. The overall median

global African ancestry was 83.7% (interquartile range, 76.2%–

88.7%). African ancestry distributions were different among the

three cohorts, with MEC participants having a lower average

percentage of African ancestry (P,0.001). Diabetic participants

tended to have higher BMI, lower education level and lower

family income, compared to non-diabetic participants (Table S1).

Association of ancestry with diabetes
Pooling the three cohorts together, the median percentage of

African ancestry of diabetic participants was 1.6% greater than that

of non-diabetic participants (P,0.001, adjusted for study). The odd

ratios (ORs) for diabetes were higher with increasing tertiles of

African ancestry (P for trend,0.001, Model 1 in Table 2) after

adjustment for age, sex, and study. With additional adjustment for

Table 1. Genetic African ancestry by participant characteristics and study.

ARIC JHS MEC

Characteristic No. (%)
African Ancestry,
Median (IQR), % P Valuea No. (%)

African Ancestry,
Median (IQR), % P Valuea No. (%)

African Ancestry,
Median (IQR), % P Valuea

Overall 2285 (100) 84.9 (77.8–89.5) 3185 (100) 84.0 (77.9–88.7) 1551 (100) 80.6 (69.8–87.4)

Age, y

21–39 0 (0) 237 (7.4) 84.1 (79.4–87.9) 0 (0)

40–59 1741 (76.2) 85.0 (78.2–89.4) 0.872 1519 (47.7) 83.9 (77.9–88.3) 0.455 627 (40.4) 82.0 (72.4–87.9) ,0.001

$60 544 (23.8) 84.6 (76.4–89.9) 1429 (44.9) 84.2 (77.4–89.2) 924 (59.6) 79.3 (67.5–86.9)

Gender

Men 918 (40.2) 85.1 (78.5–89.6) 0.187 1210 (38.0) 83.8 (77.6–88.2) 0.100 1001 (64.5) 79.2 (67.5–86.7) ,0.001

Women 1367 (59.8) 84.7 (77.4–89.3) 1975 (62.0) 84.2 (78.2–88.8) 550 (35.5) 82.2 (73.7–88.3)

BMI, kg/m2

,25 530 (23.2) 83.9 (76.8–89.0) 403 (12.6) 84.0 (78.2–88.8) 277 (17.8) 78.9 (67.9–85.8)

25–,30 865 (37.9) 84.1 (76.8–89.2) ,0.001 1053 (33.1) 83.8 (77.0–88.5) 0.286 682 (44.0) 79.2 (67.2–87.2) ,0.001

$30 890 (38.9) 85.9 (79.1–89.9) 1729 (54.3) 84.3 (78.3–88.7) 592 (38.2) 82.1 (73.4–88.3)

Diabetes

Yes 631 (27.6) 85.7 (79.3–89.5) 0.008 829 (26.0) 85.3 (79.5–89.3) ,0.001 913 (58.9) 81.3 (71.8–88.1) ,0.001

No 1654 (72.4) 84.6 (77.0–89.4) 2356 (74.0) 83.6 (77.3–88.3) 638 (41.1) 79.4 (66.2–86.1)

ARIC, the Atherosclerosis Risk in Communities Study; JHS, the Jackson Heart Study; MEC, the Multiethnic Cohort; IQR, interquartile range; BMI, body mass index
(calculated as weight in kilograms divided by height in meters squared).
aP value was generated from the Wilcoxon rank-sum test or the Kruskal-Wallis test.
doi:10.1371/journal.pone.0032840.t001
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BMI, individuals in the second and third tertiles were still,

respectively, 1.21 and 1.4 times more likely to have diabetes than

their counterparts in the first tertile (Model 2 in Table 2).

To determine whether the observed excess odds of diabetes with

increasing African ancestry might further be explained through the

association between genetic ancestry and other non-genetic risk

factors, such as measures of SES, we constructed additional

models using only ARIC and JHS, where these data were

available. Univariately, measures of SES were associated with both

genetic ancestry (Table S2) and diabetes (Table S3). Even after

adjusting for the three SES indicators, individuals in the second

and third tertiles of African ancestry were about 1.27 and 1.37

times more likely to have diabetes than those in the first tertile

(Model 3 in Table 2). The three SES indicators together accounted

for about 22% of the excess odds of diabetes with increasing

African ancestry. Collectively, BMI and the three SES measures

explained about 30% of the excess odds of diabetes observed in

individuals in the third tertile. The associations between increasing

African ancestry and greater odds of diabetes were also evident in

models based on restricted cubic splines (Figure 1).

Association of ancestry with diabetes-related traits
In ARIC and JHS only, we assessed the association of African

ancestry to hemoglobin A1c (HbA1c), fasting glucose and insulin

level, and insulin resistance, which was estimated by the

homeostasis model assessment (HOMA-IR) (Table S4 and Table

S5). A total of 4,880 participants had measurements on HbA1c,

and 5,037 had fasting glucose and insulin level. Greater African

ancestry was significantly correlated with higher HbA1c (P,0.001,

see also Figure S2). However, African ancestry accounts for only

0.7% of the variance in HbA1c levels after adjustment for age, sex

and study, while SES alone accounted for a slightly higher

proportion of variance of 1.1%. After excluding individuals who

were receiving diabetes treatment (because such treatment directly

affects trait levels), the effects of ancestry generally became weaker

(Table 3). The other three traits, fasting glucose, insulin and

HOMA-IR levels, were also positively associated with African

Table 2. Odds ratio of diabetes by genetic African ancestry.

African Ancestry Excess Odds Explained, %a

Study and Model Tertile 1 Tertile 2 Tertile 3 P Value for Trend Tertile 2 Tertile 3

ARIC, JHS and MEC combined

African ancestry, % ,79.4 79.4–87.2 .87.2

Diabetes, yes/no, No. 774/1574 763/1612 836/1462

Model 1, baseb 1 [Reference] 1.25 (1.10–1.43)f 1.48 (1.29–1.69)g ,0.001 [Reference] [Reference]

Model 2, BMIc 1 [Reference] 1.21 (1.06–1.39)f 1.40 (1.22–1.61)g ,0.001 16.0 16.7

ARIC and JHS combined

African ancestry, % ,80.5 80.5–87.5 .87.5

Diabetes, yes/no, No. 296/1088 255/1000 406/962

Model 1, baseb 1 [Reference] 1.35 (1.16–1.57)g 1.47 (1.26–1.71)g ,0.001 [Reference] [Reference]

Model 2, BMIc 1 [Reference] 1.32 (1.17–1.70)f 1.40 (1.20–1.64)g ,0.001 8.6 14.9

Model 3, SESd 1 [Reference] 1.27 (1.09–1.49)f 1.37 (1.17–1.59)g ,0.001 22.9 21.3

Model 4, BMI+SESe 1 [Reference] 1.26 (1.07–1.48)f 1.33 (1.13–1.55)g ,0.001 25.7 29.8

ARIC, the Atherosclerosis Risk in Communities Study; JHS, the Jackson Heart Study; MEC, the Multiethnic Cohort; BMI, body mass index (calculated as weight in
kilograms divided by height in meters squared); SES, socioeconomic status (including education, income and occupation).
aExcess risk explained is defined as (h12h2)/(h121) where h1 is the odds ratio of diabetes due to increase in African ancestry in Model 1; h2 is the odds ratio after
additional adjustment for covariates in each model; and h121 is the excess odds of diabetes due to increase in African ancestry.
bModel 1: odds ratio (95% confidence interval) is adjusted for age, sex, and study.
cModel 2: odds ratio (95% confidence interval) is adjusted for covariates in Model 1 and BMI.
dModel 3: odds ratio (95% confidence interval) is adjusted for covariates in Model 1 and SES.
eModel 4: odds ratio (95% confidence interval) is adjusted for covariates in Model 1, BMI, and SES.
fP,0.05, as compared to the reference tertile.
gP,0.001, as compared to the reference tertile.
doi:10.1371/journal.pone.0032840.t002

Figure 1. Odds ratio of type 2 diabetes by African ancestry in
the ARIC and JHS studies. Odds ratios were based on restricted
cubic splines with knots at the 5th, 35th, 65th and 95th percentiles. The
reference was set at the 5th percentile (63.8%) of the African ancestry
distribution. The odds ratio was adjusted for age, sex and study (shot-
dashed line), and further adjusted for socioeconomic status, including
education level, family income, and occupations (long-dashed line). The
solid line indicates the odds ratio adjusted for age, sex, study,
socioeconomic status, and BMI; the shaded area represents its 95%
confidence intervals.
doi:10.1371/journal.pone.0032840.g001
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ancestry before and after adjustment, but the associations were not

statistically significant (Table 3 and Table S5).

Admixture scans
We conducted genome-wide admixture scans on type 2 diabetes

in the 7,021 African Americans (Figure 2 and Table S6). In the

diabetic cases, we detected an admixture association in diabetic

cases at 12p13.31 with a locus-specific LOD of 4.0, just reaching

the threshold for suggestiveness. The 12p13.31 peak was also

supported by a case-control Z score of 24.2 (nominal P =

3.361025), which was marginally genome-wide significant. At this

locus, diabetic cases had lower European ancestry (i.e., higher

African ancestry) than non-diabetic controls. The second strongest

admixture signal was observed nearby at 12q13.13 (locus-specific

LOD = 3.8), and the third was at 1p33 (locus-specific LOD = 3.5).

There were no other loci with LOD scores .2.5. Averaging the

LOD scores across all loci in the genome, we obtained a genome-

wide score of 1.5, again reaching the threshold of 1 for

suggestiveness. Interestingly, at 13q14.3 the LOD scores was far

from significant (locus-specific LOD = 1.1), but this locus had both

the largest magnitude (either positive or negative) case-control

statistic anywhere in the genome (Z score = 4.5, nominal

P = 6.661026), exceeding the level of nominal genome-wide

significance. At the 13q14.3 locus, the diabetic cases had higher

European ancestry than the non-diabetic controls.

Discussion

We have conducted a large-scale admixture genetic analysis in

more than 7,000 African Americans to determine the association

of African ancestry with type 2 diabetes and to map susceptibility

loci for type 2 diabetes. With 2,373 cases with type 2 diabetes and

4,648 controls, we found that greater African ancestry was

significantly associated with type 2 diabetes and HbA1c values even

after adjustment for BMI and markers of SES, including

education, income, and occupation. Despite the significant

association between greater African ancestry and type 2 diabetes,

no major locus for diabetes could be detected by our admixture

scans, using the more powerful locus-genome statistic.

Our results show that there is 30% to 40% increase in odds of

type 2 diabetes among participants in the highest (.87.5%) vs. the

lowest (,80.5%) tertile of African ancestry, even after adjustment

for measures of SES and/or BMI. Our restricted cubic spline

models also support this extrapolation, implying that genetic

ancestry is a major independent determinant of the observed

Table 3. Mean difference in the levels of diabetes-related quantitative traits by genetic African ancestry after excluding
participants receiving diabetes treatment.

Trait and Model African Ancestrya
P Value for Trend Effect Explained, %b

Tertile 1 Tertile 2 Tertile 3 Tertile 2 Tertile 3

Hemoglobin A1c, % (n = 4100)

Model 1, basec 0 [Reference] 0.10 (0.02–0.18)g 0.10 (0.02–0.18)g 0.011 [Reference] [Reference]

Model 2, BMId 0 [Reference] 0.08 (0.01–0.16)g 0.09 (0.01–0.17)g 0.028 20.0 10.0

Model 3, SESe 0 [Reference] 0.07 (20.01–0.16) 0.07 (20.01–0.16) 0.073 30.0 30.0

Model 4, BMI+SESf 0 [Reference] 0.06 (20.01–0.14) 0.06 (20.02–0.14) 0.122 40.0 40.0

Glucose, mg/dL (n = 4423)

Model 1, basec 0 [Reference] 1.20 (20.89–3.28) 1.57 (20.51–3.65) 0.139 [Reference] [Reference]

Model 2, BMId 0 [Reference] 0.93 (21.14–2.99) 1.16 (20.91–3.22) 0.272 22.5 26.1

Model 3, SESe 0 [Reference] 0.48 (21.62–2.58) 0.73 (21.38–2.84) 0.501 60.0 53.5

Model 4, BMI+SESf 0 [Reference] 0.30 (21.80–2.38) 0.41 (21.68–2.51) 0.700 75.8 73.9

Insulin, mU/L (n = 4423)

Model 1, basec 0 [Reference] 0.87 (0.12–1.62)g 0.68 (20.07–1.43) 0.073 [Reference] [Reference]

Model 2, BMId 0 [Reference] 0.58 (20.11–1.27) 0.23 (20.46–0.93) 0.503 33.3 66.2

Model 3, SESe 0 [Reference] 0.81 (0.06–1.57)g 0.60 (20.16–1.36) 0.125 6.9 11.8

Model 4, BMI+SESf 0 [Reference] 0.60 (20.10–1.29) 0.25 (20.46–0.95) 0.498 31.0 63.2

HOMA-IR (n = 4423)

Model 1, basec 0 [Reference] 0.28 (0.05–0.52)g 0.23 (20.00–0.47) 0.052 [Reference] [Reference]

Model 2, BMId 0 [Reference] 0.20 (20.02–0.42) 0.10 (20.12–0.32) 0.352 28.6 56.5

Model 3, SESe 0 [Reference] 0.24 (20.00–0.47) 0.17 (20.07–0.41) 0.159 14.3 26.1

Model 4, BMI+SESf 0 [Reference] 0.17 (20.05–0.40) 0.07 (20.15–0.30) 0.536 39.3 69.6

BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); SES, socioeconomic status (including education, income and occupation).
aTertiles 1, 2 and 3 of African ancestry are ,80.3%, 80.3%–87.3% and .87.3%, respectively, for hemoglobin A1c, and ,80.2%, 80.2%–87.3% and .87.3%, respectively,
for glucose, insulin, and HOMA-IR.
bEffects explained is defined as (b12b2)/b1 where b1 is the regression coefficient of traits in Model 1; b2 is the regression coefficient after adjustment for covariates in
each model.
cModel 1: Mean difference (95% confidence interval) is adjusted for age, sex, and study.
dModel 2: Mean difference (95% confidence interval) is adjusted for covariates in Model 1 and BMI.
eModel 3: Mean difference (95% confidence interval) is adjusted for covariates in Model 1 and SES.
fModel 4: Mean difference (95% confidence interval) is adjusted for covariates in Model 1, BMI, and SES.
gP,0.05, as compared to the reference tertile.
doi:10.1371/journal.pone.0032840.t003
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disparity in diabetes risk between the two ethnic groups. We note

that in our study, markers of SES (education, income, and

occupation) account for only a modest proportion (,22%) of the

excess odds of type 2 diabetes due to ancestry. The results contrast

to previous findings in Hispanic Americans [26], where the

association between their non-European ancestry and type 2

diabetes is also significant, but where SES appears to be a much

greater confounder, as adjustment for it significantly attenuated

the association signal. It is also worth noting that the previous

study had less power than our study as it used fewer individuals

and fewer ancestry informative markers [26].

Insulin resistance and b–cell dysfunction are known to be major

factors in the pathogenesis of type 2 diabetes. Evidence from

epidemiological studies indicates that African Americans tend to

be more insulin resistant and have greater insulin responses to

glucose than European Americans [27–33]. Our results showed a

positive (but statistically non-significant) correlation between

African ancestry and HOMA-IR, in line with one earlier study

that demonstrated that children with greater African ancestry had

lower insulin sensitivity and a higher acute insulin response [34].

In genome-wide scans to date, the majority of the genetic variants

for type 2 diabetes identified in European-derived populations

appeared to be related to impaired insulin secretion [6,17,35],

while only IRS1 has been unequivocally associated with insulin

resistance [18]. However, a limitation is that these studies have

been carried out largely in Europeans. It will be interesting to

explore whether the loci associated to type 2 diabetes in African

Americans are also associated with impaired insulin secretion,

once genome-wide association studies of sufficient power are

carried out.

Previous genome-wide scans for type 2 diabetes in African-

descent populations have been extremely limited, and there has

only been one study using admixture-based approaches. In the

GENNID (Genetic of NIDDM) Study, using markers from a

linkage panel in 1,450 African Americans, the strongest admixture

association was found on chromosome 12 (90 cM), but no loci

achieved genome-wide significance [36]. In our large population

with a high number of ancestry informative markers, the two most

interestingly loci using were at 12p13.31 and 13q14.3. While

neither of these loci was significant by our locus-genome statistic

which has the most statistical power, the case-control Z score at

both loci exceeded the threshold for genome-wide significance,

which makes these loci of interest for further study. An attractive

candidate gene at the 12p13.31 locus is glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), which is a key enzyme in

the glycolytic pathway and is known to affect insulin receptor

signaling [37]. The 12p13.31 locus has been found to be associated

with type 1 diabetes in previous genome-wide association studies

in European-derived populations [15], but neither of the two loci

has been associated with type 2 diabetes in either African

Americans or Europeans.

An interesting feature of our admixture scanning results is that

diabetes risk at 12p13.31 and 13q14.3 were associated with

ancestry in opposite directions. At 13q14.3, greater European

ancestry is associated with a higher risk of diabetes, opposite to the

direction of the overall epidemiological association, a phenomenon

that we documented for the first time in a study of obesity loci

[38]. These two loci, together with the other modest admixture

signals on chromosome 12 and 1, and the absence of significant

signals in locus-genome statistic elsewhere in the genome, suggest

no evidence for a large genetic effect for type 2 diabetes that is

racially/ethnically differentiated, such as that at the MYH9/ApoL1

locus for non-diabetic end stage renal disease [22,39]. Thus

multiple loci modest effects may, in aggregate, explain the

apparent difference in genetic risk for type 2 diabetes between

African Americans and European Americans.

Our study has important limitations. Despite the fact that our

study size far exceeds previous genome scans for type 2 diabetes

risk loci in African Americans, statistical power remains an

important concern. We carried out simulation studies to examine

the power of our study to detect a genomic locus of elevated

African ancestry [40]. With a total of 2,373 diabetic cases, we

expect to have 80% power to detect a 1.8-fold increased risk of

type 2 diabetes per allele for alleles that are ancestry informative

between Europeans and West Africans but less power for weaker

ORs. A second limitation is that we used BMI as the only measure

of adiposity. Including some other measure, such as waist

circumference, might further attenuate the diabetes-ancestry

association. In our previous analysis, however, we found that

BMI, but not waist circumference, was significantly correlated

with genetic ancestry after adjustment for SES [41], suggesting

that confounding by waist circumference would have a minimal

effect on results. Third, as in many studies involving SES, we were

not able to fully assess SES and made inferences about SES based

on education, income, and occupation, which, although are strong

markers for SES, are still imperfect [42]. For example, SES may

also be correlated with other diabetes risk factors, such as diet and

life-style, and historical socioeconomic factors could in theory

Figure 2. Admixture scans for genetic loci of type 2 diabetes in African Americans. Locus-genome statistic (LOD score, red line) and case-
control statistic (Z score, blue gray line) are shown. A signal was detected at 12p13.31 with a locus-specific LOD score of 4.0, just reaching the
threshold of 4 for suggestiveness. The 12p13.31 peak was also supported by the case-control statistic (Z score = 24.2, nominal P = 3.361025). The
second strongest admixture signal was observed on the same chromosome at 12q13.13 (locus-specific LOD = 3.8). There was also an admixture peak
at 13q14.3 that did not reach genome-wide significance by the locus-genome statistic (locus-specific LOD = 1.1), but that had the largest magnitude
case-control Z score anywhere in the genome (Z score = 4.5, nominal P = 6.661026).
doi:10.1371/journal.pone.0032840.g002
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interact in complex ways with African ancestry to influence

diabetes risk, making the associations among them even more

complicated.

In summary, in community-based populations with more than

7,000 African Americans, we found that genetic ancestry is

significant associated with type 2 diabetes above and beyond the

effects of markers of SES, and we detected several suggestive loci

that may harbor genetic variants modulating diabetes risk. These

results suggest that in African Americans, genetic ancestry has a

significant effect on the risk of type 2 diabetes that are independent

of the contribution of SES, but that no single locus with a major

effect explains a large portion of the observed disparity in diabetes

risk between African Americans and European Americans. In

addition, they suggest that genetic measured African ancestry

contributes to the risk of type 2 diabetes via both genetic and non-

genetic pathways. The effect of ancestry on any individual locus in

the genome is likely to be modest, but in aggregate, differences in

ancestry may contribute substantially to the observed ethnic

disparity in risk of type 2 diabetes.

Materials and Methods

Ethics statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. All data collections were carried out

according to protocols approved by Johns Hopkins Bloomberg

School of Public Health Institutional Review Board for the study

of human subjects. Written informed consent was obtained from

all participants.

Study populations
The individuals enrolled in the present study came from three

studies: the ARIC, JHS and MEC studies (Table 1). A detailed

description of the three studies as well as the numbers of

participants that were analyzed after applying various data quality

filters are presented in Text S1. A brief description of each study is

provided here.

The ARIC study is a prospective epidemiologic study that

examines clinical and subclinical atherosclerotic disease in a

cohort of 15,792 persons, including 4,266 self-reported African

Americans, aged 45 to 64 years at their baseline examination from

1987 to 1989. The sampling procedure and methods used in

ARIC have been described in detail elsewhere [43]. A total of

2,285 African-American participants from the ARIC study were

included in the current analysis.

The JHS is a long-term, community-based observational study

of cardiovascular disease and its risk factors in 5,301 self-identified

African Americans recruited between 2000 and 2004 from three

counties surrounding Jackson, Mississippi [44,45]. Unrelated

persons aged 35–84 were enrolled, and the remaining participants,

at least 21 years old, were members of the nested JHS Family

Study [46]. A total of 3,185 participants from the JHS were

included in the current study.

The MEC study is a prospective cohort of 215,251 individuals

recruited between 1993 and 1996 in Hawaii and Los Angeles,

California, of whom 16.3% were African Americans [47].

Potential cohort members were identified primarily through

Department of Motor Vehicles drivers’ license files and,

additionally for African Americans, Health Care Financing

Administration data files. Participants were between the ages of

45 and 75 years at the time of recruitment. A total of 1,551

African-American participants from the MEC study, selected for a

diabetes case-control study, were included in this analysis.

Diabetes and related traits
Information on body weight and height was collected in all

three studies. In ARIC and JHS, anthropometry was performed

during the clinical visit in the fasting state with an empty bladder

by certified technicians. Body mass index was calculated as weight

(in kg)/height (in meters) squared. In MEC, BMI was calculated

using self-reported weight and height. The ARIC Study and JHS

also have measurements of other diabetes-related quantitative

traits, including fasting serum glucose and insulin concentrations,

and HbA1c. Participants were asked to fast for at least 12 hours

before morning blood collection. Blood samples were collected

into vacuum tubes containing serum-separator gel (glucose,

insulin) or EDTA (HbA1c). Specimens were then processed and

analyzed in the ARIC and JHS Central Laboratories at University

of Minnesota [48,49]. Serum glucose and insulin were measured

by the hexokinase method [49,50] and by radioimmunoassay [49],

respectively. HbA1c was assayed with Tosoh HPLC instruments

[48,49]. The present analysis used data from the baseline

examination in all three cohorts, except that in ARIC HbA1c

was measured in stored whole blood samples from the second

clinical visit [48]. Insulin resistance was estimated by the

homeostasis model assessment (HOMA-IR) as fasting plasma

glucose [mmol/l] times fasting serum insulin [mU/L] divided by

22.5.

Type 2 diabetes was defined as the presence of any one of the

following at the baseline examination in the ARIC and JHS

studies: 1) fasting glucose $7.0 mmol/l (126 mg/dl); 2) non-

fasting glucose $11.1 mmol/l (200 mg/dl); 3) hemoglobin A1c

$6.5% [51]; 4) current use of diabetic medication; or 5) a positive

response to the question ‘‘Has a doctor ever told you that you had

diabetes (sugar in the blood)?’’ In addition, diabetic individuals in

ARIC or JHS who reported age of diagnosis younger than 30

years were excluded. In the MEC, diabetic individuals were

defined as those who indicated on the baseline or follow-up

questionnaires that they had a history of diabetes, and were taking

medication for diabetes at the time of blood draw. The question

did not differentiate between type 1 diabetes and type 2 diabetes,

and thus we expect a small fraction (,10%) of the respondents to

have type 1 diabetes [52]. In the ARIC and JHS study, non-

diabetic controls were defined as African-American participants

who did not have diabetes and were derived from the same

populations as the diabetic cases. In the MEC, non-diabetic

controls were from a group of samples who neither had a history of

diabetes nor were taking medication for diabetes and had been

specifically genotyped as part of previous admixture scans for

prostate cancer [20] and hypertension [53].

Socioeconomic status
Information on three SES indicators, including personal

education level, occupation, and family income, was collected

during the baseline interview in the ARIC and JHS study. For the

purpose of this analysis, education level was categorized into four

groups: 1) less than high school; 2) high school graduate or high

school-level General Educational Development credential; 3) some

college; or 4) college completed, or some graduate or professional

school. Income level was categorized as affluent, upper-middle,

lower-middle, or poor based on total combined family income,

family size, and poverty levels in each year when the interview was

conducted. Some participants (9.5% and 13.8% in ARIC and

JHS, respectively) did not provide their income information and

were coded as a separate category (missing). A more detailed

description of the assessment of income is presented in Text S1.

Occupations were categorized according to the criteria of the 1980

U.S. census into six groups: managerial and professional specialty;
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sales, technical, and administrative support; service; farming,

forestry and fishing or precision production; operators, fabricators,

laborers or construction; and homemakers [54]. Because cohort

controls had not been genotyped in the MEC (as we had

oversampled particular phenotypes for genetic studies), the

analyses of SES was limited to ARIC and JHS only.

Genotyping
Participants were genotyped with at least one of three iteratively

improved and partially overlapping panels of ancestry-informative

SNP markers [23,25,41,55,56]. The ARIC study used the Phase 3

panel, the JHS study used Phase 2 and 3, and the MEC study used

all three panels. Altogether 2,189 markers were genotyped in the

present study, with a median of 1,243 markers per individual. We

used previously published genotyping data to estimate the

frequency of each SNP in West Africans and European

Americans, the two parental populations of African Americans

[20,53,55]. A series of filters, as described previously [25,55–57],

were applied to detect and remove SNPs with problematic

genotyping. Genotyping details, estimates of allele frequencies,

and SNP quality control checks are presented in Text S1.

Estimating genetic ancestry
We estimated each subject’s global percentage of African

ancestry using the ANCESTRYMAP software [40]. ANCES-

TRYMAP uses a Hidden Markov Model (HMM) to combine the

weak information about local ancestry that is provided by each

SNP into a more confident estimate that incorporates information

from many neighboring markers. Use of the HMM to estimate

genetic ancestry is described in more detail in Text S1.

Statistical analysis
Statistical analyses were performed using Stata 10.1 (Stata

Corporation, College Station, Texas, US) and ANCESTRYMAP.

Initial analyses of the correlation between African ancestry and

either SES or the diabetes-related quantitative traits were

performed using Spearman’s correlation coefficient (r). Analyses

of ancestry associations were conducted using pooled data from all

three cohorts. Quantitative traits were available for analysis in

ARIC and JHS only.

We used logistic regression models to estimate the OR for

diabetes, comparing tertiles 2 and 3 to the lowest tertile of the

distribution of African ancestry. To explore further potential

nonlinear ancestry-diabetes associations, we used restricted cubic

splines with equally-spaced knots at the 5th, 35th, 65th, and 95th

percentiles of the ancestry distribution. For quantitative traits, we

used linear regression models to determine the proportion of

variation in trait levels explained by each variable (i.e., the

coefficient of determination) and to assess the change in trait levels

with ancestry tertiles. We constructed a series of multivariate

models for our regression analyses. The base models were adjusted

for age, sex and study only. Subsequent models were created by

introducing BMI and SES as covariates, separately and collectively

in sequence, because both SES and BMI correlate with ancestry

[38,41] and thus may potentially confound ancestry-diabetes

association.

To quantify the extent to which groups of covariates appeared

to explain the excess odds of diabetes with increasing African

ancestry, we calculated the percentage reduction in the OR

associated with adjustment (see Text S1 for more details). Similar

calculation was performed to determine the relative contribution

of covariates to the observed association between ancestry and

quantitative traits.

We used ANCESTRYMAP [40] to search for genomic regions

associated with an increased percentage of either European or

African ancestry. The ANCESTRYMAP software provided two

statistics: a locus-genome statistic and a case-control statistic. A locus-

genome statistic was obtained in cases by calculating the likelihood of

the genotyping data at the SNPs at the locus under a risk model

and comparing it to the likelihood of the genotyping data at the

SNPs at the locus assuming that the locus is unassociated with the

phenotype [40]. We tested 6 pre-specified European ancestry risk

models ranging from 0.7 to 1.3. To accumulate evidence of

association in these models, we averaged the ratio of these two

likelihoods emerging from each model at each point in the

genome, taking the log10 of this likelihood ratio to produce a locus-

specific LOD score. We considered a locus-specific LOD score for

association at a particular locus of .5 as genome-wide significant

and .4 as suggestive [58]. To obtain an assessment of the

evidence for a risk locus anywhere in the genome, we averaged the

likelihood ratio for association across all loci in the genome, and

took the log10 to obtain a ‘‘genome-wide score’’ [58]. We

interpreted a genome-wide score .2 as significant, and .1 as

suggestive.

A case-control statistic was calculated by comparing locus-specific

deviations in European ancestry in cases versus controls at each

locus across the genome [40]. For loci identified by the case-

control statistic, the level of genome-wide significance was defined

as a Z score .4.06 or ,24.06, corresponding to an uncorrected

nominal P,561025, or a corrected nominal P,0.05 after

conservatively correcting for 1,000 hypotheses tested (approxi-

mately equals the number of independent chromosomal segments

assigned to either African or European ancestry).
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participants.
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