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Abstract

The Wnt signaling pathway is implicated in major physiologic cellular functions, such as proliferation, migration, cell
fate specification, maintenance of pluripotency and induction of tumorigenicity. Proliferation and migration are
important responses of T-cells, which are major cellular targets of HIV infection. Using an informatics screen, we
identified a previously unsuspected interaction between HIV’s Nef protein and β-catenin, a key component of the Wnt
pathway. A segment in Nef contains identical amino acids at key positions and structurally mimics the β-catenin
binding sites on endogenous β-catenin ligands. The interaction between Nef and β-catenin was confirmed in vitro
and in a co-immunoprecipitation from HEK293 cells. Moreover, the introduction of Nef into HEK293 cells specifically
inhibited a Wnt pathway reporter.
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Introduction

Nef is an accessory protein encoded by the human (HIV-1
and HIV-2) and simian immunodeficiency (SIV) viruses and is
an essential mediator of viral pathogenicity [1,2]. This protein
helps maintain high viral loads and overcome host immune
defenses, thereby contributing to the progression of AIDS [2,3].
Patients infected with nef-deleted HIV-1 strains develop AIDS
symptoms much more slowly than those infected with standard
HIV strains [4,5], and experimental deletion within the SIV nef
gene reduces viral load, delays the onset of an AIDS-like
disease, and offers immune protection against infection with
pathogenic SIV in the rhesus macaque animal model of HIV
[6]. The molecular basis for these effects is unknown.

Nef modulates the cellular signaling network by interacting
with a plethora of host proteins, and it is perplexing in its
promiscuity. However, classifying these targets based on
function reveals that Nef associates mostly with proteins
involved in TCR signaling [7–9] and in trafficking of cell-surface
receptors such as MHC proteins and CD4 [10–18]. Down
modulation of membrane CD4, the HIV receptor, by Nef,
prevents super-infection [18] and increases the budding
efficiency of the HIV particle [19,20]. Moreover, downregulation
of MHC from the plasma membrane by Nef protects the
infected cells from killing by cytotoxic T lymphocytes[21]. These
functions of Nef are theorized to contribute to the pathogenesis
of HIV/AIDS.

β -catenin (β -cat)/Armadillo (arm), a component of plasma
membrane juxtaposed adherens junctions is a key regulator of
the evolutionarily conserved Wnt/wingless (wg) signaling
pathway [22]. Activation of the canonical Wnt pathway leads to
the stabilization of the cytoplasmic pool of β -catenin, which is
otherwise phosphorylated by glycogen synthase kinase-3 β
(GSK-3 β) and subsequently degraded by the ubiquitin-
proteosome pathway [23]. β-catenin is known to act as a
transcription factor by forming a complex with the LEF/TCF
(Lymphoid Enhancer Factor/TCell Factor) family of HMG-box
(high mobility group) transcription factors [24,25]. Upon Wnt
stimulation, stabilized β-catenin translocates to the nucleus,
where, together with LEF/TCF transcription factors, it activates
downstream target genes [26].

β-catenin has numerous effects on T-cell development but its
function in mature T-cells has only recently come to light.
Studies in primary human T-cells have shown that β-catenin
expression is upregulated rapidly after T-cell receptor (TCR)
stimulation [27]. Disruption of the β-catenin-TCF interaction via
ICAT expression impairs survival of thymocytes and activated
mature T-cells [28]. In model systems and cells, β-catenin is
known for its direct effect on cytoskeleton rearrangement, so it
is not surprising that recent work demonstrates its involvement
in T-cell extravasation in mature T-cells [29]. In this paper, we
tested the hypothesis that Nef is a ligand of β-catenin. We
show that Nef is structurally compatible with β-catenin, and that
the interaction takes place in vitro and in cells.
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Results

The sequence pattern corresponding to the three-
dimensional structural motif for β-catenin binding
identifies HIV-Nef as a potential β-catenin ligand

Inspection of several β-catenin co-crystal structures (pdb
code: 1g3j-complexed with TCF3 , 3oux-complexed with LEF1,
1i7w-complexed with E cadherin, 1v18-complexed with APC
20MER repeat, 1luj-complexed with ICAT and 1jpp-complexed
with APC 15MER repeat) reveals that all ligands vary in
structure [30–35]. However, a similar segment in all of these
ligands adopts a homologous extended backbone structure at
the center of their interface with β-catenin, with conformational
variability of the periphery (Figure 1A). Structure-based
alignment of the ligands (Figure 1B), focusing on the region
where they all adopt a similar structure (Figure 1A, lower
panel), was used to derive a sequence pattern (motif) for β-
catenin binding. The motif, in Prosite notation (i.e. http://
prosite.expasy.org/prosuser.html), is: [D]-[ESTV]-[LVMP]-[ILM]-
[RPVHAN]-[FY]-[KDASL]-[DYT]. This motif captures the
precise three-dimensional structural profile specific for the
central region of β-catenin binding. Notably, the first position of
the pattern is restricted to aspartate as this side chain is snugly
buried in a highly specific β-catenin surface pocket and no
substitutions are seen in any of the bound ligands. The same is
true for the sixth position where the phenylalanine or tyrosine
occupy a slot-like pocket restrictive for a benzene aromatic
ring. The motif was then used as an input for a MyHits “pattern
search” (http://myhits.isb-sib.ch/cgi-bin/pattern_search) [36] of
the SwissProt database for novel viral ligands of β-catenin.

The search specifically identified three potential β-catenin
ligands: Nef, MGF 360-16R (a putative African Swine Fever
Virus (ASFV) protein) and nucleocapsid protein
(NCAP_EBOSU) (Figure 1B; Data File S1). Intriguingly, both
Nef and the MGF 360 DNA region of ASFV are important for
efficient viral growth in the host [37,38], however the MGF 360
DNA region is simply an open reading frame and the existence
of a real, expressed protein is uncertain. We thus decided to
focus on the hypothesis that Nef is a previously unrecognized
β-catenin ligand.

Initial structural analysis of the specific segment in question
did not rule out the interaction. The Nef sequence
corresponding to the β-catenin motif (DSLLAYDY) is very
similar to the β-catenin binding sequence of E-cadherin
(DSLLVFDY) (Figure 1B). In addition, the HIV-1 Nef NMR
structures (pdb code: 2nef, [39]) reveal that the putative β-
catenin binding fragment is accessible on the surface of the
protein, albeit in a different conformation from that adopted by
the equivalent segment in E-cadherin bound to β-catenin
(Figure 2A). The NMR structures show that the β-catenin
binding fragment is located in a particularly flexible region,
adjacent to a flexible alpha helix (Figure 2A), suggesting that
there is no significant barrier to rearrangement of this segment
into the β-catenin binding conformation. Thus, the specific
segment of Nef predicted to interact with β-catenin is not
structurally incompatible with the ligand-binding site on β-
catenin.

If Nef is indeed a true ligand of β-catenin, the key amino
acids in the β-catenin motif should be conserved across
diverse viral strains. Alignment of endogenous β-catenin
ligands reveals that only D186 and F or Y at position 191 are
conserved among all the ligands: alanine scanning of APC,
TCF4 and E-cadherin showed that these key residues have the
strongest effect on β-catenin binding [40]. Thus, the most
sensitive motif for β-catenin binding is D-x-x-x-x-[FY] (This
differs from the most specific motif we used to detect the
interaction in the first place). This motif is conserved amongst
Nef proteins from diverse viral strains, however it is poorly
conserved in HIV subtypes A, C and D, while it is almost
universally present in subtype B strains (Table 1).

Nef peptides docked to β-catenin exploit the same
structural motifs as the known β-catenin ligands

The three-dimensional structural compatibility of Nef
peptides with the β-catenin ligand-binding site was tested more
stringently by computational molecular docking (ICM-DOCK;
Molsoft, LLC, La Jolla CA). The peptides RFDSRLAFHH and
FDSLLAYDY containing the β-catenin motif from NA7-Nef from
HIV-1 and Nef- HV2EH from HIV-2, respectively, were docked
to the molecular surface of the 3D structure of β-catenin. The
3D structure of β-catenin from the E-cadherin/β-catenin crystal
structure (pdb code 1i7w) was chosen as the receptor, since
Nef is similar in sequence to E-cadherin. Although the peptides
were completely unconstrained with respect to location and
conformation in the docking simulation, the Nef peptides
preferentially docked into β-catenin’s ligand binding groove in a
conformation very similar to E-cadherin with the lowest
calculated energy out of theoretically billions of alternative
conformations and alternative docking locations all over β-
catenin’s surface (Figure 2B). As the search was not biased to
this location on the structure, the docking results suggest that
this fragment of Nef has a strong and exclusive conformational
preference for the β-catenin ligand binding site, and that the
preference is for the same orientation and atomic contacts
observed in known β-catenin ligands. The probability of such
an occurrence by random chance is very low [41] even for a
sequence with similarity to β-catenin ligands. The contact areas
of Nef residues in the β-catenin binding motif upon docking to
β-catenin are summarized in Table S1.

Nef interacts with β-catenin in vitro
The interaction of wild-type Nef (WT-Nef) and wild-type β-

catenin was confirmed in-vitro by a pull-down assay using
purified recombinant proteins (Figure 3A). The observed
interaction does not appear to be due to non-specific binding to
beads or GST (Figure S1). While wild-type GST-Nef (WT-GST-
Nef) elutes together with β-catenin (Figure 3A, lane 1), the
D186A and F191A mutations abrogate the binding (Figure 3A,
lane 2 and 3). This suggests that Nef directly interacts with β-
catenin and that aspartic acid and phenylalanine, in positions
186 and 191 respectively, are hotspots of the interaction in
vitro, as they are for other β-catenin ligands.

HIV's Nef Interacts with ß-Catenin
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Figure 1.  β-catenin ligands and the identification of Nef as a novel ligand.  A. Upper panel: superimposition of known ligands
of β-catenin as bound to β-catenin. β-catenin is shown in white, TCF3 is shown in green, ICAT is shown in yellow, LEF is shown in
magenta, E-cadherin is shown in black, APC20 mer is shown in orange and APC15mer is shown in blue. Lower panel: same as the
upper panel, however, β-catenin is not displayed. The region where the ligands converge to the same conformation is marked with a
black line and titled “structural convergence” in the diagram. The two aspartates of TCF3 at the margins of the convergence are
shown in x-stick representation. This region was used as the structural alignment of the ligands for the purpose of deriving the motif
illustrated in panel B. B. Flow chart of the steps to identify Nef as a candidate β-catenin ligand. The chart begins with a structurally
determined multiple alignment that was used to derive the β-catenin binding pattern motif. The most important residues for binding
to β-catenin are colored in red. In grey, residues that were excluded from the motif as they don’t occupy the same position in 3D
bound to the receptor (arginine from ICAT and lysine from APC 15 mer). Next, a Prosite-style sequence pattern was constructed to
reflect the 3D structural pattern of compatibility of each residue at each specific location in the β-catenin ligand. For example,
position 4 in the central region exhibits an isoleucine in some ligands and a leucine or methionine in others in contact with a
hydrophobic patch on β-catenin. Thus, any of these three side chains may occupy this position and this portion of the pattern was
defined as “[ILM]” to reflect this characteristic. The derived pattern then served as an input for the “MyHits” website that identified
the above motif within the Nef, nucleocapsid and the MGF proteins.
doi: 10.1371/journal.pone.0077865.g001
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Figure 2.  Structure and sequence based evaluation of Nef.  A. Superimposition of all 40 NMR structures of Nef (pdb code 2nef).
The proposed β-catenin binding motif is colored blue. B. Docking of HIV1 and HIV2 Nef peptides (shown in cyan and magenta,
respectively) containing the motif to β-catenin binding (shown in white). Location of the β-catenin ligand, TCF3 (shown in green),
from the high-resolution crystallographic structure of the complex (pdb code: 1g3j).
doi: 10.1371/journal.pone.0077865.g002
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Interaction between β-catenin and Nef in HEK293 cells
We used co-immunoprecipitation (co-IP) experiments to

determine whether Nef and β-catenin interact in a cellular

Table 1. Percentage of Nef sequences containing the β-
catenin binding motif, D-x-x-x-x-[FY].

Virus SIV HIV-2 HIV-1 HIV-1 HIV-1 HIV-1
Subtype n/a n/a A1 B C D

Number of strains in LANL 165 39 184 1880 652 105

Percentage bearing D-x-x-x-x-
[FY]

60% 58.3% 19.8% 92.7% 2.6% 9.3%

Nef sequences from SIV, HIV2 and HIV1 subtypes A1-D were downloaded from
the HIV LANL database, with only one sequence per patient selected. The motif D-
x-x-x-x-[FY] is depicted in Prosite style (http://prosite.expasy.org/prosuser.html),
where D stands for Asp residue in first position (position 186 in Nef), followed by
any other four residues and the segment ends with either a Phe or a Tyr at position
191.
doi: 10.1371/journal.pone.0077865.t001

context. HEK293 cells with endogenous β-catenin, expressing
Nef via transfection, were lysed with mild detergent n-octyl
glucoside lysis buffer followed by incubation with anti-β-catenin
antibody. Co-IP of TCF4 and β-catenin serves as a positive
control, since TCF4 is a known ligand of β-catenin (Figure 3B,
lanes 2-5, second to top panel). Incubation with Protein A
beads and washing demonstrated that WT-Nef specifically
associated with β-catenin in cells (Figure 3B, lane 3). D186A-
Nef did not associate with β-catenin, and F191A-Nef appeared
at reduced levels (Figure 3B, lanes 4 and 5). When cells are
not transfected with Nef, the TCF4 interaction is detected and
Nef is not detected by western blot (Figure 3A, lane 2). IgG
binds neither β-catenin, TCF nor Nef (Figure 3A, lane 1). The
results demonstrate that endogenous β-catenin specifically co-
precipitates with the WT-Nef construct. Fractionating Nef
expressing HEK293 cells shows that WT-Nef is localized
almost entirely in the cytoplasm (Figure S2). We therefore
conclude that in HEK293 cells, the interaction we detected
occurs in the cytoplasm.

Figure 3.  Nef interacts with β-catenin.  A. Interaction of Nef and β-catenin in vitro. Purified recombinant WT-GST-Nef (or
indicated D186A/F191A mutants), His- β-catenin and nickel beads mixed in physiological buffer, washed and eluted (See Methods).
Top panel: immunoblot using mouse anti- β -catenin antibody (Ab) for detection. Middle panel: immunoblot using mouse anti-GST
Ab for detection of Nef. Bottom panel: immunoblot using mouse anti-GST Ab for detection of Nef in total E. coli expression extract
(input). This experiment was repeated three times and one representative immunoblot is shown here. B. Interaction of Nef and
endogenous β-catenin in cells. HEK293 cells expressing wild-type (WT), the indicated mutants of Nef or empty vector (EV) by
transfection are lysed and co-immunoprecipitated using a mouse anti- β-catenin Ab. Uppermost panel: immunoblot of
immunoprecipitate (IP) using mouse anti- β-catenin Ab for detection. 2nd to top panel: immunoblot of IP using anti-TCF4 Ab for
detection. 3rd to top panel: immunoblot of IP using mouse anti-Nef Ab for detection. Lowest panel: immunoblot of the total cell lysate
prior to IP (input) using mouse anti-Nef Ab showing level of Nef (or mutant Nef) expression. This experiment was repeated three
times and one representative immunoblot is shown here.
doi: 10.1371/journal.pone.0077865.g003
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Nef inhibits the Wnt signaling pathway in HEK293 cells
To determine the activity of Nef in the Wnt signaling

pathway, we measured its effect on the TopFlash plasmid,
which is a β-catenin responsive luciferase reporter containing
TCF-binding sites for TCF in human HEK293 cells. To verify
that the observed effect is indeed β-catenin dependent, the
effect of Nef on transcription from a FopFlash was assayed as
well. The FopFlash plasmid has mutations in the TCF binding
sites and therefore is not responsive to Wnt/ β-catenin
signaling. Transfection of Nef significantly inhibited TopFlash
reporter activity (P<0.00001, t-test), and the β-catenin motif
mutants restored reporter activity to near control levels (Figure
4A). FopFlash reporter activity was not significantly altered with
any of the Nef construct transfections, supporting the view that
the observed effect of Nef on reporter activity was β-catenin
dependent. Reporter activity was estimated to be inhibited by
about 40% in the HEK293 cells (Figure 4B).

Discussion

We report convergent structural, biochemical and cell
biological observations supporting the conclusion that HIV’s
Nef protein interacts with human β-catenin. A sequence near
the C-terminus of Nef is similar to the central β-catenin binding
motif in diverse β-catenin ligands. Isolated peptide structures
exhibiting this sequence and its variations in Nef have a high
degree of 3D structural compatibility with, and indeed a
biophysical preference for, the molecular surface pocket on β-
catenin, in which known β-catenin ligands bind (shown by

unconstrained computational molecular docking). The
distribution of the β-catenin binding motif in Nef across diverse
HIV-1, SIV and HIV-2 strains suggests conservation of the
interaction site. The interaction is specifically detected in vitro
and in HEK293 cells. Finally, the interaction is functionally
significant in HEK293 cells: the endogenous Wnt signaling
pathway in this human cell line is affected by Nef and this
influence disappears when Nef positions 186 and 191, which
mirror key residues in known β-catenin ligands, are mutated.

The 3D structural and informatics results strongly suggest
that the interaction is relevant for HIV/AIDS, as the motif
appears across HIV strains, suggesting functional conservation
in the virus. However, the HEK293 cell line in which we
demonstrated the cellular activity is not directly relevant to HIV/
AIDS. Nevertheless, endogenous human β-catenin was bound
in these cells. This fact, along with the structural results,
increases the probability that Nef may play a role in AIDS
pathogenesis.

From a cell biology point of view, the probability that Nef
interacts with β-catenin leads to intriguing speculation that β-
catenin-mediated functions in T-cells and macrophages are
involved in HIV pathophysiology. Nef is already known to be
associated with T-cell chemotaxis, which is the driving force of
T-cell extravasation to infected tissues [42–45]. Interestingly, β-
catenin is involved directly in the physical process of T-cell
extravasation: stabilized β-catenin protein in T-cells directly
targets matrix metalloproteinase (MMP) promoters through
tandem TCF sites and MMP expression augments T-cell
transmigration [29]. In addition, β-catenin stabilization in T-cells

Figure 4.  Nef inhibits Tcf –luciferase reporter activity.  A. Promoter negative control: HEK293 cells were transfected with the
TopFlash or the FopFlash reporters and with 50 ng Nef encoding plasmid (WT-Nef, the indicated mutants or empty vector) and
incubated with Wnt-conditioned media (Wnt-CM) or control media that contain no Wnt. The TopFlash plasmid has TCF binding sites
that are mutated in the FopFlash plasmid. The sites in FopFlash do not interact with TCF and therefore FopFlash serves as a
negative control. Renilla luciferase was used for normalization purposes. Data shown here represent two experiments, each done in
triplicate. WT-Nef significantly (P<0.00001, t-test) inhibits TCF reporter activity as compared to empty vector and also compared to
the β-catenin motif mutants, D186A-Nef and F191A-Nef (P<0.00001, t-test) when co-transfected with TopFlash. B. The firefly/renilla
values from panel A of this figure were used to calculate the TopFlash/FopFlash ratios of each condition. The resultant TopFlash/
FopFlash ratios were then used to calculate the percent inhibition by WT-Nef and the indicated mutants on transcription in cells
stimulated with Wnt.
doi: 10.1371/journal.pone.0077865.g004
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enhanced survival of CD4+/CD25+ T-regulatory cells (Treg)
while CD4+/CD25- T-non-regulatory cells (Tnon-reg) became
anergic and proliferated poorly in response to CD3 antibody
stimulus [46]. A mirroring pattern of immune activation appears
to occur during HIV/SIV infection [47,48]. Finally, recent studies
show that β-catenin signaling programs dendritic cells in the
gut into a tolerogenic state, limiting the inflammatory response
there [49]. The gut is the principal site where HIV-1 replicates
[50–55].

If it is physiologically relevant, the β-catenin interaction site is
predicted by Table 1 to be highly prevalent in HIV subtype B,
SIV and HIV-2, while it is nearly absent in the other HIV
subtypes. Although differences in anti-retroviral treatment
confound analysis, there appear to be phenotypic differences
between B and non-B HIV subtypes [56,57]. There are clear
phenotypic differences between HIV-1 and HIV-2, as well as
between SIV and HIV. Our findings raise the possibility that
Nef’s interaction with β-catenin may contribute to phenotypic
differences observed between B and non-B subtypes in HIV-1,
and to the phenotypic differences between HIV-1, HIV-2 and
SIV. If this were true, the exact contributions and specific
phenotypes in question would require further investigation.

How might Nef influence β-catenin signaling in vivo? At first
approximation, our results suggest that Nef can compete for
the same site occupied by TCF/LEF on β-catenin, thereby
inhibiting TCF-based transcription (Figure 4). However, Nef is
primarily (although not exclusively) localized to the cytoplasm
[58,59], while the TCF- β-catenin complex is active in the
nucleus of cells [24–26]. This raises the possibility, even
though we have observed functional inhibition of TCF-based
transcription, that Nef could affect β-catenin stabilization in the
cytoplasm, compete with E-cadherin at cell-cell junctions [60]
or even compete with ICAT [61] in the nucleus resulting in
increased TCF-based transcription in T-cells or macrophages
(which may be fundamentally physiologically different from the
HEK293 cells used in this study). Fractionation studies
performed in our lab in HEK293 cells (Figure S2) show that in
this particular cell line, Nef localization is limited to the
cytoplasm with only traces in the nucleus. Nevertheless, the
predominant in vivo functional effect, if any, of Nef on T-cells
and macrophages infected with HIV could diverge significantly
from our observations in HEK293 cells.

Minor informatics improvements enabled our detection of the
Nef-β-catenin interaction. Searching for new ligands to β-
catenin with a motif, rather than using standard sequence-
sequence alignment methods enabled us to identify new
ligands. In 1993, Shugars et al. identified four Nef-defining
sequences, referred to as “blocks”. The blocks were aligned
with host proteins in order to shed light on the function of Nef.
The C terminal block, overlapping with the β-catenin binding
motif (Figure 1B), did not align with host proteins and its
function remained unclear [62]. The use of a motif in contrast to
sequence-sequence alignment is therefore more productive
and this aligns with work done by others [63]. In addition, 3D
structural information is encapsulated within our motif, which
further increases the sensitivity of the motif.

Structurally, the match between Nef and β-catenin is very
strong, with the local sequence of Nef at the location of the β-

catenin motif easily adopting, and actually preferring, a
structural conformation that fills the key Asp and Phe/Tyr
restricted pockets on β-catenin (Figure 1). In addition, although
the major hotspot of the interaction was determined to be this
small segment of Nef at 186-191, Nef binds a variety of
armadillo repeat proteins as a whole domain [10,11,64–70].
Accordingly, there may be other distributed contact points on
the Nef and concave β-catenin surfaces that contribute to the
interaction. Indeed, a nuclear receptor [71] is known to bind to
β-catenin as a whole domain within the concave surface of its
armadillo repeats. In order to visualize whether such an
interaction could be consistent with our findings, we built a
theoretical model of the whole Nef domain bound to β-catenin
via the segment at 186-191. Our model shows that the C-
terminal tail of Nef after position 185 must detach from the core
Nef domain and unfold in order to assume the extended
conformation predicted by our studies and make the key β-
catenin interactions (Figure 5A). The remaining core domain
almost perfectly fills the volume of the concave surface of β-
catenin. A highly flexible loop in Nef that is important for its
association with adaptor proteins (marked with an arrow in
Figure 5B) does not clash with β-catenin in our model. Figure
5C reveals that, if Nef were to bind to β-catenin in this manner,
it would not interfere with Nef dimerization or with other Nef
binding sites such as that for the SH3 domain from Fyn.

The Wnt pathway is an intrinsic molecular mechanism to limit
HIV replication in PBMC’s (peripheral blood mononuclear cells)
and in astrocytes [72,73]. It was shown that HIV replication is
repressed when TCF-4 transcription factor binds the HIV long
terminal repeat (LTR)[73]. At least four such TCF-4 binding
sites have been identified in the LTR. The -143 site has
garnered attention since it (i) has 100 % homology to the
TCF-4 core (5′-(A/T)(A/T)CAAAG-3′), (ii) it is present in
approximately one-third of 500 HIV LTR sequences from the
the Los Alamos gene bank, (iii) it has the highest affinity for
TCF-4 (iv) SMAR1, a nuclear matrix binding protein, was
shown to complex with β-catenin/TCF-4 at the -143 site to
facilitate transcriptional repression from HIV promoters[74–76]}.
In addition, it was shown that expression of TCF-4 in human
astrocytic cells decreased the basal and Tat-mediated
transcription of the HIV-1 LTR [77]. TCF-4/β-catenin repression
of basal LTR activity likely prevents Tat from reaching a
threshold level which would allow it to tether on the TAR region
of the LTR in association with a positive elongation complex
(pTEFb) to accelerate the rate and efficiency of HIV
transcription[75].

TCF-4 and β-catenin regulate the expression of other
transcription factors relevant to HIV transcription. β-catenin and
TCF-4 inhibit C/EBP β/δ tethering on the HIV LTR, suggesting
that β-catenin and TCF-4 cooperate in this repression. TCF-4,
independent of β-catenin, also negatively regulates NFκB
tethering on the LTR [78]. In astrocytes, NFκB suppression is
mediated by TCF-4 without the involvement of β-catenin while
in other cells, β-catenin suppresses NFκB activity [79]. TCF-4
suppression of NFκB may be mediated by direct interaction
between TCF-4 and NFκB or an indirect effect on upstream
regulators of NFκB. Both C/EBP and NFκB are inducers of HIV
promoter activity and thus β-catenin/TCF-4 inhibition of these
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Figure 5.  Model of Nef in situ on β-catenin.  A. The C-
terminal tail of Nef after position 185 is rearranged from its
unbound position into the conformation seen in β-catenin
ligands. The curved arrow shows the hypothesized trajectory of
the rearrangement. The backbone of un-rearranged Nef is
shown in red ribbon, re-arranged Nef in magenta, β-catenin in
grey, bound E-cadherin in yellow. The key hotspots (Asp674/
Phe679 of E-cadherin and Asp186/Phe191 of Nef) are
displayed in stick depiction. B. A different view of the complex
described in 5A. The black arrow points to the loop in Nef that
is important for binding to adaptor proteins, MHC proteins, and
is also important in sorting these proteins into clathrin-coated
pits ([10,15,85,86]). C. The β-catenin bound form of Nef
(magenta) is superimposed with a dimeric Nef conformation
(green) bound to the Fyn SH3 domain (orange; pdb 1avz, [87]).
doi: 10.1371/journal.pone.0077865.g005

inducers could also contribute to the overall mechanism by
which the Wnt/β-catenin pathway represses HIV transcription
and replication.

These data correlate with our reporter assay results in which
Nef inhibits transcription from a luciferase reporter with multiple
TCF binding sites. Our results suggest that Nef prevents TCF-4
from repressing HIV replication via its action on β-catenin.
Extrapolating our findings from HEK293 cells to immune cells
in vivo, it is possible, though speculative, that the Wnt pathway
may mediate the lowered viral load and lack of progression
associated with Nef deletion [1,4,5,80].

We have detected a previously unrecognized interaction
between the HIV-1 protein Nef and human β-catenin, part of
the Wnt signaling pathway. This finding potentially implicates β-
catenin and the Wnt signaling pathway in T-cell transmigration
defects and immune activation phenomena observed during
the development of AIDS from HIV infection.

Methods

β-catenin binding pattern design
β-catenin co-crystal structures (pdb code: 1g3j, 3oux, 1i7w,

1v18, 1luj and 1jpp) [30–35] were superimposed using ICM
[81]. Ligand sequences were then aligned based on the
position of each residue in 3D space according to the above
crystal structures. The pattern: [D]-[ESTV]-[LV]-[ILM]-[RSVHA]-
[FY]-[KDAS]-[DYTS], derived from the structure based
alignment, serves as a regular expression that restricts the
acceptable amino acids for a given position, listing them
between square parentheses '[ ]'. For example: [ESTV] stands
for glutamic acid, serine, threonine or valine in the indicated
position. The sequence pattern was then used as an input for
the “pattern search” service that is integrated in the MyHits
website the (http://myhits.isb-sib.ch/cgi-bin/pattern_search) to
identify new β-catenin ligands within the SwissProt database,
while restraining the taxonomic range to Viruses [taxid: 10239]
[36].

Nef sequence analysis
Nef sequences from SIV, HIV2 and HIV1 subtypes were

downloaded from the HIV Sequence Alignment tool
incorporated in the HIV LANL database, with only one
sequence per patient selected (http://www.hiv.lanl.gov/content/
sequence/NEWALIGN/align.html). The percentage of Nef
sequences carrying the D-x-x-x-x-[FY] motif were calculated
with a custom Perl script (available upon request from the
authors).

Docking
Crystal structures of the ARM repeat of β-catenin in

complex with E-cadherin (pdb code: 11i7w) were used for the
docking simulation. Hydrogen atoms were added to the crystal
structure and the structure was then converted into an
internal coordinate representation according to the ICM method
[82]. Full-atom models of the peptides “RFDSRLAFHH” and
“FDSLLAYDY” were built in the same
internal coordinates. The peptide/β-catenin pairs in the set
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were docked using the Biased-Probability Monte Carlo
conformational search algorithm to search all of the
conformations of the full-atom model of the peptide within the
space of grid potential maps calculated from the β-catenin
receptor structure coordinates as implemented in the ICM
software [83].  Van der Waals, electrostatics, entropy and
hydrogen bonding energy terms were evaluated during the
search.  

Nef protein purification
Escherichia coli BL21 (DE3) harboring pGEX-4T-2-NEF

(NA7, SwissProt accession: Q306M3) (a gift from Prof. Steven
Burakoff, Mount Sinai School of Medicine) were grown in LB
medium containing 100 μg/ml ampicillin at 18 °C. At the
exponential phase of growth (OD600=0.6), isopropyl- β -
Dthiogalactopyranoside (IPTG) was added to the culture
medium at a final concentration of 0.8 mM. After an additional
12 hours of culture, cells were harvested by centrifugation
(4200 rpm for 15 minutes). The bacterial pellet was suspended
in lysis buffer (300mM NaCl, 50mM TrisHcl pH8, 10% glycerol,
protease inhibitors, 1mM PMSF, 2M urea, 1% triton, 5mM DTT,
1mM EDTA), sonicated on ice and centrifuged at 4 °C, 13,200
rpm for an additional hour. The supernatant was incubated for
1.5 hours with glutathione beads. The beads were washed
three times with wash buffer (PBS supplemented with 200mM
NaCl, 50mM TrisHcl pH8, 10% glycerol, 1mM PMSF, 2M urea,
1% triton,5mM DTT, 1mM EDTA) and an additional fourth wash
(250 mM NaCl, 25mM TrisHcl pH8, 10% glycerol, 1mM PMSF,
2M urea,1% triton, 0.5M urea, 20mM β-mercaptoethanol). The
beads were eluted with 50mM glutathione buffer (250 mM
NaCl, 25mM TrisHcl pH8, 10% glycerol, 1mM PMSF, 2M urea,
1% triton, 0.5M urea, 20mM β-mercaptoethanol, 10mM
imidazole).

His-tagged β-catenin protein purification
Escherichia coli BL21 (DE3) harboring pExHTB-β-catenin

(kindly provided by Prof. Bill Weiss, Stanford University) were
grown and induced as described above. The cell paste was
then suspended in lysis buffer (1% triton, 300mM NaCl, 50mM
TrisHcl pH8, 10% glycerol, EDTA free protease inhibitors, 1mM
PMSF, 15Mm imidazole, 20mM β-mercaptoethanol), followed
by sonication on ice and centrifuged at 4 °C, 13,200 rpm for an
additional hour. The supernatant was incubated for 1.5 hours
with Ni beads. The beads were washed three times with wash
buffer (250mM NaCl, 50mM TrisHcl pH8, 10% glycerol, 1mM
PMSF, 1% triton, 20mM β-mercaptoethanol, 10mM imidazole)
and an additional fourth wash (300mM NaCl, 50mM TrisHcl
pH8, 10% glycerol, 1mM PMSF, 1% triton, 20mM β-
mercaptoethanol, 10mM imidazole). For the purpose of the pull
down assay, β-catenin was not eluted off the Ni beads.

In-vitro binding assay
Purified GST-Nef was added to β-catenin that was

immobilized on Ni beads as described above. The proteins
were incubated together for 2 hours and washed three times
with wash buffer (250mM NaCl, 25mM TrisHcl pH8, 1%
glycerol, 1mM PMSF, 1% triton, 15mM β-mercaptoethanol,
10mM imidazole) and a fourth wash (300mM NaCl, 25mM

TrisHcl pH8, 1% glycerol, 1mM PMSF, 1% triton, 15mM β-
mercaptoethanol, 10mM imidazole). Beads were eluted with
250mM NaCl, 25mM TrisHcl pH8, 1% glycerol, 1mM PMSF,
1% triton, 15mM β-mercaptoethanol, 600mM imidazole) for 1h.
Protein complexes bound to the beads were eluted and
denatured by the addition of SDS. The samples were then
loaded on a 10% SDS denaturing gel and transferred overnight
into a nitrocellulose membrane. Proteins were detected by a
western blot. β-catenin was detected by using a monoclonal
mouse antibody (Sigma, clone 15B8). GST-Nef was detected
by using a rabbit polyclonal rabbit anti GST antibody (Santa-
Cruz, sc-8334). Goat peroxidase-conjugated anti-rabbit or anti-
mouse antibodies (1:1000, R&D Systems) were used and
binding was detected by enhanced chemiluminescence (ECL,
Pierce). The experiment was repeated three times and a
representative blot is shown in Figure 3A.

Cell Culture
HEK293 cells were cultured in Dulbecco’s Minimal Essential

Medium (Invitrogen), supplemented with 10% fetal bovine
serum and sodium pyruvate. Cells were incubated in a 37°C
incubator in an atmosphere of 5% CO2.

Co-immunoprecipitation assay
Expression vectors encoding WT-Nef, D186A-Nef and

F191A-Nef were transfected into 293 cells in 10cm plate with
Effectene (Qiagen). The expression vector was obtained
through the NIH AIDS Research and Reference Reagent
program from Drs. Yingying Li, Feng Gao, and Beatrice H.
Hahn (Cat# 6173). Cells were incubated for 16-18 hours post-
transfection, washed 4 times with cold phosphate buffered
saline (PBS), lysed with 1ml lysis buffer (180mM NaCl, 50mM
TrisHcl pH7.5, 1mM PMSF, 0.5% n-Octylglucoside (roche),
1mM Na3VO4, 5mM EDTA, 1mM NaF, protease inhibitor) and
put on ice for 2 hours. Cell suspensions were centrifuged for 10
minutes at 13,200 rpm, and the supernatants were incubated
with monoclonal anti-β-catenin antibody (sigma, monoclonal
clone 15B8) or with normal mouse IgG (Santa-Cruz). After
16-20 hours, 25 μl of protein A/G beads (Santa-Cruz) were
added to the antibody-cell suspension solution for an additional
2 hours. Beads were washed with wash buffer (220mM NaCl,
50mM TrisHcl pH7.5, 1mM PMSF, 0.5% n-octylglucoside) four
times by inverting the tubes three times followed by 5 minute
incubation on ice and another three washes. 100μl of 3X
sample buffer was added to beads and incubated on ice for 1.5
hours. Beads were boiled for 5 minutes and supernatants were
resolved on a 12% acrylamide gel by electrophoresis at 90V.
Gels were presoaked in transfer buffer (Tris, Glycine, 0.015%
SDS, 20% Methanol) for 30 minutes at 4 degrees C and then
transferred to nitrocellulose membranes (30V, 16 hours) using
a transfer cell (Bio-Rad).

Immunoblotting
Nitrocellulose membranes were blocked with 5% fat-free

dried milk in TBST (50 mM TrisHcl, pH 7.4, 150 mM NaCl,
0.1% Tween 20) for one hour at room temperature (RT).
Membranes were incubated with primary antibody (monoclonal
mouse β-catenin antibody obtained through sigma #C7207,
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TCF4 antibody obtained through Millipore #05-511) diluted in
2% milk in TBST (1:1000 dilution) for one hour at RT, followed
by three washes with TBST for 10 minutes each. Secondary
HRP antibodies (R&D) were then added (1:1000 dilution) one
hour at RT with gentle agitation on a rocking plate. The signal
was detected using ECL reagents (Pierce).

ONE-HOUR IP-Western Kit (Genscript) that specifically
blocks light and heavy chain contamination in IP experiments
was used to detect Nef. Nef antibody #1539 (obtained through
the NIH AIDS Research and Reference program, Division of
AIDS, NIAID, NIH from Dr. Kai Krohn and Dr. Vladimir Ovod
[84]) was used in combination with this kit. The co-
immunoprecipitation experiment was repeated three times and
a representative blot is shown in Figure 3B.

Luciferase assay
293 cells were transfected with 15ng TopFlash or FopFlash,

5ng CMV-Renilla and with either empty vector or 50ng of
codon-optimized WT-Nef, or Nef mutants. The transfection mix
was first added to each well in the 96-well plate and only then
293 cells were added to the plate. The FopFlash plasmid
contains TCF binding sites which are mutated in the FopFlash
plasmid. Transcription from this reporter plasmid is activated
when β-catenin enters the nucleus and binds TCF. The TCF/β-
catenin complex then binds to the TCF binding sites on the
reporter to initiate transcription of Firefly luciferase. Cells were
treated with Wnt-conditioned media to activate the Wnt
pathway. 5 hours post transfection, cells were replenished with
fresh Wnt-conditioned media for an additional 10 hours. The
assay was performed by using the Promega Dual-Luciferase®
Reporter Assay System. It is important to note that that WT-Nef
and the two mutants affect Renilla’s trancription levels to the
same degree (Figure 4B; Data File S2).

Supporting Information

Data File S1.  The file documents the output of the “pattern
search” tool implemented in the MyHits website (http://
myhits.isb-sib.ch/cgi-bin/pattern_search). The β-catenin binding
motif is [D]-[ESTV]-[LVMP]-[ILM]-[RPVHAN]-[FY]-[KDASL]-
[DYT] was used as an input to search for viral proteins in the
SwissProt database containing the motif.
(PDF)

Data File S2.  Row data for luciferase assay in which 293
cells were transfected with 15ng TopFlash or FopFlash,
5ng CMV-Renilla and with either empty vector or 50ng of
codon-optimized WT-Nef, or Nef mutants.

(XLS)

Figure S1.  Coomasie Blue staining of three different pull
down control experiments. A. Pull down experiments of His-
β-catenin and WT-Nef. “w” stands for washing step and “EL”
stands for elution B. pull down experiment of His-β-catenin and
GST C. Incubation of WT-Nef-GST and Ni beads.
(TIF)

Figure S2.  Cytoplasmic and nuclear fractionation of
HEK293 cells transfected with different amounts of WT-
Nef. HEK293 cells were plated in a 10cm dish and transfected
24h later with an empty vector or WT-Nef encoding plasmid up
to 2ng. The cells were lysed 15 hours post transfection. The
nucleus (lanes 1-5) and cytoplasm (lanes 6-10) were extracted
using the NE-PER kit by Thermo-Scientific. The cytoplasmic
and nuclear fractions were blotted with anti-tubulin, a
cytoplasmic marker and anti- Histone H1, a nuclear marker, in
order to assess the purity of the cytoplasmic and nuclear
lysates. The lysates were also blotted with anti-actin antibody
as a loading control. Uppermost panel: immunoblot of
endogenous β-catenin using mouse anti- β-catenin Ab for
detection. 2nd to top panel: immunoblot of different amounts of
transfected WT-Nef (0-2ng) using mouse anti-Nef Ab for
detection. 3rd to top panel: immunoblot of alpha-tublin using
anti-alpha tubulin Ab for detection. Lowest panel: immunoblot
of actin using anti-pan-actin for detection.
(TIF)

Table S1.  Contact areas of Nef residues in the β-catenin
binding motif upon docking to β-catenin.
(DOC)
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