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Abstract

Cancer genomes frequently contain somatic copy number alterations (SCNA) that can significantly perturb the expression
level of affected genes and thus disrupt pathways controlling normal growth. In melanoma, many studies have focussed on
the copy number and gene expression levels of the BRAF, PTEN and MITF genes, but little has been done to identify new
genes using these parameters at the genome-wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have
identified SCNA affecting gene expression (‘SCNA-genes’) in seven human metastatic melanoma cell lines. We showed that
the combination of these techniques is useful to identify candidate genes potentially involved in tumorigenesis. Since few
of these alterations were recurrent across our samples, we used a protein network-guided approach to determine whether
any pathways were enriched in SCNA-genes in one or more samples. From this unbiased genome-wide analysis, we
identified 28 significantly enriched pathway modules. Comparison with two large, independent melanoma SCNA datasets
showed less than 10% overlap at the individual gene level, but network-guided analysis revealed 66% shared pathways,
including all but three of the pathways identified in our data. Frequently altered pathways included WNT, cadherin
signalling, angiogenesis and melanogenesis. Additionally, our results emphasize the potential of the EPHA3 and FRS2 gene
products, involved in angiogenesis and migration, as possible therapeutic targets in melanoma. Our study demonstrates the
utility of network-guided approaches, for both large and small datasets, to identify pathways recurrently perturbed in
cancer.
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Introduction

Somatic copy number alterations (SCNA) are a recurrent

characteristic of malignant cancers [1,2,3]. The amplification and

subsequent over-expression or, conversely, deletion and loss of

expression of key regulators of cell proliferation, senescence or

death have been shown in many cases to contribute significantly to

the progression from the normal to the malignant state [4,5,6,7].

Therefore, the discovery and characterization of chromosomal

regions involved in SCNA and of the genes encoded in them has

been a crucial contributor to our understanding of the molecular

mechanisms of carcinogenesis.

The methods used to detect and characterize SCNA have

evolved significantly over the last decades. Initial cytogenetic

observations have been supplemented with Southern blots and

quantitative PCR. Almost twenty years ago, the availability of

BAC clones delineating a tiling path through the entire human

genome made it possible to detect SCNA in a genome-wide

fashion, but with limited resolution [8]. More recently, oligonu-

cleotide-based arrays have enabled comparative genome hybrid-

izations (CGH) at high resolution, and CGH has become the

method of choice to detect copy-number variations [9,10,11]. A

recent SNP-based survey [1] of 3,131 copy-number profiles

derived from over 26 different types of cancer has provided a

dramatic illustration of the power of high-throughput techniques

in distinguishing random alterations in the genome from those that

may have a direct impact on tumorigenesis.

Genomic alterations in many tumors, especially at late stages in

their development, are so extensive that the copy-number status of

individual genes or chromosomal regions can vary over a very

wide range of values. A mixture of chromosomal rearrangements

and focal expansions can create genomic landscapes that are very
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difficult to analyze using standard CGH techniques. Moreover, the

exact boundaries of SCNA or the expression status of the genes

encoded within them are usually not known, precluding a

thorough assessment of their impact on the phenotype of the

cancer cells. It has recently been proposed that SNP arrays may be

better suited for the determination of copy number states in tumor

samples because the analysis of data derived from such arrays can

make use of allelic imbalance information in addition to

hybridization intensity [12].

In the present study, we analyzed the genome-wide copy-

number status of seven highly aneuploid metastatic melanoma cell

lines and determined the expression of their genes using a

sequencing-based approach. We show that a combination of SNP-

based and CGH arrays is necessary to obtain a reliable estimate of

the true copy-number status of the entire genome in the face of

extensive genomic instability, and that the combination of copy-

number and expression status provides powerful clues as to the

possible role of genes encoded within SCNA in tumorigenesis.

Moreover, we show that a protein-based network-guided analysis

of SCNA-affected genes with altered expression in our data and

two published datasets [13,14] identifies pathways commonly

altered in melanoma.

Results

CGH and SNP arrays are required to comprehensively
document somatic copy-number alterations in
metastatic melanoma cell lines

We analyzed seven low-passage melanoma cell lines that were

established from metastases (see Table 1) together with matched

controls from the same patients (see Materials and Methods).

Karyotyping of the melanoma cell lines revealed extreme levels of

aneuploidy. For example, LAU-Me280, the most extensively

deleted line, had a per cell content of 34 to 42 chromosomes

(median: 40), whereas LAU-Me275, one of the most amplified

melanomas, harbored 68 to 81 chromosomes (median 73.5) (see

Fig. 1). Additionally, the presence of many unassigned chromo-

somal fragments (markers) made it difficult to determine the true

level of aneuploidy.

In initial CGH (Agilent 244k) experiments we observed that in

LAU-Me275, and other highly hyperploid cell lines, the

hybridization ratios between cancer cells and matched controls

did not reflect the chromosome-wide aberrations observed in the

karyotypes. For example tetraploid regions were measured as

triploid or less by the CGH arrays (see Fig. S1). We considered

whether this was due to the normalization protocol and

subsequent segmentation analysis. Using technical replicates of

LAU-Me275 DNA, we tested three independent normalization

schemes, two of which were specifically developed for cancer

genome analysis (see Materials and Methods) and found that the

methodology proposed by Chen and colleagues [15] was the most

reproducible (Spearman correlation 0.96; see Fig. S2). We then

partitioned the genome into regions reflecting copy number

changes and assigned copy number using two independent

classification methods (see Materials and Methods). Since neither

of these classification methods gave entirely satisfactory results (see

Fig. S4 and Methods S1), we developed a Gaussian Mixture

Model (GMM) approach that was highly reproducible based on a

technical replicate analysis (Spearman correlation 0.9).

The GMM method found only 42 regions in the LAU-Me275

genome that were amplified (CN$4; see Table 2). This number

was less than expected based on the karyotype analysis, which

documented a high number of arm-level chromosome amplifica-

tions (see Fig. 1). Thus, while CGH-based methods are well

adapted to document differences in copy number status between

the genomes of normal cells derived from different individuals, our

results clearly show that they are inadequate to deal with the large-

scale rearrangements and amplifications typical of hyperploid

cancer cells. The most likely reason is that the total DNA content

of cancer cells is too different from that of normal cells to allow a

robust experimental normalization. Given this limitation, we asked

whether SNP arrays might be better suited to detect chromosome-

wide changes in a highly amplified genome.

We hybridized DNA from LAU-Me275 to Illumina 1M SNP

arrays and analyzed the signals using the OverUnder algorithm

[16], which uses minor allele frequencies in heterozygous loci to

improve copy number estimation. These results correlated well

(Spearman correlation 0.77) with a technical replicate analyzed on

the Affymetrix SNP platform (see Fig. S5C and S5D), and

indicated that 18,251 genes in the LAU-Me275 genome had a

copy number of at least four (see Table 2). Within this group, 132

genes had undergone focal amplifications of at least 10-fold. These

SNP-based results were more consistent with the karyotype

observations. For example, CGH had predicted two copies of

chromosome 7p (Chr7p) and three copies of Chr7q (see Fig. 2),

while the SNP results indicated three and five copies, respectively

(see Fig. 2 and 3), which was more consistent with the cytogenetic

data (see Fig. 1).

Therefore, based on our findings with LAU-Me275, we

determined the SCNA in the six other melanoma cell lines using

both CGH (Agilent 244k) and SNP (Illumina 1M) array platforms.

Identification of genes within amplifications or deletions was

determined as described in Materials and Methods, and the

number of SCNA for each cell line is given in Table 2. In all cases

CGH predicted more deletions than did SNP arrays, agreeing with

our initial observations using LAU-Me275. Also, with the

Table 1. Melanoma cell lines.

Melanoma Site BRAF mutation Number of chromosomes (karyotype)

LAU-Me280.R.LN Lymph node G593M, L597R 34–42

LAU-Me246.M1 Skin V600E 45–82

LAU-T618A Skin wt but NRAS mutation (Q61R) 55–71

LAU-T50B Skin V600E 65–71

LAU-T149D Visceral V600E 68–81

LAU-Me275 Lymph node V600E 68–81

LAU-Me235 Skin K601E 73–103

doi:10.1371/journal.pone.0018369.t001

SCNA and Gene Expression in Metastatic Melanoma
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exception of the LAU-Me280 cell line, amplifications were better

predicted by SNP arrays. This bias is evident in a graphical

representation of the intersection between CGH and SNP

predictions (see Fig. S7) and with CGH/SNP genome-wide copy

number profiles (see Fig. S8). These results confirmed our

conclusion that CGH is more suitable for detecting deletions

while SNP arrays are better for identifying amplifications.

Few SCNA-genes are recurrent in different melanoma cell
lines

A potential problem with SCNA studies performed in isolation

is that they cannot assess the expression status of the genes

contained within the altered genomic regions. Amplified genes are

not necessarily highly expressed, and the exact boundaries of

deletions may or may not encompass a gene of interest. We

reasoned that the combination of precise copy number determi-

nation and gene expression measurement would allow us to

highlight with much higher confidence those genes whose

expression is affected by SCNA (SCNA-genes) in the melanoma

cell lines. We therefore analyzed gene expression in each of the

melanoma cell lines by RNA-seq using the Roche/454 pyrose-

quencing method. Additionally, we performed RNA-seq on a pool

of epidermal melanocytes to determine a reference level of

expression for each gene in normal melanocytic cells (see Materials

and Methods).

We first looked for genes within focal amplifications with at least

two-fold over-expression relative to the reference melanocytes (see

Table S1). Only KIAA0090, a protein coding gene of unknown

function not previously associated with cancer, was affected in

three melanomas (see Table S2). A further 56 genes were altered

in two melanomas, but the only known cancer-related gene was

MDM2, an oncogene previously demonstrated to be amplified in

sarcoma, glioma, colorectal and other cancers including melano-

ma [5,17]. In LAU-Me275, MDM2 was 3.9-fold over-expressed

relative to melanocytes and had a copy number greater than ten

(as predicted by SNP array). By contrast, in LAU-T50B, MDM2

was predicted by SNP array to be diploid (CN = 2), and by CGH

to be duplicated (CN = 3). This potential difference between these

cell lines is intriguing because they were derived from metastases

surgically removed from the same patient at a 12 year interval. We

Table 2. Number of genes affected by SCNA in seven melanoma cell lines.

CGH arrays LAU-Me280 LAU-Me246 LAU-T618A LAU-T50B LAU-T149D LAU-Me275 LAU-Me235 Unique gene count

Deletion 3668 4281 986 3656 108 122 1059 10711

Arm-level amplification 222 0 549 99 998 42 0 1884

Focal amplification 0 0 0 26 379 0 4 409

SNP arrays LAU-Me280 LAU-Me246 LAU-T618A LAU-T50B LAU-T149D LAU-Me275 LAU-Me235 Unique gene count

Deletion 2294 3157 2 113 70 2 39 5544

Arm-level amplification 0 0 16584 1033 3477 16398 10384 19496

Focal amplification 213 0 978 438 894 1853 161 4055

Number of genes affected by somatic deletions, arm-level amplifications ($4 copies but ,1 copy above the chromosome arm baseline) and focal amplifications ($4
copies and $1 copy above the chromosome arm baseline), as measured using SNP or CGH arrays.
doi:10.1371/journal.pone.0018369.t002

Figure 1. Karyotypes of two malignant melanomas. Representative karyotype (Giemsa stain) for LAU-Me275, one of the most hyperploid
melanoma (here 76 chromosomes including 7 markers); and LAU-Me280, the most extensively deleted line (42 chromosomes including 5 markers).
doi:10.1371/journal.pone.0018369.g001

SCNA and Gene Expression in Metastatic Melanoma
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therefore determined the copy number status of the MDM2 gene

in these two samples using fluorescent in situ hybridization (FISH).

In LAU-Me275, the fluorescence signal indicated that at least 8

MDM2 copies were present at the locus on Chr12 in addition to a

homogeneously staining region on Chr5 (see Fig. 3A and 3B)

which is in agreement with results from the SNP arrays. In LAU-

T50B, FISH revealed a total of four MDM2 copies, two on Chr12

and two located on an unidentified chromosome (see Fig. 3C and

3D), which is higher than the copy number estimated by CGH

and SNP arrays. Re-investigation of the raw SNP data for LAU-

T50B showed that there was indeed a small amplification signal at

MDM2, but this had not been detected using our optimization

parameters (see Methods S1). This highlights the challenge of

determining optimal parameters that are usable on a genome-wide

scale for all samples in a study.

We next derived a list of genes within deletions detected by

CGH that were expressed in melanocytes but not in the melanoma

cell lines (see Table S1). We reasoned that such genes are likely to

be enriched for melanocyte functions that have been lost during

tumorigenesis. The vast majority of such genes (554) were private

to a single melanoma sample; seventy genes were shared by two

samples; and only ten genes were shared by three melanomas:

ADAMTSL1, ARMC4, DLL1, HSD17B3, LOC441177, OSTCL,

PARK2, PLXDC2, SLC24A2 and ULBP3 (see Table S2).

Altogether, we identified a total of 1,710 SCNA-genes affected

by amplification or deletion (summarized in Table S2; complete

dataset in Table S3). To determine the relevance to melanoma of

this set of altered genes from our small sample set, we compared it

to gene lists in two published studies that used larger melanoma

collections [13,14]. These two studies provided a list of genes

recurrently affected by amplification or deletion in 76 (primary

and metastatic) and 60 (metastatic) melanoma samples, respec-

tively. Only 196 of our 1,089 amplified genes (p-value,0.001, see

Fig. 4A), and 17 of our 634 genes within deletions (p-value,0.007,

see Fig. 4B) were present in the Stark and Hayward or Gast et al.

datasets. Surprisingly, the number of genes common to the two

published gene sets was also small (27 amplified genes and 2 genes

within deletions; p-values,0.005), and demonstrates the difficulty

to identify commonly affected genes relevant to tumor progression

even within larger melanoma collections.

Correlation between mRNA and protein levels
A potential problem with assessing gene expression by mRNA

quantitation is that this may not reflect cellular protein levels. To

check whether SCNA-genes were also expressed at the protein

level in the melanoma cell lines, we performed a SILAC proteomic

analysis (stable isotope labeling with amino acids in cell culture

[18,19]). This technique is used to quantify relative protein

amounts as measured by mass spectrometry in extracts from cells

grown in unlabeled (light) medium and cells grown in (heavy)

medium containing non-radioactively-labeled amino acids. Since

the normal human melanocytes did not grow well in the labeling

media, heavy isotopes were incorporated into the Lau-Me275 cell

line, and protein quantification in all cases was relative to this

Figure 2. Copy number analysis using CGH and SNP arrays. A. and B. shows the analysis of LAU-Me275 on CGH and SNP arrays. C. and D.
shows results for LAU-Me280. Probe/SNP are plotted as a function of their genomic position on the X axis. Y axis for CGH arrays corresponds to
hybridization ratios. Y axis for SNP arrays corresponds to the predicted copy number. Colors indicate a copy number state (orange,2 copies; gray = 2
copies; cyan = 3 copies; dark blue.3 copies). Dark gray in the CGH panels indicates regions identified as diploid in the analysis, but where the
karyotype analysis indicated copy neutral or deleted states, possibly due to cell heterogeneity.
doi:10.1371/journal.pone.0018369.g002

SCNA and Gene Expression in Metastatic Melanoma
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sample. After stringent data filtering (see Materials and Methods),

we investigated whether transcript levels reflected protein levels as

detected by SILAC. As shown in Fig. S11 there was a moderate

but significant correlation between global mRNA and protein

levels in all samples (mean Spearman correlation 0.62).

Pathways significantly enriched in SCNA-genes are
recurrent in melanoma

As described above, we found that very few of the SCNA-genes

were altered in more than one melanoma cell line, which is not

unexpected given the small number of samples in our dataset. An

idea popular in the current literature is that signaling pathways,

rather than individual genes, are recurrently perturbed in cancer

[20]. To determine whether the SCNA-genes from different

melanoma cell lines shared membership of one or more cellular

pathways, we investigated whether the proteins encoded by the

SCNA-genes were connected in known human protein interaction

networks (see Materials and Methods). Out of a total of 1,563

proteins analyzed, 377 (24%) were connected within the network,

and clustering of the proteins based on the topology of the sub-

networks identified 14 protein networks, or ‘clusters’, containing at

least five significantly connected members. For each cluster, we

identified genes belonging to known signaling and metabolic

pathways including nine clusters that significantly overlapped

known pathways (FDR#0.05; listed in Table S4). Following

detailed manual annotation, the resulting pathways were ranked

according to the number of contributing melanomas and to the

number of SCNA-genes involved in the pathway. The pathways

common to at least four melanoma samples are shown in Table 3

(for the complete list see Table S4). Interestingly, the vast majority

of the recurrent pathways we identified involve signal transduction

and have been implicated in one or more cancer types. In

addition, that we identified ten pathways common to at least five

of the melanoma samples confirms the idea that protein network-

guided analysis is a good method for detecting recurrently affected

pathways in small datasets.

In our search for genes recurrently affected by SCNA, we found

only ,10% overlap between our list of SCNA-genes and those

derived from studies with much larger sample sizes [13,14]. To

determine if this was also true at the level of pathways, we

performed a protein network-guided analysis as described above

on each of these datasets using the published gene lists (neither

study originally presented this type of analysis). Detailed

annotation and comparison of the results for each dataset is given

in Table S4. In contrast to what we had found at the gene level, all

but three of our pathway modules were also present among those

identified from one or both of the published gene datasets (see

Fig. 4C). Ten pathway modules (angiogenesis, EGF, ERBB,

integrin signaling, long term potentiation, MAPK, natural killer

cell mediated toxicity, PDGF, regulation of actin cytoskeleton and

Figure 3. Determination of MDM2 copy number by FISH. The MDM2 gene was assayed in two melanoma samples (LAU-Me275 and LAU-T50B)
derived from the same patient. Panels A and C show a metaphase and B and D an interphase. MDM2 probe is in red; centromere-specific probe is in
green. FISH shows amplification for both LAU-Me275 (more than eight copies) and LAU-T50B (four copies). Metaphase-FISH helps to identify
homogeneously staining regions and Interphase-FISH to estimate the copy number.
doi:10.1371/journal.pone.0018369.g003

SCNA and Gene Expression in Metastatic Melanoma
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Figure 4. Intersection between our dataset and two published datasets of SCNA-genes and derived pathways. A. Intersection
between amplified genes in published melanoma datasets (Stark and Hayward 2007; Gast et al., 2010) and our list of over-expressed genes within
focal amplifications B. Intersection between genes within homozygous deletions from the Stark and Hayward and Gast et al. datasets and our list of
non-expressed genes within deletions C. Intersection between pathways found significantly affected by SCNAs from our analysis of the three
datasets.
doi:10.1371/journal.pone.0018369.g004

Table 3. Pathways identified by network-guided analysis.

Pathway #Melanomas Genes #genes

G protein signaling 6 ADORA1, ADRA2A, CHRM1, CHRM5, DRD2, GNAO1, GNB3, GNG4,
HTR1F, OPRL1, PLCB2, RGS10, RGS11, RGS14, RGS19

15

WNT signaling (includes Apoptosis and
Hedgehog signaling)

6 CDH19, CDH2, CDH4, DVL1, FRAT1, FZD8, PCDH17, PCDH9,
SFRP1, WNT11, WNT16, WNT2B, WNT4, WNT5B

14

Cadherin signaling 6 ACTG2, CDH19, CDH2, CDH4, FZD8, PCDH17, PCDH9, WNT11,
WNT16, WNT2B, WNT4, WNT5B

12

Melanogenesis 6 CAMK2A, CAMK2G, DVL1, FZD8, NRAS, WNT11, WNT16, WNT2B,
WNT4, WNT5B

10

Angiogenesis 5 BRAF, DVL1, EFNB2, EPHA3, EPHB2, FGF1, FRS2, NRAS, PIK3R3,
PRKCZ, SFRP1, WNT2B, WNT5B

13

Axon guidance (migration and adhesion) 5 CDK5, EFNB2, EPHA3, EPHB2, EPHB6, FES, NRAS 7

MAPK signaling 5 DUSP1, DUSP12, DUSP2, FGF1, FGF14, FGFR4, MAPK9 7

TGF beta signaling 5 ACVRL1, AMHR2, FOXH1, LEFTY1, SMAD9, TGFB1, TLL2 7

Alzheimer disease 5 CHRM1, CHRM5, PKN3, PRKCZ 4

FGF signaling 5 FGF1, FGF14, FGFR4, FRS2 4

Calcium signalling 4 CAMK2A, CAMK2G, CHRM1, CHRM5, GNAO1, GRIN2C, PRKCZ,
RGS10, RGS11, RGS14, RGS19

11

Huntington_disease (vesicle-mediated transport) 4 ACTG2, CLTB, GRIN2B, GRIN2C, GRIN3A, KALRN 6

Neuroreceptor (Muscarinic, Metabotropic) 4 GRIN2B, GRIN2C, GRIN3A, KCNQ2, PKN3, PRKCZ 6

Cell cycle (G1 progression) 4 CCNA1, CDC20, CDC26, CDKN2B, HDAC1 5

doi:10.1371/journal.pone.0018369.t003

SCNA and Gene Expression in Metastatic Melanoma
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VEGF) were common to all three datasets, and the combined

overlap with our pathway dataset was 66%. Thus, the majority of

pathways defined by SCNA affected genes in our melanoma

samples were recurrent in the three datasets, whereas the

individual genes were not.

An additional benefit of the protein network-guided approach is

that it generates a list of genes affected by SCNA that contributed

significantly to a given pathway (see Table S4). Although two-

thirds of the pathways were common between our dataset and the

published datasets, only two genes, NRAS and BRAF, were present

in all three (see Table S5). Of the genes shared by two datasets,

four were components of the angiogenesis pathway, including

EPHA3 and FRS2. We noted also that several members of the

WNT (WNT3A, 4, 5B, 7A, 9A, 11, 16) or cadherin (CDH2, 4, 9, 12,

17, 18, 19) gene families were affected by SCNA in only one

dataset, further reinforcing the idea that different genes can

potentially alter the same pathway (WNT or cadherin) in different

melanoma samples.

Discussion

Our goal to identify somatic copy number aberrations in

metastatic melanoma cell lines revealed extreme levels of

aneuploidy characteristic of this cancer type [21,22], and

complicated the application of standard CGH array protocols

[9,10,11]. Nevertheless, using our GMM method we were able to

demonstrate that although CGH arrays fail to identify all large-

scale amplifications, they are able to detect deletions very

efficiently, including genes having lost expression compared to

melanocytes (see Table 2 and Fig. S7). Conversely, SNP arrays,

which measure hybridization intensities for both alleles at

heterozygous loci, allow the consideration of an additional

parameter (the so-called B-allele frequency) and greatly improve

the measurement of DNA copies beyond the normal diploid

complement (as implemented in the OverUnder algorithm,

Attiyeh et al., 2009; see Fig. S6). We did notice, however, that

this algorithm systematically detected deletions located in sub-

telomeric regions for both tumors and controls, which indicates a

systematic bias and suggests that the algorithm is optimized to

detect duplications and amplifications but not deletions. There-

fore, it can be argued that CGH and SNP techniques should be

combined to obtain a reliable assessment of all copy number states

from deletion to high-level focal amplification.

To enrich for genes that might be involved in the oncogenic

process, we focused on two groups: focally amplified genes that were

over-expressed relative to melanocytes; and deleted genes with no

expression in the melanoma cell lines, but that were expressed in

normal melanocytes. In the first group, MDM2 [5,17] was the only

cancer gene amplified and over-expressed in more than one

melanoma sample. Comparison of genes amplified in our samples

with published gene lists from two large melanoma studies (Stark

and Hayward 2007; Gast et al., 2010) while revealing very little

overlap (see Fig. 4) did identify BRAF, MDM2, and NRAS, genes

known to be important in melanoma [5,17,23,24,25,26,27,28,29].

In the second group, ten genes were deleted in three of the

melanoma samples (see Table S2). These genes are located on

Chr6q25, Chr6q27, Chr9 or Chr10p, consistent with previous

observations that both arms of chromosomes 9 and 10 and Chr6q

frequently undergo hemizygous deletion or copy neutral LOH in

melanoma [14]. Of the ten genes, the Parkinson’s disease-associated

gene PARK2 has been recently described as a tumor suppressor gene

in glioblastoma and other malignancies [30], while DLL1, HSD17B3

and ULBP have been reported to be associated with cancer,

although not as tumor suppressors [31,32,33,34,35,36,37]. Exper-

imental investigation will be required to determine if any of these

ten genes performs an anti-oncogenic function in melanoma cells.

The only deleted gene common to our study and those of Stark and

Hayward and Gast et al. was PTEN, a tumor suppressor gene

already known to be deleted in melanoma [7,38].

In an alternative approach to detect recurrent events in these

samples, we used a protein network-guided analysis

[20,39,40,41,42,43] to identify pathways affected by SCNA-genes

in the seven melanoma cell lines. In contrast to the low level of

recurrence in these melanoma samples at the individual gene level,

we found that six pathways were shared by five of the samples, and

four pathways (G protein, WNT, cadherin signaling and

melanogenesis) were common to six (see Table 3). Several of

these pathways are highly relevant to melanoma (e.g. MAPK,

cadherin and FGF signaling) and have also emerged from cDNA

expression studies [44], lending support to our results. G proteins

transduce signals from G protein-coupled receptors (GPCRs), the

largest family of membrane receptors involved in signal transduc-

tion, and whose over-expression in tumors can contribute to tumor

progression, angiogenesis and metastasis [45]. Alteration of G

proteins could impact the activities of GPCRs key to melanocytic

cells, such as MC1R (melanocortin receptor), chemokine (e.g.

CXCR2), and endothelin receptors. [46]. The recent identification

of activating mutations in two G protein alpha subunits, GNAQ

and GNA11, in a large proportion of uveal melanomas [47,48],

further underscores the relevance of this class of proteins to

melanoma.

Although annotated as distinct pathways, WNT, cadherin

signaling and melanogenesis shared six SCNA-genes in common

(FZD8 and several members of the WNT family). This may reflect

interactions between these pathways, an interplay between the

WNT and cadherin pathways is known to exist [49], or may be a

consequence of poor pathway annotation. The cadherin pathway

controls cell-adhesion and plays a role in invasion and metastasis

[50]. WNT (and Hedgehog) control development and growth in

the embryo; aberrant activation of their transcriptional compo-

nents ultimately affects cell fate, proliferation, and migration

[51,52,53]. The only common non-signaling pathway was

melanogenesis. Melanoma develops from melanocytes, cells highly

specialized in the synthesis of melanin pigment, a process that

requires a complex enzymatic machinery and unique organelle

structures [54]. Our pathway analysis predicted that melanoma

SCNA affect melanogenesis. Loss of pigmentation in metastases

compared to primary tumors is commonly observed in cutaneous

melanoma, and although not completely understood, it can be

brought about by different mechanisms, such as premature

degradation of melanogenic proteins [55] or downregulation of

MITF transcription program [56]. Our study suggests that SCNA

may also contribute to these alterations. An unexpected pathway

that emerged from our analysis, and perhaps merits further

exploration, is neurotransmission. These results suggest an

involvement of neuronal pathways in melanoma, possibly related

to the neural crest origin of melanocytes. Lending support to this

hypothesis, the metabotropic glutamate receptor GRM1 has

recently been implicated in the development of spontaneous

melanoma in a mouse model, and an autocrine glutamate/GRM1

loop has been described in human melanoma [57].

Comparison of the pathways generated from SCNA-genes in

our data and genes affected by copy number changes in two

published datasets (Stark and Hayward [14] and Gast et al. [13])

revealed a high level of overlap, much higher than we expected

based on the number of commonly affected genes (see Fig. 4). An

explanation for this outcome is that different genes within the same

pathway are affected in different datasets, and the commonalities
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are apparent only at the pathway level. The number of affected

genes in a given pathway would be expected to increase with

increasing sample size, and this is largely the case between our

data and those of Stark and Hayward, but not in the Gast et al

dataset (see Table S4). The reason for the low number of SCNA

affected genes and corresponding pathways in the latter case may

be the high stringency criteria employed in their analysis [13].

The angiogenesis pathway was one of ten common to all three

datasets. Its up-regulation is a well-known hallmark of cancer [58],

and it has long been proposed as a target for therapeutic treatment

[59,60]. Activation signals for angiogenesis include vascular

endothelial growth factor (VEGF) and acidic fibroblast growth

factor (FGF), and both were in our list of significantly affected

pathways (see Table 3) and within our analysis of the Stark and

Hayward (VEGF and FGF) and Gast et al (VEGF) datasets (see

Table S4). Two genes in this pathway, EPHA3 and FRS2, were

designated SCNA-genes in both our dataset and in Stark and

Hayward, and were annotated as amplified, in skin-derived

tumors, in the Cancer Genome Project dataset [5,61].

In our analysis EPHA3, an ephrin tyrosine kinase receptor, was

both focally amplified and over-expressed only in LAU-Me275.

However, EPHA3 was highly over-expressed in LAU-T149D and

LAU-Me246 (see Table S3) and amplified in LAU-T618A

(CN = 6.4), LAU-Me235 (CN = 4) and LAU-T50B (CN = 4.2).

EPHA3 is recurrently mutated in adenocarcinoma [62,63] and has

been implicated in renal carcinoma, glioblastoma, colorectal,

breast and lung cancer [63,64,65,66,67]. Mutations in EPHA3

have been detected in melanoma [68], and several ephrin-derived

peptide antigens (from EPHA2, EPHA3 and EPHB6) can be

recognized by cancer-specific cytotoxic T-cells [69,70,71,72]. In

addition, the feasibility of specific EPHA3 targeting has been

reported [73]. These observations indicate that EPHA3 might be a

promising target for therapeutic treatment in melanoma and other

cancers.

FRS2, fibroblast growth factor receptor substrate 2, is an

adaptor that acts downstream of a limited number of receptor

tyrosine kinases, in particular FGF and neurotrophin receptors,

RET and ALK, and plays a major role in tumorigenesis [74]. Dey

and coworkers [75] recently targeted the FGF receptors (FGFR)

using tyrosine kinase inhibitors to decrease the activity of AKT

and ERK kinases, inducing apoptosis in breast cancer cell lines.

FGFR inhibition is highly relevant to melanoma, where autocrine

stimulation via FGF2/FGFR1 constitutes a pivotal role in

proliferation and survival [76]. FRS2 has been suggested as a

therapeutic target in cancer [77] and because of its downstream

activities to FGFR and other receptors, it might offer new insights

in melanoma treatment. In our data FRS2 was both focally

amplified and over expressed in two melanoma samples (LAU-

T149D and LAU-Me275) and amplified (CN = 4) in two

additional melanomas (LAU-T618A and LAU-Me235). Inspec-

tion of its amplification status in larger melanoma collections

would be useful to confirm its potential role as a target of interest

in melanoma.

Using SILAC, we demonstrated a global correlation between

mRNA and protein levels across all samples. However, we are

aware that the levels of individual proteins may not always reflect

mRNA levels, and that the activity of certain proteins, and

therefore the activation state of cellular pathways, can be further

modulated by post-translational modifications. Further investiga-

tions, beyond the scope of the current study, will be required to

address these possibilities. Such studies should include a functional

assessment of the implicated pathways using various manipulations

to activate or inhibit them (e.g. with siRNA or other inhibitors) to

determine the role of the pathways in these melanoma cell lines.

In conclusion, we have identified SCNA-genes and pathways

potentially altered in our metastatic melanoma samples and two

published datasets (Stark and Hayward 2007; Gast et al., 2010)

which should be investigated by screening larger tumor collections

and in functional studies. Two SCNA-genes, EPHA3 and FRS2,

emerged from our analysis as potential therapeutic targets. These

genes were replicated in our analysis of the two published

melanoma collections, have been extensively studied in other

cancer types, and thus might offer new insights in the treatment of

malignant melanoma.

Materials and Methods

Melanoma samples, DNA and RNA extraction
Melanoma cell lines were established from metastases from

patients with cutaneous melanoma and were used at low passage

(,10). Donor matched cells were either peripheral blood

lymphocytes (PBL) or Epstein-Barr virus transformed lymphoblas-

toid (EBV) cell lines. EBV cell lines were karyotyped to ensure

genome stability and diploidy. Approval to use these samples for

this project was given by the CHUV (Centre Hospitalier

Universitaire Vaudois) ethical committee for clinical research.

Melanoma cell lines were cultured conditions in RPMI-1640

medium supplemented with 10% fetal calf serum (FCS), and no

antibiotics. Human foreskin melanocytes were grown in HAM-

F10 medium supplemented with 2% FCS, 5% MelanoMax

supplement (Gentaur, Belgium) and 6 mM HEPES. EBV cell lines

were cultured in IMDM/10% FCS medium. All cultures were

without mycoplasma. DNA (Gentra kit, Qiagen) and RNA

(guanidinium/cesium chloride gradient) isolation and karyotype

preparations were performed from parallel cultures.

Cytogenetic and FISH analysis
Cytogenetic (GTG-banding) and fluorescence in situ hybridiza-

tion (FISH) metaphase analyses of melanoma cell lines were

performed using standard protocols. We performed 15 spreads for

each melanoma cell line, except for Lau-Me246 [14] and Lau-

Me275 [21]. Dual color FISH was done using a commercially

available set consisting of a locus-specific MDM2 combined with a

chromosome 12 centromeric probe (Kreatech Poseidon FISH

probe) to distinguish aneuploidy of chromosome 12 and specific

locus loss or gain. Chromosomes with homogeneously staining

region (HSR) were identified with the analysis of FISH metaphases

in inverted digital images. Copy number estimation of HSR was

done using FISH interphases.

Comparative genomic arrays (CGH)
CGH arrays were processed according to the manufacturer’s

protocol (Agilent Technologies, Inc.) and as described in Martinet

et al. [78].

The normalization and detection of copy number aberration is

detailed in Methods S1. In brief, signal intensities were normalized

using three independent normalization schemes: Loess [79];

PopLowess [80]; and the statistical framework from Chen et al.

[15].

Then probe-level data were segmented using Circular Binary

Segmentation [81,82] and attributed a discrete copy number to

segments using three independent methods: 1) a naive scoring-

based approach, where outliers relative to the chromosomal

baseline are detected using a non-parametric score; 2) the

MergeLevels method [83] and 3) our own classification algorithm

based on Gaussian Mixture Model which models the observed

distribution of intensity ratios as a combination of Gaussian

distributions that can be subsequently classified into deletion
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(CN,2), copy neutral event (CN = 2), duplication and amplifica-

tion (CN = 3 and CN$4) (see Fig. S3).

Single Nucleotide polymorphism arrays (SNP)
Illumina 1M SNP arrays. Genomic DNA from each of the 7

melanoma and their matched normal cells (either EBV cell line or

PBL); as well as two control melanocytes were genotyped on the

Illumina Infinium Human1M-Duo arrays. Aliquots of DNA (30 ml

at 50 ng/ml) for each sample were processed according to the

manufacturer’s protocol (Infinium HD Gemini protocol).

Subsequently we used the OverUnder algorithm [16] to correct

the hybridization log ratios for polyploidy and to attribute a

continuous copy number value to each SNP. We estimated that

the window size parameter set to 201 SNPs, gave the highest

reproducibility between technical replicates (see Fig. S5A and

S5B).

Affymetrix 6.0 arrays. As part of the technical replicate

design, we analyzed LAU-Me275 on Affymetrix 6.0 SNP arrays.

The experiment was performed in accordance with the

manufacturer’s instructions. Normalization and copy number

prediction were done using the PICNIC algorithm [84].

Transcriptome sequencing
The transcriptome from all seven melanoma as well as a pool of

two melanocytes was sequenced using the Roche 454 Titanium

technology. mRNA isolation and cDNA preparation were

performed following the protocol used by Bainbridge et al. [85],

with some modifications (See Methods S1). 3–5 mg of cDNA were

used for 454 libraries preparation, according to manufacturer’s

protocol. All experiments produced about 1M single end reads,

with a median length of 367 nucleotides (interquartile range 265–

436). We derived transcript tag counts using our own published

methodology [86] (see also Methods S1). Using tag counts from

the pool of melanocytes, we were able to derive a ratio of

expression for each melanoma with respect to these control

melanocytes.

Detection of somatic copy number alterations with
altered expression (SCNA-genes)

We computed the median copy number at each Refseq gene.

To overcome density limitations, we included SNPs that were

within 2 kb of the gene boundaries. For CGH arrays, we included

probes within 3 kb of the gene boundaries. We defined SCNA-

genes as follows. A gene was flagged as within a focal amplification

when its CN, as computed from SNP arrays, was $4, the

difference in CN relative to the chromosomal arm was $1, the

gene was diploid (CN = 2) in the matched control cell line, and the

expression in the melanoma cell line was at least 2-fold greater

than that in the control melanocytes. For deletions, a gene needed

to have CN,2, as detected by CGH, without expression in the

melanoma cell line and CN = 2 with detected expression in the

melanocytes.

Protein network-guided analysis of SCNA
A non-redundant human protein interaction network was

generated by combining iRefseq [87] and Pathway Commons

[88] protein interaction databases with functional interactions

from Panther pathways [89]. The resulting network has 21,876

nodes and 376,528 edges and combines interaction data from 15

primary protein interaction databases (BIND, BioGRID,

CORUM, DIP, HPRD, IntAct, MINT, MPact, MPPI, OPHID,

Reactome, HumanCyc, Cancer Cell Map, IMID and NCI/

Nature pathway interaction database). Mapping between gene

names and their protein Uniprot IDs was downloaded from the

HGNC website (www.genenames.org). Among the 1710 (unique)

SCNA-genes, 104 did not have a UniProt ID and 43 could not be

mapped onto the network. Using a walk trap community

algorithm and permutation approaches (with n = 1000), we were

able to extract clusters of proteins from the network (Details are

available in Methods S1).

Pathway analysis
Significance of overlap between the modules and pathways from

Panther, Kegg and MSigDB [89,90,91] was calculated with an

hypergeometric test, P-values were corrected for multiple

comparisons by calculating the false discovery rate using the

Benjamini and Hochberg procedure [92].

To reduce the redundancy present in pathway database

annotation, we first combined pathways that contained the same

SCNA-genes from the same melanoma cell lines, then we

reviewed the pathway list to either remove redundancies or un-

merge unrelated pathways affected by similar genes. We also

excluded KEGG ‘‘cancer’’ annotated pathways.

Proteomic analysis
SILAC. Cell growth conditions and labeling are detailed in

Methods S1. LC-MS/MS data were analyzed using Mascot 2.2

(Matrix Science, London, UK) for database search and MaxQuant

1.0.13.13 for peak list export from raw data and quantitative

analysis [93]. Database search was carried out against the IPI

human database (version 3.52, [94]) including decoy sequences

and a list of common contaminants. A maximum false discovery

rate of 1% was used for protein identification.

A total of 5522 proteins were detected by the SILAC

experiment. We excluded 55 proteins that matched the list of

common contaminants. To check whether culture condition (with

the heavy isotope) could influence the protein quantification, we

performed a self-self experiment with LAU-Me275. Although no

significant bias was found (see Fig. S9), we excluded 79 proteins

that were outliers in this experiment. Next, we checked the

number of peptides detected per protein (see Fig. S10). Since

protein quantification is not accurate when only few peptides are

observed, we excluded 2,134 proteins that had less than three

peptides and 42 with missing values in all seven experiments. This

led to a cleaned dataset of 3,212 proteins; 2,922 of them could be

remapped to Refseq genes using their Uniprot ID and were used

for subsequent comparison with RNA-seq data.

Comparison with RNA-seq data. For comparison, we

normalized the RNA seq tag count in the same manner as the

SILAC data (i.e. we expressed the transcript tag count from LAU-

Me275 with respect to all other samples, including the control

melanocytes). Next, we computed the Spearman correlation

coefficient between the expression and protein log2 ratios (see

Fig. S11). P values to test for significantly positive correlation were

estimated using large-sample approximations (as implemented by

the ‘corr’ function in MATLAB).

Accession number
Microarray and sequencing data were deposited in NCBI GEO

and are available under accession number GSE23056.

Supporting Information

Figure S1 CGH hybridization ratio in a tetraploid
region in LAU-Me275. Each plot shows the hybridization

log2 ratio at each CGH probe (in gray) obtained using three

normalization methods. Ridge refers to the framework from Chen
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et al. Red segments were obtained using Circular Binary

Segmentation. Karyotype analysis of LAU-Me275 revealed 11q

amplification (CN$4), so the expected CGH log ratio would be

two. Here the ratios obtained from three different normalizations

failed to reflect the amplification (both Loess and Ridge were close

to 0; PopLowess was close to 0.6 indicating 3 copies).

(DOC)

Figure S2 Correlation between replicates using differ-
ent normalization schemes. The scatter plots illustrate the

correlation at each CGH probe between two replicates. The

heatmaps show the correlation for each pairs of replicates. The

normalization method is indicated in each plot title. RIDGE refers

to the framework from Chen et al.

(DOC)

Figure S3 Gaussian Mixtures identified in four repli-
cates from LAU-Me275. Each histogram shows the distribution

of CBS segment log2 ratios, colors highlight the Gaussian

components. The number of components identified and the Bayes

Information Criterion are indicated in each figure title.

(DOC)

Figure S4 Comparison of CNV detection algorithm on
CGH data. Panels are, from left to right: a melanoma with large

deletions (LAU-Me280); a melanoma with large amplifications

(LAU-Me275); and a control EBV cell line (male) hybridized using

a pool of female references. From top to bottom: CNV

classification (following CBS segmentation) using 1) Gaussian

Mixture Model (GMM), 2) MergeLevels, 3) the scoring-based

approach. Each dot corresponds to a CGH probe with its genomic

position on the X axis and its log2 ratio of hybridization on the Y

axis. Colors indicate the copy number state: orange, = 1 copy

gray = 2 copies, cyan = 3 copies and dark blue more than 3 copies.

For the scoring approach distinction is made between 1 copy

(orange) and 0 copy (red).

(DOC)

Figure S5 Optimization of Illumina analysis and com-
parison with Affymetrix prediction in LAU-Me275.
A. Pearson correlation between SNP CN, as a function of

OverUnder window size. B. Copy number concordance at each

SNP for different window sizes of OverUnder. Colors indicate

window size parameters, the bar height indicates the total number

of SNPs (in log10 scale) found in one replicate. The gray bar

indicates the intersection between two technical replicates. The

percentage of concordance (number of SNPs found with the same

copy number bin in both replicates/total number of SNPs from

this given copy number bin in the first replicate) is shown on top of

each bar. C. Copy number prediction on chromosome 1 using

OverUnder with a window size of 201 SNPs. D. Copy number

prediction on chromosome 1 using an Affymetrix 6.0 array (with

the PICNIC algorithm).

(DOC)

Figure S6 Copy number analysis using Illumina SNP
arrays. DNA from LAU-Me275 was hybridized to Illumina SNP

arrays, and the data were analyzed using the method of Attiyeh et

al. The top panel shows genome-wide copy number: dark blue

indicates more than three copies; cyan:three copies; gray:copy

neutral; orange: deletion. Subsequent panels show chromosome 7

with, from top to bottom: Hybridization log2 ratio; B allele

frequency; and copy number prediction.

(DOC)

Figure S7 Intersection between CGH and SNP predic-
tions. A. Intersection between CGH and SNP predictions for

genes with more than 4 copies. B. Intersection for genes within

deletions. C. Intersection for genes within deletions for which

expression was not detected.

(DOC)

Figure S8 Copy number prediction from CGH and SNP
arrays, LOH prediction from SNP arrays.

(PDF)

Figure S9 Boxplots of SILAC heavy/light normalized
log2 ratios. In all experiments, LAU-Me275 was labeled with

the heavy isotope; the unlabeled sample is indicated in the boxplot

label on the X axis. ‘NHM’ refers to the pool of normal

melanocytes and ‘self-self’ to a control experiment using only

LAU-Me275 to check for any bias due to the label/no label

culture conditions (no significant bias was detected).

(DOC)

Figure S10 Histogram of unique peptides identified per
protein in the SILAC data.

(DOC)

Figure S11 Correlation between mRNA expression and
protein levels. Both SILAC and RNA seq log2 ratios are

expressed for LAU-Me275 with respect to the sample indicated in

each plot title. Spearman Rho correlation coefficient is also

indicated in the title. In all experiments, the correlation is

significantly positive (p,0.001).

(DOC)

Table S1 Count of genes affected by SCNA.

(DOC)

Table S2 Processed list of SCNA genes in all seven
melanoma cell lines.

(XLS)

Table S3 Genomic and transcriptomic data for SCNA-
genes in all seven melanoma cell lines.

(XLS)

Table S4 List of pathways significantly enriched in
SCNA, and pathway comparison between three melano-
ma datasets.

(XLS)

Table S5 List of genes contributing to pathway enrich-
ment in three melanoma datasets.

(XLS)

Methods S1

(DOC)
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