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Abstract

Research in biomedical text mining is starting to produce technology which can make information in biomedical literature
more accessible for bio-scientists. One of the current challenges is to integrate and refine this technology to support real-life
scientific tasks in biomedicine, and to evaluate its usefulness in the context of such tasks. We describe CRAB – a fully
integrated text mining tool designed to support chemical health risk assessment. This task is complex and time-consuming,
requiring a thorough review of existing scientific data on a particular chemical. Covering human, animal, cellular and other
mechanistic data from various fields of biomedicine, this is highly varied and therefore difficult to harvest from literature
databases via manual means. Our tool automates the process by extracting relevant scientific data in published literature
and classifying it according to multiple qualitative dimensions. Developed in close collaboration with risk assessors, the tool
allows navigating the classified dataset in various ways and sharing the data with other users. We present a direct and user-
based evaluation which shows that the technology integrated in the tool is highly accurate, and report a number of case
studies which demonstrate how the tool can be used to support scientific discovery in cancer risk assessment and research.
Our work demonstrates the usefulness of a text mining pipeline in facilitating complex research tasks in biomedicine. We
discuss further development and application of our technology to other types of chemical risk assessment in the future.
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Introduction

New research in biomedicine depends on making efficient use of

existing scientific knowledge – a task which bio-scientists are

finding increasingly difficult. Given the double exponential growth

rate of biomedical literature over recent years [1], there is now a

pressing need to develop technology that can make information in

published literature more accessible and useful for scientists. Such

technology can be based on text mining. Drawing on techniques

from natural language processing, information retrieval and data

mining, text mining can automatically retrieve, extract and

discover novel information even in huge collections of written

text. Although it cannot yet replace humans in complex tasks, it

can enable humans to identify and verify required information in

literature more efficiently and uncover relevant information

obscured by the volume of available information.

In recent years, biomedical text mining has increased in

popularity. Techniques have been developed to assist, for example,

the extraction of documents, databases, dictionaries, ontologies,

summaries and specific information (e.g. interactions between

proteins and genes, novel research hypotheses) from relevant

literature [2–4]. Evaluation of such techniques has revealed

promising results. However, much of the evaluation has been

direct in nature and has employed pre-determined gold standards.

There is now general recognition of the need to move biomedical

text mining research closer to practice: to integrate technology to

support real-life scientific tasks (e.g. the process of scientific

discovery) and to evaluate its usefulness in the context of such tasks

[3,5].

A number of studies have responded to this need for user-

centred evaluation, though the undertaking of user studies is still

far from universal. Some studies have measured the degree to

which semi-automation can speed up a curation or other workflow

[6–8]. A second strand, more closely related to our work, seeks to

discover new relationships between biological entities that are

supported by but not made explicit in the literature [9–11]; for

example, the existence of a known link between a disease and a

gene and between the same gene and a drug might suggest a role

for the drug in treating the disease. User evaluation in this context

involves comparing the proposed relationships to previously

suggested hypotheses and making qualitative judgements as to

whether they seem to offer fruitful directions for further research.

Our case studies follow the same basic template, though the task at

hand, requiring synthetic analysis of full abstracts, is a more

complex one than classifying relations between entity mentions.

In this paper we present a new, fully integrated text mining

system designed to support the complex and highly literature-

dependent task of chemical health risk assessment. This task is

critical because chemicals play an important role in everyday life

and their potential risk to human health must be evaluated. With

thousands of chemicals introduced every year, many countries

worldwide have established increasingly strict laws governing their

production and use. For example, the recent European Union

Registration, Evaluation, Authorisation and Restriction (REACH)
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legislation [12] requires that all chemicals manufactured or

imported in large quantity must undergo thorough risk assessment.

The assessment of large numbers of chemicals is easier said than

done. Using the currently available methodology, it takes up to

two years to assess a single chemical [13]. Although the

development of a completely novel system for toxicity testing

may help to improve the efficiency of chemical assessment in the

long term [14], there is a pressing need to improve the state of the

art in the short to medium term.

Chemical risk assessment is a complex process consisting of

several component stages. The first major component is typically

an extensive review and analysis of the available scientific data on

the chemical in question. This review focuses on any data of

potential relevance – not only human data, but also animal,

cellular (in vitro) and other mechanistic data [15]. The primary

source for this data is scientific peer reviewed literature.

According to a recent report, risk assessors find literature

gathering and analysis prohibitively time-consuming [16]. This is

not surprising since the biomedical sciences which chemical risk

assessment draws on (epidemiology, cell biology, and cancer

research, among many others) are developing more rapidly than

ever before. This development can be observed by examining the

growth of MEDLINE (Medical Literature Analysis and Retrieval

System Online) - the U.S. National Library of Medicine’s (NLM)

premier bibliographic database which is a significant literature

resource employed in current chemical risk assessment. In 2005,

this database included 13 million references. Today it includes

over 18 million, with 2,000–4,000 references added to MEDLINE

each day; in fact, the database is growing at a double-exponential

rate [1]. The data for a single chemical may be found scattered

across thousands of journal articles (e.g. MEDLINE includes over

30,000 articles for cadmium).

At present, risk assessors and scientists use systems such as

PubMed to gather relevant literature from databases. These

systems return a list of journal articles in response to keyword-

based queries. However, given the wide range and complexity of

scientific data used for risk assessment, the number of keywords,

their synonyms and potential combinations simply exceeds what

human risk assessors can reasonably memorize and handle. What

is essentially needed is much more powerful technology which goes

beyond keyword-based search – technology which categorizes and

ranks various scientific data on the basis of their relevance, makes

links between otherwise unconnected articles, and creates

summaries, statistics, visualizations and novel hypotheses from

the scientific literature, leaving risk assessors to explore the

resulting structured data. The work reported here shares some of

the goals of the Semantic MEDLINE project [17,18] in adding a

‘‘semantic’’ layer of automatic processing over the keyword-based

retrieval functionality of PubMed or a similar search engine. We

believe that our work is distinguished from Semantic MEDLINE

by our use of statistical NLP methods, by the focus on an

underexplored task setting with a distinctive information need and

by our focus on user-centred evaluation.

If a dedicated text mining tool was developed for chemical risk

assessment it could be used to effectively identify, mine, and

classify scientific data in biomedical literature as well as to discover

novel patterns in classified data. Facilitating large-scale assessment

of existing data, such a tool could offer the means to improve the

Figure 1. The Scientific Evidence for Carcinogenic Activity taxonomy branch.
doi:10.1371/journal.pone.0033427.g001
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accuracy, thoroughness and efficiency of chemical risk assessment.

The tool could also be used to support scientific research in the

fields on which risk assessment relies.

In Korhonen et al. [16] we took the first step towards the

development of text mining technology for chemical risk

assessment, focussing on cancer risk assessment. We introduced

a basic taxonomy which covers the main types of scientific

evidence used for determining carcinogenic properties of chem-

icals, and a supervised machine learning approach which can be

used to classify MEDLINE abstracts to relevant taxonomy classes.

The evaluation showed that the taxonomy is well-formed and that

the machine learning approach is fairly accurate. Although the

experiment was small in scale and no evaluation of the practical

usefulness of the technology for real-life risk assessment was

performed, the results were nevertheless promising.

We take this line of research considerably further and introduce

CRAB – a fully integrated text mining tool aimed at supporting

the entire process of literature review and knowledge discovery in

cancer risk assessment. Available to end users via an online Web

interface, it enables accessing PubMed, downloading scientific

abstracts on chosen chemicals, and classifying them according to

an extensive taxonomy using supervised machine learning

technology. The tool allows navigating the classified dataset in

various ways and sharing the data with other users. We present

both direct and task-based evaluation of the technology integrated

in the tool, along with a number of case studies which demonstrate

the usefulness of the tool in supporting knowledge discovery in

cancer risk assessment and research.

Our research demonstrates that a relatively ambitious text

mining pipeline consisting of both retrieval and multi-classification

stages can be useful for complex research tasks in biomedicine.

Although currently applicable to cancer, the tool could be

straightforwardly adapted to support the assessment and study of

Figure 2. The Mode of Action taxonomy branch.
doi:10.1371/journal.pone.0033427.g002
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other important health risks related to chemicals (e.g. allergy,

asthma, reproductive disorders, among many others).

Methods

The following three sub-sections describe the key components of

CRAB: the cancer risk assessment taxonomy, the corpus of

MEDLINE abstracts annotated according to the taxonomy

classes, and the classifier based on machine learning. The final

sub-section presents the overall architecture of the CRAB tool

along with the user interface.

Taxonomy
At the heart of CRAB is a taxonomy developed by experts in

cancer research, which specifies scientific data types of relevance

for cancer risk assessment. We took the taxonomy of Korhonen et

al. [16] as a starting point and extended and refined it in various

ways. The resulting taxonomy includes data types mentioned in

publicly available cancer risk assessment guidelines (e.g. US EPA

Guidelines [15]) as well as additional, more detailed and recent

data discovered during expert analysis of risk assessment literature.

The taxonomy has two main parts. The first part (shown in

Figure 1) focuses on Scientific Evidence for Carcinogenic Activity. It has

five top level classes which represent different types of scientific

evidence: Human study/Epidemiology, Animal study, Cell experiments,

Study on micro-organisms, and Subcellular systems. Some of these divide

further into sub-classes; for example, Human study has five sub-

classes including Tumor-related and Polymorphism. We adopted all of

the top level classes and the majority of sub-classes proposed by

Korhonen et al. [16].

The second part of the taxonomy (shown in Figure 2) focuses on

Mode of Action (MOA; i.e. the sequence of key events that result in

cancer formation, e.g. mutagenesis, increased cell proliferation,

and receptor activation), capturing the current understanding of

different processes leading to carcinogenesis. We took the simple

MOA taxonomy of Korhonen et al. [16] which distinguishes two

commonly used MOA types – Genotoxic (i.e. a carcinogen binds to

DNA) and Non-genotoxic/indirect genotoxic (i.e. a carcinogen does not

bind to DNA) – as a starting point. We added four sub-classes

under the Non-genotoxic/indirect genotoxic class (Co-initiation, Promotion,

Progression and Multiphase), following the recently proposed MOA

classification of Hattis et al. [19]. Each of these classes divides

further into sub-classes according to the types of evidence that can

indicate the MOA type in question. For example, Cytotoxicity can

provide evidence for both Promotion and Multiphase non-genotoxic

MOAs.

The resulting taxonomy contains 47 classes. Each class is

associated with a number of keywords (and keyphrases) which,

when found in literature, are good indicators for the presence of

the type of scientific data in question (e.g. the Cell death class in the

Figure 3. Example keywords for the Scientific Evidence for Carcinogenic Activity taxonomy.
doi:10.1371/journal.pone.0033427.g003
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MOA part of the taxonomy includes keywords such as apoptosis,

DNA fragmentation, caspase-9, bcl2, bax, apoptosome, programmed cell

death, Fas, necrotic cell death, and viability). Figure 3 shows

representative keywords for each class in the Scientific Evidence for

Carcinogenic Activity taxonomy branch. Figure 4 presents example

keywords for the MOA taxonomy branch. The keywords shown

were selected from the annotated corpus described below.

Due to the rapid development of science a taxonomy like this

will never be complete. However, it can be extended and updated

easily by experts using our tool.

Annotated Corpus
The CRAB classification software requires as training data a

corpus (i.e. a collection) of MEDLINE abstracts that have been

manually classified according to the taxonomy. The Korhonen et

al. [16] corpus was created by selecting eight chemicals which are

(i) well-researched using a wide range of scientific tests and which

(ii) represent the two most frequently used MOAs (genotoxic and non-

genotoxic): 1,3-butadiene, benzo(a)pyrene, diethylnitrosamine, sty-

rene, chloroform, diethylstilbestrol, fumonisin B1 and phenobar-

bital. A set of 15 journals were then identified which are used

frequently for cancer risk assessment and jointly provide a good

Figure 4. Example keywords for the Mode of Action taxonomy.
doi:10.1371/journal.pone.0033427.g004
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coverage over the different types of scientific evidence relevant for

the task (e.g. Cancer Research, Carcinogenesis, Environmental

Health Perspectives, Mutagenesis, among others). From these

journals, all the abstracts returned by PubMed for the years 1998

to 2008 which include one of the 8 chemicals were downloaded

(1297 abstracts in total). Each abstract was then examined by an

expert in cancer risk assessment and assigned to relevant

taxonomy classes via keyword annotation. An annotation tool

was developed and used in this work (see Korhonen et al. [16] for

details).

The annotated dataset is available under a Creative Commons

Attribution Non-Commercial license (Information S1 and S2); as

far as we are aware, this is the first time that a corpus of chemical

risk annotation data has been publicly available.

We re-annotated the corpus of Korhonen et al. [16] using our

taxonomy and extended it considerably: we selected twelve

additional chemicals (shown in Table 1) – ones that collectively

represent the types of scientific evidence and MOAs covered by

our extended taxonomy. Abstracts returned by a PubMed search

for these chemicals (all from the years 1999–2009) were

downloaded and annotated by cancer risk assessors using the

annotation tool of Korhonen et al. [16]. The resulting combined

corpus consists of 3078 annotated MEDLINE abstracts for 20

chemicals. The total number of abstracts and annotated keywords

belonging to each taxonomy class is shown in Figure 5 (see

columns 1–3). We can see that 1292 abstracts have been classified

according to the Scientific Evidence for Carcinogenic Activity sub-

taxonomy, while 1766 have been classified according to the MOA

taxonomy. The number of abstracts and individual keywords

associated with top level classes is high but get increasingly small as

we go into the deeper levels of the taxonomy.

Classification experiments

Classifier
The CRAB classifier assigns unseen MEDLINE abstracts to

appropriate taxonomy classes using a supervised machine learning

technique. The technique does not rely on pre-defined keywords,

but it uses a set of linguistic document features (described below)

and the associated corpus annotations (described in the above

section) as training data to achieve optimal performance.

Korhonen et al. [16] used a set of Support Vector Machine

(SVM) classifiers [20], one for each taxonomy class, to decide

which (if any) taxonomy classes describe the content of an

abstract. Since SVMs have performed well in many text mining

tasks [2,21] and since they yielded promising results in the

preliminary experiments of Korhonen et al. [16] we use them

also in our system. However, we introduce an improved model

and additional features to obtain better performance on our

task.

Similar to other well-known classifiers such as logistic regression

or the perceptron, SVMs separate a training dataset into two

classes by learning a decision function that corresponds to a

combination of feature values and feature weights. For SVMs this

function can be written as:

f (xi)~sign Swi,w(xi)Tzbð Þ ð1Þ

where w is a vector of weights learned from training data and w is a

function that maps datapoints from the input space to a

(potentially different) ‘‘feature space’’. The SVM training algo-

rithm sets the weight vector in correspondence with the max-margin

principle, choosing the boundary that maximises the separation

between classes. Often the feature space mapping w need not be

computed directly as its effect can be captured via the use of a

kernel function that compares two datapoints; this allows SVMs to

learn non-linear decision boundaries while maintaining the

computational efficiency of linear classification. The books

[22,23] provide comprehensive overviews of SVMs and of kernel

methods in general.

One standard kernel function is the dot product or linear kernel,

which we used in Korhonen et al. [16]:

klinear(x1,x2)~
X

i

x1ix2i ð2Þ

An alternative kernel function, suitable for comparing probability

distributions (or L1-normalised vectors), can be derived from the

Jensen-Shannon divergence (JSD) [24] through a method

proposed by Hein and Bousquet [25]:

Table 1. Profiles of the new chemicals used for annotation.

Chemical Occurrence Effects

5-azacytidine Used in the treatment of leukemia DNA Methylation, cytotoxicity

Arsenic A metalloid found in many minerals Oxidative stress, cell death, angiogenesis

Bisphenol A Used in the manufacture of plastics Endocrine disruptor

Cadmium A metal (metal ion) DNA repair inhibition, oxidative stess

Cyclosporine Immunosuppressant drug Immunosuppression, apoptosis

Dichloroacetate Used for treatment of lactic acidosis Methylation, cell death, oxidative stress

Irinotecan Drug used for cancer treatment Topoisomerase inhibition, immunosuppression

Nafenopin Drug used for blood lipid levels Peroxisome proliferation

Okadaic acid A marine toxin Protein phosphatase inhibition and effects on TNF-alpha

Sulindac An anti-inflammatory drug Reduced inflammation

TCDD A dioxin-like compound AhR activation and other

Thiobenzamide Hepatotoxin Immunosuppression

doi:10.1371/journal.pone.0033427.t001
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Figure 5. Classification results: number of abstracts and distinct keyword annotations for each label; number of abstracts classified
as positive by the system; Precision, Recall and F-measure.
doi:10.1371/journal.pone.0033427.g005

Figure 6. An overview of the CRAB text mining tool.
doi:10.1371/journal.pone.0033427.g006
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kjsd (x1,x2)~{
X

i

x1i log (
x1i

x1izx2i

)

zx2i log (
x2i

x1izx2i

)

ð3Þ

Ó Séaghdha and Copestake [26] demonstrate that this JSD kernel

yields substantially better performance than the linear kernel on a

range of classification tasks in natural language processing; hence

we apply it here with the expectation that it will improve the

accuracy of our automatic abstract annotation.

Abstracts are input to the classification pipeline as PubMed

XML, from which the content of each abstract and some

associated markup are extracted. The abstract text is tokenised

(split into its component word tokens) using the OpenNLP toolkit

[27] and transformed into a ‘‘bag of words’’ feature vector that

stores the number of times each word occurs in the text. A

separate set of features records the words that appear in the

abstract title, to capture the intuition that the title words have a

privileged status in identifying the principal theme of an article.

These features are augmented by the MeSH (Medical Subject

Headings) headings provided by MEDLINE; for example, an

abstract may have been given the descriptive headings Drug

Interactions and Enzyme Inhibitors. The parent categories or hypernyms

of these headings in the MeSH taxonomy are also added; for

example, the hypernyms of Enzyme Inhibitors include Molecular

Mechanisms of Action and Pharmacologic Actions. Finally, all character

strings of length 7 (including sentence-internal punctuation and

spaces) are extracted from the text and converted to another set of

features; the proposed sequence length of 7 follows Wang et al.

[28], but the use of character-based features for string comparison

has a long history in bioinformatics, e.g. the spectrum kernel of Leslie

et al. [29].

Compared with the system of Korhonen et al. [16], our system

integrates the following refinements: (1) the use of the JSD kernel

rather than the linear kernel; (2) the use of title word features; (3)

the addition of MeSH hypernyms.

The classifier associated with each taxonomy class predicts a

binary label; an abstract is classified as either being labelled with

that class or not. Each classifier is trained independently and

makes its prediction independently of the other classifiers.

However, the fact that the classes are located in a taxonomy

means that there are in fact dependencies between them; if an

abstract is a positive example for strand breaks then it is also by

definition a positive example for genotoxic mode of action. Such

dependencies are captured by a postprocessing step in which

positive classifications at a given class are propagated up the

taxonomy to all higher classes.

The CRAB tool
In close consultation with risk assessors, we developed an online

text mining tool which integrates the components described in the

above sub-sections. The tool has a pipelined structure, as

illustrated in Figure 6. A user can define the chemical(s) of interest

and download the corresponding collection of abstracts from

PubMed in XML format. The abstracts are then preprocessed and

Figure 7. Illustration of the user interface.
doi:10.1371/journal.pone.0033427.g007
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classified according to the taxonomy as described above. CRAB

displays, for a given chemical, the distribution of classified

abstracts over different parts of the taxonomy. The user can

navigate the dataset by selecting a taxonomy class and viewing all

abstracts classified as positive for that class. The user can also give

feedback to the system by marking wrongly classified tags; these

are then removed from display. The results are stored in a MySQL

database, allowing persistent data access: the results of past

sessions can be revisited and shared with other users. Figure 7

shows screenshots which illustrate some functions of the tool. We

have made CRAB available to end users via an online Web

interface which is accessible upon request via http://omotesando-

e.cl.cam.ac.uk/CRAB/request.html.

The experiments reported here use the SVM implementation

provided by the LIBSVM library [30], customised to facilitate the

use of the JSD kernel. During training, we also perform feature

selection to remove the many non-predictive features in the

interest of enhanced efficiency and accuracy. Each feature fi is

scored according to its discriminative power over the training data

using the F-score method of Chen and Lin [31]. Cross-validation on

the training data is used to choose the proportion of features to

discard; this is done by measuring performance with the top-

scoring (10%, 20%, . . . , 100%) of features and keeping the subset

which gives the best performance. The SVM classifier has two

parameters used in training, the ‘‘cost’’ parameter C and the

weight parameter w1 which sets the relative weighting of positive

training examples; w1 plays an important role when some labels

are very rare, as in the application at hand. Similar to the feature

selection process, both parameters are set through a grid search

procedure that explores the range (2{8,2{4, . . . ,216).

We used a 10-fold cross-validation methodology in our

evaluation: the dataset is randomly divided into 10 disjoint

partitions and taking one partition at a time the classifier is trained

on the other nine partitions and made to predict the labelling of

the abstracts in the selected partition. In this way each abstract is

labelled exactly once and we can evaluate these predictions using

measures of Precision (P), Recall (R) and F-measure (F , not to be

confused with the F-score used for feature selection):

P~
TP

TPzFP
ð4Þ

Table 2. User test results: total number of abstracts retrieved, number of abstracts classified as positive, Precision and
interannotator agreement.

Carcinogenic Activity Mode of Action Overall

Chemical name # #pos P Agree #pos P Agree #pos P Agree

4-aminobiphenyl 633 94 100.0 100.0 102 97.9 97.9 128 98.6 98.6

Asbestos 571 295 99.4 98.8 183 99.6 99.8 417 99.5 99.3

Ethylene oxide 85 64 100.0 99.2 66 99.6 99.6 74 99.7 99.5

Formaldehyde 320 153 98.0 98.0 167 98.7 98.3 233 98.5 98.2

Genistein 420 127 98.7 99.6 291 99.3 99.3 341 99.3 99.4

Methylene chloride 47 25 98.7 95.5 29 100.0 100.0 34 99.3 98.6

Pyridine 470 324 98.6 99.1 317 98.7 98.6 406 98.7 98.8

Average 98.9 98.6 99.1 99.1 99.1 98.9

doi:10.1371/journal.pone.0033427.t002

Table 3. Journals used for the user test.

Americal Journal of Industrial Medicine

Annals of Occupational Hygiene

Archives of Toxicology

Cancer Causes and Control

Cancer Detection and Prevention

Cancer Epidemiology, Biomarkers and Prevention

Cancer Letters

Cancer Research

Carcinogenesis

Chemical Research in Toxicology

Chemico-biological Interactions

DNA Repair

Environmental and Molecular Mutagenesis

Environmental Health Perspectives

Environmental Toxicology and Chemistry

European Journal of Cancer

International Journal of Cancer

International Journal of Environmental Research and Public Health

Journal of Exposure Analysis and Environmental Epidemiology

Journal of Occupational Health

Journal of Toxicology and Environmental Health A

Mutagenesis

Mutation Research

Occupational Medicine

Pathology and Oncology Research

Regulatory Toxicology and Pharmacology

The Science of the Total Environment

Toxicological Sciences

Toxicology

Toxicology and Applied Pharmacology

Toxicology Letters

doi:10.1371/journal.pone.0033427.t003
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R~
TP

TPzFN
ð5Þ

F~
2 � P � R

PzR
ð6Þ

where TP, FP and FN stand for the number of true positives, false

positives and false negatives, respectively. These evaluation

measures are standard in natural language processing and text

mining. Given a set of label predictions for all data items,

Precision, Recall and F-measure is computed independently for

each label. In order to produce an overall performance measure

these per-label scores can be averaged (macro-average) or single

Precision and Recall figures can be calculated for the entire dataset

and a micro-average F-measure produced using the formula in (6).

Micro-averaged performance tends to be dominated by more

prevalent classes, while macro-averaged performance treats all

classes equally.

User experiments and case studies
A user test was conducted to measure the acceptability of the

classifier’s output to risk assessors who would be using it for their

work. Seven carcinogenic chemicals were selected (see the first

column of Table 2); none of these chemicals had previously been

used for annotation, classification or evaluation purposes. A test

corpus was collected for each chemical by searching PubMed for

all non-review articles mentioning the chemical that were

published between 1996–2010 (as of December 7th 2010) in the

journals listed in Table 3. The resulting dataset contained 2546

abstracts. As in realistic usage, many of these abstracts are

irrelevant to cancer risk assessment; the classifier must distinguish

relevant articles from irrelevant articles as well as assign

appropriate class labels. The test corpora were submitted to the

classification system for automatic annotation.

The abstracts classified as positive for at least one taxonomy

class were inspected by two risk assessors working independently.

They decided whether the abstracts returned for each class were

correctly labelled or not. After the first complete round of

annotation, the level of agreement between risk assessors was

calculated as the proportion of classifications about which both

annotators made the same decision. We did not use the Kappa

measure of interannotator agreement [32], which is often used in

NLP, as it is not interpretable when the class distribution is

extremely skewed: if any annotator applies the same label to all

instances (in our case, carries out the desired behaviour of

annotating all returned abstracts as positive) the Kappa value will

be zero. The fact that the marginal distribution of classes both in

the dataset itself and in the judgements of annotators affects the

range of possible and probable Kappa scores has been observed in

a number of studies [33–35]. Such studies often recommend that

additional statistics be reported as an aid to better interpreting the

meaningfulness of a given Kappa score; however, in the case

where an annotator only uses one label the effect reaches a

pathological stage where Kappa always equals zero regardless of

the other annotator’s decisions and there is essentially nothing to

interpret.

One obvious benefit of a text mining tool such as CRAB is

much improved efficiency of a major component of risk

assessment: the review of existing scientific data on the chemical

in question. Human risk assessors may spend months conducting

partial review of relevant MEDLINE literature [16], while CRAB

can perform an exhaustive review in a matter of seconds. Another

major benefit is the ability to perform multi-dimensional

classification of literature according to the taxonomy, i.e. the

various types of scientific evidence each article offers for risk

assessment. This kind of classification would be extremely difficult

and time-consuming to perform by hand, especially for inexpe-

rienced risk assessors, yet it can be highly valuable because it

enables both quantitative and qualitative overviews of the

available data.

We conducted a number of case studies to demonstrate how

such overviews can be used to support cancer risk assessment and

research. The methodology of these studies involved plotting the

distribution over labels assigned by the classifier to the full set of

MEDLINE abstracts mentioning chemicals of direct interest to

risk assessors. These quantitative findings are compared to known

properties of each chemical and also used to generate new

hypotheses that merit further experimental investigation.

Results

In this section we report both direct and user-based evaluation

of the classification technology, and present case studies aimed at

investigating the usefulness of the CRAB tool for real life risk

assessment.

Classification results
We first took the extended taxonomy and dataset and evaluated

the accuracy of the classifier directly against labels in the

annotated corpus.

Figure 5 presents results for each of the 42 classes in the

taxonomy with 20 or more positive abstracts; the five classes with

fewer than 20 abstracts are omitted from training and testing as

there is insufficient data to learn from for these very rare classes.

Table 4 presents macro-averaged and micro-averaged overall

results.

Table 4. Classification results: overall Precision, Recall and F-
measure with comparison to the system of Korhonen et al.
[16] on the new dataset.

Precision Recall F-measure

Overall

Macro-average 72.3 72.2 71.8

Micro-average 74.7 80.8 77.6

Korhonen et al. [16] System

Macro-average 69.0 70.5 69.1

Micro-average 71.0 80.5 75.5

doi:10.1371/journal.pone.0033427.t004

Table 5. Mean F-score for three frequency ranges.

Frequency
range #Labels Average F

f §300 13 76.1

100ƒf v300 15 69.4

20ƒf v100 15 70.5

doi:10.1371/journal.pone.0033427.t005
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Comparing these results to those of Korhonen et al.’s [16]

system on the same dataset, we find that the new system scores

higher on all evaluation measures. Macro-averaged F-measure is

2.7 points higher (71.8 compared to 69.1), while micro-averaged

F-measure is 2.1 points higher (77.6 compared to 75.5). Following

the recommendations of Dietterich [36] we use paired t-tests over

the cross-validation folds to test whether this improvement is

statistically significant or simply a side-effect of sampling variation;

the improvement is indeed significant for both macro-averaged

(p~0:01, t~3:16, df ~9, two-tailed) and micro-averaged

(p~0:01, t~3:15) F-measure. Further investigation indicates that

about half of the improvement is due to the use of the JSD kernel

rather than the linear kernel and about half is due to the use of

hypernyms of MeSH terms as well as the terms themselves; the use

of title features has a very small positive effect. Note that the results

presented here are not directly comparable to those presented

earlier by Korhonen et al. [16] as our experiments use a larger

taxonomy and a different, more heterogeneous (and hence more

challenging) dataset; the results we use for comparison in Table 4

are new results obtained by running the old system on the new

dataset and did not appear in [16].

Table 5 outlines the effect of label frequency (i.e. the number of

abstracts assigned to a taxonomy class in the manually annotated

dataset) on prediction accuracy. Labels which have 300 or more

positive examples in the annotated dataset are easiest for the

system to classify; this is not surprising, as having ¡a large number

of positive examples provides the classifier with more data from

which to learn a good predictive model. There is little difference

between the average performance for labels with 100–299 positive

examples and labels with 20–99 positive examples, suggesting that

the classifier is able to predict even rare labels relatively well.

User Test
The agreement figures for each chemical in the user test,

measuring the proportion of retrieved abstracts for which the

annotators agreed with each other, are presented in Table 2; in all

cases, they are above 98%. Averaged over chemicals, agreement

for the Carcinogenic Activity taxonomy branch is 98.6%, agreement

for the MOA branch is 99.1% and agreement for the whole

taxonomy is 98.9%. As shown by the interannotator agreement

figures, the risk assessors disagreed on the correctness of some

classifications. In order to produce a unanimous gold standard for

calculating system precision, they revisited the cases of disagree-

ment and settled on a reconciled decision. This allowed us to

measure the precision of the system.

Precision scores for the reconciled gold standard are also

presented in Table 2. The classifier’s precision is very high,

exceeding 99% for four chemicals and 98% for the remaining

three. It was not practically feasible to perform a recall-based

evaluation as well, as that would have required annotating all

abstracts in the corpus with all possible labels taken into

consideration.

Case Studies
The evaluation presented in the above sections shows that the

classifier is capable of assigning MEDLINE abstracts to taxonomy

classes with what we consider promising accuracy (users of the

system are made aware that NLP technology is never perfect and

they have the ability to correct erroneous classifications). We will

now investigate the practical usefulness of the tool for real-life

chemical risk assessment.

First, examining the distribution of MEDLINE abstracts over

the Scientific Evidence for Carcinogenic Activity part of the taxonomy

makes it possible to see whether the key types of scientific data

(animal, human and mechanistic) are already available for a

chemical, or whether there are clear data gaps that need to be

filled before full risk assessment can be carried out. Figure 8 shows

the distribution of MEDLINE abstracts for two common

chemicals, found for example as contaminants in air: benzo[a]-

pyrene (BP) (which had 11161 MEDLINE abstracts in total as of

December 2010, 5592 assigned to the taxonomy) and diben-

zo[al]pyrene (DBP) (which has 195 abstracts in total and 146

assigned to the taxonomy). It can be seen that the key types of

scientific data are available for the well-studied environmental

Figure 8. Distribution of classified abstracts over the Scientific Evidence for Carcinogenic Activity taxonomy for two chemicals,
benzo[a]pyrene and dibenzo[al]pyrene.
doi:10.1371/journal.pone.0033427.g008
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pollutant BP, while for DBP no human data is available. In this

case, CRAB has revealed a serious data gap since some of the

existing animal data suggest that DBP might be several orders of

magnitude more carcinogenic than BP [37].

Secondly, for a well-researched chemical, the distribution of

abstracts over the Mode of Action part of the taxonomy can reveal

the available evidence for cancer causation as well as the likely

toxicological profile of the chemical. This is illustrated in Figures 9

and 10 which show the distributions of MEDLINE abstracts for

three chemicals: 1,3-butadiene, genistein and formaldehyde.

Comparing the total number of MEDLINE abstracts retrieved

to the number classified as relevant for MOA analysis, we see that

31.0% are retrieved for 1,3-butadiene (435 out of 1,401), 57.6%

for genistein (4,908 out of 8,518) and 22.9% for formaldehyde

(5,679 out of 24,757); this in itself shows how automatic analysis

can dramatically cut down the reading load for a risk assessor.

1,3-butadiene is a known genotoxic chemical [38]. As expected,

the clear majority (68%) of the 435 MOA abstracts include

scientific data on genotoxicity (Figure 9(a)) while only 24% are

classified as containing information about nongenotoxicity/

indirect genotoxicity (Figure 10(a)). The latter abstracts report

studies dealing with aspects of cytotoxicity, which is also expected

as cytotoxicity may stimulate 1,3-butadiene-induced carcinogen-

esis by co-initiating or promotive effects. Figures 9(b) and 10(b)

show the distribution of abstracts for genistein. It can be seen that

the majority of the 4908 MOA abstracts provide scientific data on

non-genotoxic effects (94%) and hormonal receptor activation

(5%), which correlates to what is previously known about genistein

[39]. Also shown is the profile for formaldehyde (Figures 9(c) and

10(c)). This chemical is known to induce both genotoxicity such as

chromosomal changes as well as non-genotoxic effects [40]. This

can be seen clearly in the distribution of 5679 abstracts over the

MOA taxonomy, illustrating the usefulness of the tool.

A similar type of analysis can be used to compare the profiles of

different chemicals or chemical groups – a facility which can be

particularly helpful for identifying groups of chemicals with similar

toxicological profiles, or the probable group of an unknown or less

researched chemical in order to get an indication of its likely

properties. For example, Figure 11 shows the distribution of

MEDLINE abstracts over the MOA part of the taxonomy for eight

chemicals: TCDD, PCB126, PCB153, pentachlorodibenzofuran,

1,3-butadiene, 4-aminobiphenyl, dibenzo[al]pyrene and ethylene

oxide. It reveals some striking similarities and differences between

these chemicals: for example, the mean distribution of the classical

tumor promoters TCDD, PCB126, PCB153 and pentachlorodi-

benzofuran supports the contention that these chemicals have a

Figure 9. Genotoxic Mode of Action: distribution of classified abstracts for three chemicals: 1,3-butadiene, genistein and
formaldehyde.
doi:10.1371/journal.pone.0033427.g009
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non-genotoxic MOA [19,41]. In contrast, the mean distribution

for 1,3-butadiene, 4-aminobiphenyl, dibenzo[al]pyrene and eth-

ylene oxide shows a clear tendency for a genotoxic MOA

[37,38,42,43]. For the genotoxic group of chemicals the majority

of abstracts (67+21%) were classified as genotoxic, while for the

non-genotoxic group only a minority were (11+6%) (Figure 11(a)).

Similar observations can be made at the more detailed levels of

the MOA taxonomy: the genotoxic group (Figures 11(b) and 11(c))

has a large amount of data on DNA adducts and mutations while

the non-genotoxic group (Figures 11(d) and 11(e)) has more data

on Ah receptor activation. As indicated above, this distribution of

data corresponds to what is currently known about the MOA of

these chemicals, further illustrating the accuracy and the usefulness

of the tool for practical risk assessment.

Next we applied the tool for a group of triazole antifungal

chemicals which are used as pesticides. Humans are extensively

exposed to these chemicals through e.g. consumption of food and

water containing pesticide residues [44]. A concern is that this

group of chemicals might have cumulative effects on human

health. This calls for cumulative risk assessment, and for such an

assessment it is crucial to analyse literature which describes

toxicological effects that these chemicals might have in common.

This is because it is likely that similar effects by two or more

compounds might add up and cause cumulative effects. Figures 12

and 13 show abstracts (4–53 abstracts/chemical) dealing with 9

triazoles (cyproconazole, difenoconazole, epoxiconazole, flusila-

zole, muclobutanil, propiconazole, tebuconazole, triadimefon,

triadimenol) distributed according to the MOA taxonomy. It can

be seen that the majority (74%) of the 232 abstracts provided data

on nongenotoxic effects while only 12% are classified as containing

information about genotoxicity (Figure 12). Also shown is the

distribution of some additional MOA nodes (Figure 13). The

distribution indicates similarities between chemicals as many of the

triazoles provide scientific data on cell proliferation and oxidative

stress. This suggests that articles classified under these two nodes

may contain information that is likely to be of interest for

cumulative risk assessment of triazoles.

Discussion

There is a need to develop text mining systems for supporting

practical, literature-dependent tasks in biomedicine and to

evaluate such systems not only directly, but in the context of

real-life scenarios. We have introduced a new text mining tool

aimed at assisting the complex task of chemical health risk

assessment. The tool integrates a Web-based user interface which

Figure 10. Non-genotoxic Mode of Action: distribution of classified abstracts for three chemicals: 1,3-butadiene, genistein and
formaldehyde.
doi:10.1371/journal.pone.0033427.g010
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we have designed in collaboration with risk assessors. It enables

accessing PubMed, downloading scientific abstracts on chosen

chemicals, and classifying them according to multiple qualitative

dimensions. The tool allows navigating the classified dataset in

various ways and sharing the data with other users. We have

presented direct and user-based evaluation which shows that the

retrieval and classification technology integrated in the tool is highly

accurate. We have also reported case studies which demonstrate

Figure 11. Comparison of four known genotoxic (left) and four known nongenotoxic (right) chemicals. (b–c) show the distribution
in the genotoxic MOA part, (d–e) show the distribution in the nongenotoxic MOA part. The genotoxic chemicals are 1,3-butadiene, 4-
aminobiphenyl, dibenzo[a,l]pyrene and ethylene oxide; the nongenotoxic chemicals are TCDD, PCB126, PCB153 and pentachlorodibenzofuran. *
indicates statistically significant differences (pv0:05, Wilcoxon rank sum test).
doi:10.1371/journal.pone.0033427.g011
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how the tool can be used to support knowledge discovery in cancer

risk assessment. The ability to discover novel patterns in classified

data can also be useful for cancer research as it enables rapid

generation of research hypotheses from published literature. These

results are promising, showing that when integrated and refined in

close consultation with end-users, biomedical text mining is

developed enough to support fairly complex tasks in biomedicine.

From the perspective of chemical health risk assessment, the

development of a text mining tool could not be timelier. There is

wide-spread agreement on the need to improve the efficiency of this

task. While the majority of efforts focus on the long-term future (e.g.

the development of a novel system for toxicity testing), text mining

can help to improve the efficiency and thoroughness of risk

assessment already in the short to medium term future. Our tool is

aimed at assisting the first, time-consuming component of risk

assessment which is currently conducted largely manually: the

gathering and analysis of existing scientific data on the chemical in

question. For risk assessment under real-world conditions, the

retrieved and classified full articles will need to be examined in detail

by risk assessors. CRAB can support this process in several ways.

Since it classifies scientific literature according to the type, amount

and strength of the evidence it provides for risk assessment, it can

help assessors focus on articles which are likely to be the most

relevant starting points. Individual articles can be opened easily and

the different types of scientific data they contain can be highlighted,

supporting effective review of the scientific literature.

CRAB can be developed further in various ways. The taxonomy

can be extended to cover other types of health risks (e.g. allergy,

endocrine disruption, among many others) with a minimum of

effort: users of the tool can create a new sub-taxonomy for a

specific health risk when required and effectively develop and

extend the sub-taxonomy while using the tool for their work. After

re-training the classifier accordingly, the system can be be used to

support other important areas of chemical health risk assessment.

In addition, the tool could be improved in other ways. It could be

modified to distinguish between positive and negative evidence for a

particular risk or to distinguish between reported fact and

speculation. Risk assessment of groups of chemicals with similar

toxicological profiles is often discussed as a means to speed up the

process; the CRAB tool may facilitate the selection of chemicals to

be included in such groups and the selection of chemicals that may

have common effects of interest for cumulative risk assessment. The

literature search functionality can be extended to access other

relevant literature databases. The classification can be refined to

consider journal impact factors, citation frequencies, and cross

references, helping risk assessors to identify e.g. more prominent,

less important and incremental published studies, as well as studies

Figure 12. Distribution of classified abstracts over the two
main MOA classes; genotoxic and nongenotoxic, for 9
antifungal chemicals used as pesticides.
doi:10.1371/journal.pone.0033427.g012

Figure 13. Distribution of classified triazole abstracts over some selected MOA nodes.
doi:10.1371/journal.pone.0033427.g013
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forming clusters. The tool can also be extended to support analysis

of the scientific data and the subsequent writing of risk assessment

reports.

Clearly, further development is required before a fully ideal tool

designed to support literature gathering and analysis in chemical risk

assessment at large is available ‘‘off the shelf’’. However, the tool and

research we have presented in this paper illustrate the many ways in

which text mining could help to improve the efficiency and quality of

chemical risk assessment, as well as free risk assessors to focus on

what they are best at: expert judgement.
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26. Ó Séaghdha D, Copestake A (2008) Semantic classification with distributional

kernels. In: Proceedings of the 22nd International Conference on Computa-

tional Linguistics (COLING-08) Manchester, UK.

27. Apache OpenNLP. http://incubator.apache.org/opennlp. Accessed 2012

February, 17.

28. Wang H, Huang M, Ding S, Zhu X (2008) Exploiting and integrating rich

features for biological literature classification. BMC Bioinformatics 9: S4.

29. Leslie C, Eskin E, Noble WS (2002) The spectrum kernel: A string kernel for

SVM protein classification. In: Proceedings of the Pacific Symposium on

Biocomputing (PSB-02) Lihue, HI.

30. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines.

Software available at http://www.csie.ntu.edu.tw/̃cjlin/libsvm. Accessed 2012

February 17.

31. Chen YW, Lin CJ (2006) Combining SVMs with various feature selection

strategies. In: Guyon I, Gunn S, Nikravesh M, Zadeh L, editors, Feature

Extraction, Foundations and Applications, Berlin: Springer.

32. Cohen J (1960) A coefficient of agreement for nominal scales. Educational and

Psychological Measurement 20: 37–46.

33. Feinstein AR, Cicchetti DV (1990) High agreement but low Kappa: I The

problems of two paradoxes. Journal of Clinical Epidemiology 43: 543–549.

34. Cicchetti DV, Feinstein AR (1990) High agreement but low Kappa: II Resolving

the paradoxes. Journal of Clinical Epidemiology 43: 551–558.

35. Byrt T, Bishop J, Carlin JB (1993) Bias, prevalence and kappa. Journal of

Clinical Epidemiology 46: 423–429.

36. Dietterich TG (1998) Approximate statistical tests for comparing supervised

classification learning algorithms. Neural Computation 10: 1895–1923.

37. Boström C, Gerde P, Hanberg A, Jernström B, Johansson C, et al. (2002)

Cancer risk assessment, indicators, and guidelines for polycyclic aromatic

hydrocarbons in the ambient air. Environ Health Perspect 110: 451–488.

38. Jackson M, Stack H, Rice J, Waters M (2000) A review of the genetic and related

effects of 1,3-butadiene in rodents and humans. Mutat Res 463: 181–213.

39. Bouker K, Hilakivi-Clarke L (2000) Genistein: does it prevent or promote breast

cancer? Environ Health Perspect 108: 701–708.

40. Morgan K (1997) A brief review of formaldehyde carcinogenesis in relation to

rat nasal pathology and human health risk assessment. Toxicol Pathol 25:

291–307.

41. McGregor D, Partensky C, Wilbourn J, Rice J (1998) An IARC evaluation of

polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans as risk

factors in human carcinogenesis. Environ Health Perspect 106: 755–760.

42. Cohen S, Boobis A, Meek M, Preston R, McGregor D (2006) 4-aminobiphenyl

and DNA reactivity: case study within the context of the 2006 IPCS Human

Relevance Framework for analysis of a cancer mode of action for humans. Crit

Rev Toxicol 36: 803–819.

43. Kolman A, Chovanec M, Osterman-Golkar S (2002) Genotoxic effects of

ethylene oxide, propylene oxide and epichlorohydrin in humans: update review

(1990–2001). Mutat Res 512: 173–194.

44. EFSA Panel on Plant Protection Products, their Residues (PPR Panel) (2009)

Scientific Opinion on Risk Assessment for a Selected Group Pesticides from the

Triazole group to Test Possible Methodologies to Assess Cumulative Effects

from Exposure through Food from these Pesticides on Human Health.

European Food Safety Authority (EFSA). http://www.efsa.europa.eu/fr/

scdocs/doc/1167.pdf. Accessed 2012 February 17.

Text Mining for Cancer Risk Assessment

PLoS ONE | www.plosone.org 16 April 2012 | Volume 7 | Issue 4 | e33427


