
Temporal Control of Immediate Early Gene Induction by
Light
Philipp Schoenenberger, Daniela Gerosa, Thomas G. Oertner*

Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland

Abstract

Background: The light-gated cation channel channelrhodopsin-2 (ChR2) is a powerful tool for the optical induction of
action potentials in neurons. Mutations of the cysteine 128 (C128) residue have been shown to greatly extend the lifetime of
the conducting state of ChR2. However, until now, only subthreshold depolarizations have been reported from C128
mutants.

Methods and Findings: Here we report the induction of long high-frequency spike trains by brief light pulses in
ChR2(C128A)-transfected pyramidal cells in hippocampal slice culture. ChR2(C128A)-mediated spike bursts triggered
expression of the immediate early gene c-fos in pyramidal neurons. Robust and cell-specific expression of c-Fos protein was
detected after a single blue light pulse and depended on action potential firing, but not on synaptic activity. However,
photocurrents diminished upon repeated stimulation and limited the number of action potential bursts that could be
elicited.

Conclusions: We conclude that the C128A mutant is not suitable for chronic stimulation of neurons, but very useful for
light-controlled induction of immediate early genes. This property of ChR2(C128A) could be harnessed to control the
expression of proteins under control of the c-fos promoter with precise timing and single cell specificity.
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Introduction

Optogenetic control of neuronal firing has become a widely

used tool to manipulate the activity of single neurons or neuronal

ensembles in vitro and in vivo [1–4]. Since the advent of the light-

gated cation channel channelrhodopsin-2 (ChR2) in the neurosci-

ences [5], the optogenetic toolbox has been steadily extended. For

example, ChR2 mutants with greatly extended lifetimes of the

open channel state have been generated. These ‘bi-stable’

channelrhodopsins are based on point mutations at the C128

position and elicit long-lasting photocurrents that can be switched

off by a green light pulse [6]. Three different point mutations at

the C128 position have been shown to give rise to ChR2 variants

with slow channel closing kinetics: ChR2(C128T) has a closing

time constant of 2 s, whereas ChR2(C128A) and ChR2(C128S)

are characterized by even slower channel closure and time

constants of 52 s and 106 s, respectively [6]. The C128A mutant

has very interesting kinetics in that its open state outlast the

activation light pulse by many orders of magnitude but it still

spontaneously inactivates within an experimentally accessible time

window. In their original publication, Berndt and colleagues used

the C128A mutant to induce long and reversible subthreshold

depolarizations in dissociated neurons and to sensitize cells to

synaptic input [6].

In this study, we characterized the effects of ChR2(C128A)

activation when the mutant channel is expressed at high levels in

pyramidal cells in hippocampal slice culture. Photocurrents were

very large initially, leading to high frequency spike trains.

However, due to incomplete recovery of photocurrents in the

dark, the number of spike trains that could be induced successively

was limited. In the second part of the study, we focused on light-

triggered expression of c-fos, an immediate early gene that has

been used to map neural activity for more than two decades [7,8].

Genetic activity reporters based on c-fos have allowed to follow the

fate of cells activated during learning [9] and to investigate the

trafficking of newly synthesized AMPA receptors [10]. We show

that ChR2(C128A)-triggered spike trains reliably induce c-Fos

expression in pyramidal neurons. We propose that co-expression

of ChR2 mutants with activity reporters could be used to study

activity-related processes in vitro and in vivo.

Results

Stability of ChR2(C128A) Photocurrents in Hippocampal
Pyramidal Neurons

We used the human synapsin 1 promoter to drive expression of

ChR2(C128A) specifically in neurons. Using particle-mediated

gene transfer, individual neurons in rat organotypic hippocampal

slice cultures were co-transfected with ChR2(C128A) and the red

fluorescent protein tdimer2 as a cytosolic marker (Fig. 1A). To

asses ChR2(C128A)-mediated currents, we recorded from pyra-
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midal cells stimulated with 50 ms blue light pulses from a mercury

arc lamp. Photocurrents were isolated by bath application of

NBQX and bicuculline to block synaptic input and TTX to block

fast Na+ channels. The average photocurrent in cells voltage-

clamped at 265 mV was 13256110 pA (n = 52; Fig. 1B),

considerably larger than reported previously [6]. When a cell

was repeatedly stimulated, photocurrents were strongly reduced

(Fig. 1C), although inter-stimulus intervals (ISIs) were sufficiently

long to allow for full inactivation of the photocurrent (2.5–

4.0 min). This effect was comparable for high (8.4 mW, 50 ms)

and low (0.05 mW, 1000 ms) light intensities despite a reduction of

the total light dose by a factor of 8.4. The response to identical

light pulses was reduced after each stimulation pulse, dropping to

24.763.7% of the initial amplitude after 9 repetitions for bright

pulses (n = 6; Fig. 1D) and 15.960.8% for low intensity pulses

(n = 3). Further increasing the light dose by using longer light

pulses (200 ms, 8.4 mW) did not lead to a stronger reduction of

peak currents (75.364.0% reduction after 8 stimulations (n = 5),

compared to 73.763.6% with 50 ms pulses), suggesting that

photocurrent reduction was not a light dose-dependent phenom-

enon such as the bleaching of fluorophores.

Could the photocurrent reduction be related to cytosolic wash-

out during whole-cell recordings? To test this possibility, we

stimulated transfected cultures inside the cell culture incubator

using blue high-power LEDs (50 ms pulses, 90 s intervals) prior to

photocurrent measurements. Light-induced currents were reduced

after only a few hours of stimulation, and the reduction was even

more pronounced after several days (Fig. 1E). This indicates that

the photocurrent reduction we observed was not caused by whole-

cell dialysis. A dark period of 24 h prior to electrophysiological

recording was sufficient for full recovery of photocurrents, showing

that the decrease in current amplitude was not permanent but

slowly reverted in the dark within several hours (Fig. 1E).

Photocurrents in cells expressing wild type ChR2 were not

reduced after 4 d stimulation (Fig. 1F), again indicating that

ChR2(C128A) photocurrent run-down was not caused by

photodamage to the chromophore but due to the extremely slow

kinetics of the mutant channel. Together, these data show that

ChR2(C128A) can generate very large photocurrents, and that

repeated activation of the channel rapidly reduces the amplitude of

light-triggered currents.

Loss of Functional Channels Occurs during Relaxation
from the Open State

Work on the ChR2 photocycle suggested that activated channels

relax to the dark state via one or two relatively long-lived closed

intermediate states [11,12]. We wanted to determine whether the

run-down of photocurrents was caused by a fraction of activated

channels entering a non-functional state after each stimulation or by

very slow recovery of the dark state after channel closure. In the

latter case, we would expect a recovery of photocurrent amplitude

that is proportional to the interval between subsequent pulses. To

address this issue, we stimulated neurons with three blue light pulses.

The first two pulses were spaced 2.5 min apart, sufficient for

inactivation of photocurrents between pulses. The 3rd light pulse

was applied after a dark period of 2.5 min (n = 10) or 15 min (n = 4).

The reduction in peak photocurrent in response to the 3rd light pulse

was independent of the length of the preceding dark period (current

after 3rd pulse: 48.562.1%, 50.762.0%, resp., p.0.5; Fig. 2A),

suggesting that a fraction of channels was available for activation

Figure 1. ChR2(C128A) photocurrents in hippocampal pyramidal neurons. (A) Rat organotypic slice culture co-transfected with
ChR2(C128A) and cytoplasmic RFP. (B) Light-induced currents in voltage-clamped pyramidal cells (n = 52). Cells were stimulated using blue 50 ms
light pulses (8.4 mW), current measurements were performed in the presence of 1 mM TTX, 10 mM NBQX, and 10 mM bicuculline. (C) Repeated
stimulation of pyramidal neurons with high (8.4 mW for 50 ms; left) or low (0.05 mW for 1000 ms; right) light intensity. Blue bars indicate light
stimulation pulses. (D) Photocurrent reduction with repeated stimulation at high or low light intensity (n = 6, 3, resp.). (E) Population comparison of
photocurrents in non-stimulated cells (ctrl, n = 10) or cells stimulated in the incubator prior to photocurrent measurement (50 ms blue LED pulses at
90 s intervals, n = 6, 5, 18, 10). Photocurrents in cells stimulated for 4 d fully recovered within 24 h in the dark (n = 9). (F) No photocurrent reduction
was observed in 4 d stimulated cells expressing wt ChR2 (n = 8) compared to non-stimulated control cells (n = 11).
doi:10.1371/journal.pone.0008185.g001
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directly after channel closure whereas the remaining fraction

entered a long-lived closed state that did not recover to the dark

state within 15 min. For simplicity, we refer to this non-functional

state as ‘lost’ state (Fig. 2D).

Could the loss of functional channels be alleviated by rapidly

switching open channels back to the dark state using a green light

pulse [6]? We stimulated pyramidal cells with a blue light pulse

followed by a green pulse after 3 s, which reduced the photocurrents

to 9.461.2% (n = 24; Fig. 2B). Residual current was allowed to fully

inactivate before the next stimulation (ISI.2.5 min). This switch-

back procedure markedly reduced the run-down of photocurrents

upon repeated stimulation (16.762.3% reduction after 5 pulses,

n = 6, compared to 66.563.8% without green switch-back; Fig. 2C).

As expected, a single blue pulse applied after a sequence of blue -

green switches led to strong reduction of peak photocurrents at the

next pulse (Fig. 2C). Application of the green light pulse 20 s or 60 s

after the blue stimulation pulse was less effective in preventing

photocurrent reduction. We conclude that loss of functional

ChR2(C128A) channels occurred during relaxation from the open

state - either directly from the open state or from a closed

intermediate - and could be strongly reduced by rapid optical

channel closure (Fig. 2D).

Figure 2. Photocurrent reduction can be alleviated by green switch-back pulses. (A) Neurons were stimulated with two blue pulses spaced
2.5 min apart. After a 2.5 min (gray, n = 10) or 15 min (black, n = 4) recovery period photocurrent reduction was comparable (p.0.5). (B) Following
excitation by a blue light pulse, ChR2(C128A) photocurrents could be inactivated by a green switch-back pulse. Inactivation efficiency was 90.661.2%
(n = 24). (C) Left: Photocurrent reduction was markedly diminished when activated channel was inactivated by a green switch-back pulse after a 3 s
interval (black line). Application of a green light pulse after 20 s or 60 s was less effective in preventing current reduction (n = 3, 3). Gray line: Current
reduction with single blue pulses for comparison. Right: Quantification of photocurrent reduction relative to the previous stimulation pulse without
green switch-back (gray line) or with a green light pulse applied 3 s after blue light stimulation (black line). The green box indicates stimulation trials
following a trial terminated with a green pulse. (D) Minimal model for the ChR2(C128A) photocycle, modified after Berndt et al. [6]. (E) Photocurrent
reduction with repeated stimulation was also observed in ChR2(C128T) and ChR2(C128S) mutants.
doi:10.1371/journal.pone.0008185.g002
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To determine whether photocurrent reduction after repeated

stimulation is a property that is specific for ChR2(C128A) we also

generated and tested the other two bi-stable ChR2 mutants

reported by Berndt and colleagues [6]. We extended the ISI to

6 min to account for the very slow inactivation of ChR2(C128S)

and we maintained an ISI of 2.5 min for ChR2(C128T). Indeed,

rapid and pronounced photocurrent loss upon repeated stimula-

tion was also observed for the C128T and the C128S mutants

indicating that photocurrent run-down could be a general feature

of ChR2 variants (Fig. 2E).

Properties of Light-Triggered Spike Trains in Pyramidal
Neurons

Next, we investigated ChR2(C128A)-triggered spike trains in

hippocampal pyramidal cells in current-clamp. To reduce

variability between trials, we adjusted the resting potential to

260 mV by injection of a small holding current. To prevent

spontaneous network activity, we blocked excitatory transmission

by NBQX. In response to a brief blue light pulse (50 ms),

transfected cells fired a burst of action potentials (APs) (Fig. 3A).

Subsequent light pulses evoked a steadily decreasing number of

APs, indicating a reduction of the underlying photocurrents

(Fig. 3B). We also observed a reduction in depolarization between

spikes and a decrease in the initial firing frequency with repeated

stimulation, consistent with a run-down of photocurrents. Next, we

tested whether the number of spike trains fired by a cell could be

increased by interrupting the light-triggered depolarization using a

green light pulse applied 20 s after each blue pulse (Fig. 3C). We

found that both the number of stimulations that triggered spikes

and the reduction of the maximal depolarization were comparable

Figure 3. Light-induced spike trains in pyramidal neurons. (A) Spike trains triggered by four subsequent blue stimulation pulses.
Depolarization was allowed to revert to baseline between stimulations. Right: Instantaneous frequency of spike trains. (B) Analysis of light-triggered
spike trains. The number of spikes, maximal depolarization, and initial frequency decreased with repeated stimulation. Insert in first panel shows cell
firing 355 APs after first stimulation pulse. Gray lines represent 12 individual cells, average is shown in black. (C) Light-induced depolarizations were
interrupted by a green switch-back pulse after 20 s. Traces depict two subsequent spike trains. (D) The reduction in spike numbers and maximal
depolarizations was comparable to experiments without green switch-back pulse (n = 10).
doi:10.1371/journal.pone.0008185.g003
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to stimulation with blue light only (Fig. 3D), suggesting that the

reduction in photocurrent loss was too weak to have a pronounced

effect on spike train firing. Thus, it appears that the run-down of

photocurrents upon repeated stimulation limited the number of

light-triggered spike trains in ChR2(C128A)-expressing cells.

Why did some pyramidal cells fire long spike trains whereas

others fired only single spikes or failed to fire APs altogether?

We classified cells based on their response to the first

stimulation pulse into four categories (Fig. 4): Cells that did

not reach firing threshold (n = 4), sparse firing (1–30 APs; n = 5),

train firing (.30 APs, n = 6), and cells entering depolarization

block (n = 7). Cells entering depolarization block were defined

by strong spike amplitude attenuation due to incomplete

repolarization between spikes (Fig. 4A). The range of depolar-

izations leading to train firing was very narrow (38.261.8 mV;

Fig. 4B), as was the range of initial firing frequencies in this

group (45.863.5 Hz; Fig. 4C). Cells entering depolarization

block were characterized by strong depolarization (Fig. 4B),

high initial firing frequencies - in some cases exceeding 100 Hz

(Fig. 4C) - and very short delays to first spike (4.260.4 ms;

Fig. 4D). In summary, responses of individual pyramidal cells

were quite variable; consistent with the large variability of

photocurrents we measured (Fig. 1B).

An attractive property of the slow ChR2 mutants is their

enhanced light sensitivity, which could enable light stimulation in

vivo without the need to implant fiber optics. We were interested

whether extremely low light intensities would induce different firing

patterns in ChR2(C128A)-expressing neurons. We first stimulated

cells with a long but very dim light pulse (0.01 mW, 1000 ms). A

second stimulation pulse with high light intensity (8.4 mW,

1000 ms) was applied after a 2.5 min interval (Fig. 4E). To

minimize current loss between stimulation trials, light-induced

depolarization was terminated by applying a green pulse 20 s after

stimulation. Bursts of APs were fired in response to stimulation with

either low or high light intensity in 5 cells we recorded from.

Interestingly, the number of spikes was very similar under both

stimulation conditions (0.01 mW: 22.865.1 APs; 8.4 mW:

23.667.2 APs). However, due to the slow depolarization with low

light intensity, the first spike was fired after a delay of 393664 ms

whereas the delay was only 43616 ms for high light intensity. The

firing pattern of a given cell was similar after low and high intensity

light stimulation. The initial firing frequency was higher with a

Figure 4. Analysis of light-triggered activity in current-clamped cells. (A) Sample traces of a cell entering depolarization block after the first
stimulation pulse. Note the pronounced spike amplitude attenuation. The second pulse induced a smaller depolarization and a series of APs. (B – D)
Spike train parameters. Cells were classified based on their response to the first stimulation pulse. Train firing: .30 APs, n = 6. Depolarization block,
n = 7. Subthreshold depolarization, n = 4. Sparse firing: 1–30 APs, n = 5. (E) Spike trains in a pyramidal neuron stimulated with very low or high light
intensity. Analysis of the instantaneous firing frequency reveals a similar rapid frequency drop under both conditions.
doi:10.1371/journal.pone.0008185.g004
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bright stimulation pulse and thus rapid depolarization, but the firing

frequency rapidly dropped independently of the stimulation

condition (see Fig. 4E, right). When the stimulation paradigm

was repeated the number of APs per stimulation trial rapidly

decreased (after 6 repetitions: 0.01 mW: 1.461.3 APs; 8.4 mW:

2.861.9 APs). These results indicate that ChR2(C128A) can

reliably induce AP firing even at very low light intensities, a

property that may be useful to activate cells deep within the brain.

Recording of Light-Triggered Responses in Cell-Attached
Mode

To characterize light-triggered activity in unperturbed pyrami-

dal neurons, we performed a series of cell-attached recordings

(Fig. 5A). Similar to whole cell recordings, the number of APs

decreased with repeated stimulation in most cells (8/11 cells;

Fig. 5B and C (top)). We also observed cells that fired an increasing

number of spikes upon repeated stimulation (3/11 cells; Fig. 5B

and C (bottom)). During the first stimulations, these cells fired a

brief high frequency burst with pronounced spike amplitude

attenuation immediately after light onset (average delay:

4.060.7 ms), and a few more spikes after a silent period of 20–

60 s (Fig. 5C, bottom). In these cells, run-down of photocurrents

paradoxically led to an increase in total spike output in subsequent

stimulations, suggesting that during the first stimulations, they

entered depolarization block. Qualitatively, our cell-attached

recordings thus confirmed the results of light stimulation in

whole-cell configuration: Similar response classes were found, and

long bursts of APs with decreasing frequency were observed in

both recording configurations (Fig. 5D). Quantitatively, spike

trains were often longer in cell-attached recordings, indicating that

whole-cell recording slightly impeded AP generation.

Cell-Autonomous c-Fos Induction by Light-Triggered
Action Potential Firing

To investigate the cellular consequences of ChR2(C128A)-

induced spike bursts, we stained stimulated and non-stimulated rat

hippocampal slice cultures for endogenous c-Fos protein. Under

basal conditions, c-Fos expression was very low (Fig. 6A). Exposing

the cultures to 50 mM K+ (362 min, 10 min intervals) led to

strong c-Fos induction 2 h after stimulation (Fig. 6A). To test for

light-induced expression of c-Fos, we stimulated transfected

cultures in the cell culture incubator with LED-generated light

pulses (300 ms pulse length, ISI = 90 s). In a first set of

experiments, we fixed cultures at different time points after

stimulation with 10 light pulses and stained for c-Fos (Fig. 6B).

Interestingly, c-Fos levels were already significantly increased after

30 min (p,0.01; Fig. 6C). After 1 h, c-Fos expression reached a

plateau that was maintained for about 2 h.

Next, we stimulated cultures with different numbers of

stimulation pulses. We found that a single blue light pulse was

sufficient to induce c-Fos expression in transfected pyramidal cells

(p,0.03 compared to non-stimulated control; Fig. 6D). After a

single light pulse, c-Fos levels were heterogeneous: Significant c-

Fos upregulation (signal larger than mean + 2 SD of control) was

detected in 7/15 cells. After 10 light pulses, maximal optical c-Fos

induction was reached. High K+ stimulation induced even

stronger c-Fos signals (Fig. 6D, dotted line). We conclude that

the lack of further c-Fos upregulation by additional light pulses was

most likely due to run-down of photocurrents, limiting the number

of spike trains triggered in individual neurons. Importantly,

induction of c-Fos after light stimulation was restricted to

transfected cells (see Fig. 6B).

Light-triggered depolarizations were typically very large

(Fig. 4B), raising the possibility that action potentials were not

required to induce immediate early gene expression. We tested the

possibility that calcium influx through ChR2 itself and through

low-voltage-activated calcium channels was sufficient for c-Fos

induction. Application of the Na+ channel blocker TTX during

stimulation blocked c-Fos induction, indicating that spiking

activity was necessary to trigger the signaling cascade leading to

c-Fos expression (Fig. 6E). On the other hand, glutamate receptor

antagonists (NBQX, CPP) did not impair light-induced c-Fos

expression, indicating that synaptic activity was not required to

Figure 5. Cell-attached recordings of light-induced spike trains. (A) Sample trace. Cell-autonomous activity was isolated by bath-application
of NBQX. (B) In the majority of cells the number of spikes decreased with repeated stimulation (8/11 cells). Asterisks indicate cells presumably
entering depolarization block after initial stimulation pulses. (C) Top: Spike raster for cell with long delay to first spike (10.75 ms). Bottom: Spike raster
for cell with short delay to first spike (4.25 ms) presumably entering depolarization block. (D) Top: Long spike train containing 394 APs. Bottom: Spike
train in current-clamped cell (355 APs) for comparison.
doi:10.1371/journal.pone.0008185.g005
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induce c-Fos. These results validate the use of c-Fos expression as

an indicator for cellular activity [8,13]. Moreover, these data show

that calcium influx through the ChR2 pore itself (see [3]) is not

sufficient to induce c-Fos expression.

In order to investigate if ChR2(C128A) could be used to control

c-fos promoter-driven transgene expression, we prepared hippo-

campal slice cultures from fosGFP transgenic mice [21]. These mice

express a fosGFP fusion protein and have been used to identify and

characterize recently activated neurons in live brain tissue [21].

Under basal conditions, virtually no fosGFP signal was detectable.

Brief stimulation with 50 mM K+ (362 min, 10 min intervals)

induced strong fosGFP expression in pyramidal neurons (Fig. 6F).

Light stimulation of cultures transfected with ChR2(C128A) and

RFP (300 ms pulse length, 10 pulses, ISI = 90 s) led to strong and

significant expression of the fosGFP reporter protein specifically in

transfected neurons (Fig. 6G,H; p,0.05). As a control, we verified

that transfected but not light-stimulated cells did not express GFP

above background. Taken together, our data show that light-

triggered spike bursts reliably induced c-Fos expression in a cell-

specific and cell-autonomous manner. Moreover, light-induced

spike trains can be exploited to control the expression of custom

transgenes driven by the c-fos promoter.

Figure 6. Cell-specific c-Fos induction by light-triggered spike trains. (A) Immunostaining for endogenous c-Fos in CA1 area of rat
hippocampal slice cultures under basal conditions (top) and 2 h after stimulation by extracellular application of 50 mM K+ (bottom). (B) c-Fos
induction in a pyramidal neuron expressing ChR2(C128A) and cytosolic RFP after 10 stimulation pulses. Cultures were fixed 2 h after stimulation and
stained for c-Fos. (C) c-Fos signal in non-stimulated cells (n = 27) and at different time points after light stimulation (n = 18, 24, 18, 25, 21). Green
shaded bar indicates mean6SD of non-stimulated control cells. c-Fos induction was significant at all time points (p,0.01). (D) Significant c-Fos
induction was observed after a single blue light pulse (n = 17, 15, 14, 21, 19, 11). Dashed line indicates average c-Fos signal after 50 mM K+

stimulation. (E) Light-triggered c-Fos induction was blocked by TTX, but not by NBQX or CPP. *: p,0.01 compared to control. (F) Green fluorescence
in live organotypic slice cultures (CA3) from fosGFP transgenic mice under basal conditions (top) and 4 h after brief stimulation with 50 mM K+

(bottom). (G) Light-induced GFP expression in fosGFP reporter mouse neurons expressing ChR2(C128A) and RFP. (H) Light-induced GFP expression
was quantified 4 h after light stimulation (10 pulses). Scale bars in (A,B,F,G): 10 mm.
doi:10.1371/journal.pone.0008185.g006
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Discussion

Here we report that hippocampal pyramidal neurons expressing

the bi-stable channelrhodopsin mutant ChR2(C128A) fire long

spike trains in response to brief flashes of blue light. During

repeated activation, pronounced reduction of photocurrent

amplitudes limited the number of spike trains that could be

triggered in individual cells. Downstream of spiking activity, we

found that a single blue light pulse was sufficient to induce

expression of the immediate early gene c-fos in about half of the

transfected cells. We propose that the specific properties of

ChR2(C128A) could be exploited for temporally controlled cell-

specific induction of transgenes under the control of the c-fos

promoter.

An unexpected property of ChR2(C128A) was the rapid

decrease of peak photocurrent amplitude and bursting activity

during repeated light stimulations. In fact, our first set of

photostimulation experiments were not successful (data not

shown), because a diffuse white LED we used to position the slice

culture under the microscope already induced permanent

inactivation of most of the photocurrent. This cautionary tale

provides a potential explanation why a previous study of the very

light-sensitive ChR2(C128A) reported only subshreshold depolar-

ization and illustrates the practical importance of our findings [6].

In this context, it is important to note that we used RFP instead of

YFP as a fluorescent marker and thus avoided blue light exposure

while searching for transfected cells, thereby preventing loss of

photocurrent.

The loss of photocurrent with repeated stimulations was not

observed in cells expressing wt ChR2. Moreover, photocurrent

run-down did not depend on the blue light dose applied in each

stimulation trial. Therefore, we can exclude bleaching processes

such as destruction of the chromophore (all-trans retinal) as a cause

for run-down of light-induced currents. For inter-stimulus intervals

up to 15 min, there was no recovery of photocurrents. Loss of

photocurrent could be largely prevented by rapidly closing the

channels with green light, confirming that the light-gated channel

was not degraded by the blue light used for stimulation (Fig. 2C).

We conclude that the time spent in the open state is the critical

parameter that determines the fraction of channels lost in every

trial. For wt ChR2, relatively long-lived closed channel interme-

diates have been described [11,12], raising the possibility that we

stimulated the cells at too short ISIs, preventing full recovery of the

dark state between trials. However, prolonging the ISI from 2.5 to

15 min resulted in very similar reduction of peak photocurrent,

arguing against a single rate-limiting step in a linear photocycle

(Fig. 2A). More likely, the photocycle of ChR2(C128A) branches

during relaxation from the open state, causing accumulation of

more and more channels in a non-functional ‘lost’ state (Fig. 2D).

Indeed, after 24 h in the dark, photocurrents did recover,

indicating that spontaneous transitions from the lost to the dark

state were very rare. Branched photocycles are not a novel

concept, but have been proposed for various rhodopsins [14–16].

Future spectroscopic studies of the ChR2(C128A) photocycle may

help to understand the nature of the lost state and to develop

strategies to minimize photocurrent reduction upon repeated

stimulation. Photocurrent run-down was not restricted to

ChR2(C128A), but was also observed after repeated stimulation

of ChR2(C128T) and ChR2(C128S) mutants, indicating that this

phenomenon might be a general feature of ChR2 variants

(Fig. 2E).

Our findings suggest that ChR2(C128A) is best suited for the

temporally controlled induction of a limited number of strong

activity bursts. The potential for chronic stimulation is limited at

present, but might improve in the future as more information

becomes available about the channel photocycle. A very

interesting application would be light-triggered protein expression

in selected cells. Genetic activity reporters based on the activity-

dependent activation of the c-fos promoter have been used for in

vivo activity mapping [9,13] or for activity-induced transgene

expression [10]. Combining selective ChR2(C128A) expression

using suitable promoters with the spatial precision of light

activation [17] will allow to use light pulses for precisely timed

induction of c-fos promoter-controlled transgenes in specific cells.

In contrast to methods for conditional gene expression relying on

caged molecules [18–20], no addition of chemicals would be

needed for optogenetic induction, an important advantage for in

vivo applications. Indeed, we observed reliable light-triggered

induction of a c-fos promoter-driven reporter protein in

ChR2(C128A)-transfected neurons in cultures from transgenic

mice, demonstrating the successful implementation of this

approach (Fig. 6G,H). In summary, ChR2(C128A) seems ideally

suited to trigger gene expression in single cells with high temporal

precision.

Although c-Fos has been used in many studies as an activity

reporter [8,13,21,22], it is unclear what the minimal trigger for c-

Fos induction is. Here we show that a single light pulse induced c-

Fos in 47% of transfected pyramidal neurons (Fig. 6D). The

fraction of c-Fos expressing cells rose to 57% for 5 stimulation

pulses and to 65% for 10 or more pulses. c-Fos induction was

blocked by TTX but not by AMPA or NMDA receptor

antagonists, suggesting that c-Fos upregulation requires action

potential firing, but not excitatory synaptic input. This is consistent

with studies showing that Ca2+ influx through voltage-gated

calcium channels can trigger c-Fos expression [23,24]. In our cell-

attached recordings, 54% of cells fired a spike train in response to

the first light stimulation, a success rate that fits well to 47% of cells

expressing c-Fos after a single light pulse. Our data thus suggests

that a single train of 30 or more APs is sufficient for c-Fos

induction in hippocampal pyramidal cells. Average c-Fos expres-

sion levels increased with the number of light pulses, but reached a

plateau after 10 pulses. Again, this observation can be readily

explained by the failure of most cells to produce more than 10

spike trains in succession. Stimulation by 50 mM K+ induced c-

Fos at levels ,5-fold higher than after light stimulation (Fig. 6A,

D), indicating that the dynamic range of the c-Fos-system is very

large and might only become saturated under pathophysiological

conditions (i.e. persistent depolarization). In conclusion, we show

that ChR2(C128A)-mediated firing induces c-Fos expression in a

graded and cell-specific manner. This property could be exploited

to drive transgene expression in selected cells with a high degree of

temporal control.

Methods

Cell Culture and Transfection
Hippocampal slice cultures from rats (Sprague Dawley) or

fosGFP transgenic mice (C57BL/6) were prepared at postnatal

day 4–5 as described [25], according to the rules of the Federal

Veterinary Office of Basel-Stadt. After 6–8 days in culture, we

used a Helios gene gun (Bio-Rad) to co-transfect individual cells

with DNA encoding ChR2(C128X) and tdimer2 (dimeric RFP),

each subcloned into a neuron-specific (synapsin 1) expression

vector. The C128X point mutations were introduced into wt

ChR2 by site-directed mutagenesis. To achieve high expression

levels, 5 mg colloidal gold (1.6 mm, Bio-Rad) was coated with 4 mg

of each co-transfected construct.
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Electrophysiology
The recording setup was based on a BX-51 microscope

equipped with a LUMPlan 60x 0.9NA water immersion objective

(Olympus) and a cooled CCD camera (Sensicam QE). For patch-

clamp recordings, we used a MultiClamp 700B amplifier (Axon

Instruments) controlled by ScanImage [26] and MP-225 manip-

ulators (Sutter Instrument). Experiments were conducted at 29–

31uC 1–4 weeks after transfection under low ambient light

conditions. To ensure that all experiments started with a uniform

dark-adapted channel population, we recorded only from one cell

per culture. Artificial cerebrospinal fluid (ACSF) contained (in

mM) 119 NaCl, 26.2 NaHCO3, 11 D-glucose, 2.5 KCl, 4 MgCl2,

4 CaCl2, 1 NaH2PO4. ACSF was complemented with 1 mM TTX,

10 mM NBQX, 10 mM bicuculline for photocurrent measure-

ments in voltage-clamp; 10 mM NBQX for current-clamp or cell-

attached recordings. Pipettes for cell-attached experiments con-

tained 150 mM NaCl. Glass pipettes for patch-clamp recordings

were filled with intracellular solutions containing (in mM): 135

potassium gluconate, 10 HEPES, 4 MgCl2, 4 Na2-ATP, 0.4 Na-

GTP, 10 Na2-phosphocreatine, and 3 ascorbate.

Photostimulation
EGFP (Chroma #41017; 470/40 exciter) and rhodamine filter

sets (Zeiss #43; 545/25 exciter) were used for arc lamp

stimulation. Light pulses (50 ms if not indicated otherwise) were

controlled by a mechanical shutter (Uniblitz). Light pulse power

(measured in the back focal plane of the objective) was 8.4 mW for

blue and 44 mW for green pulses, if not indicated otherwise. In

electrophysiological experiments, a minimal interval of 2.5 min

was maintained between stimulation pulses. For stimulation in the

cell culture incubator, culture inserts in 35 mm cell culture dishes

were illuminated from below with blue LEDs (Luxeon V Star blue,

Philips; 0.2 mW/mm2 at 15 mm from the emitter).

Immunohistochemistry
For c-Fos immunolabeling cultures were fixed at the indicated

intervals after onset of stimulation using Formal-Fixx (Shandon).

The primary antibody (Anti-c-Fos rabbit pAb, Calbiochem) was

applied over-night in permeabilization buffer (PBS containing 1%

BSA, 0.3% Triton X-100). After extensive washing the secondary

antibody (Alexa Fluor 488 goat anti-rabbit IgG, Invitrogen) was

applied for 2 h in 1:3 diluted permeabilization buffer. After

extensive washing cultures were mounted on glass slides and stored

at 4uC.

Data Analysis
For analysis of c-Fos expression, transfected cells were selected

based on the RFP signal. For unbiased analysis of c-Fos expression

levels, the nuclear c-Fos signal (green fluorescence) was measured

and background subtracted using ImageJ. The experimenter was

blind to the experimental conditions. Electrophysiological record-

ings were analyzed with custom software written in MATLAB. For

characterization of spike trains, the initial frequency is the

frequency of the first two spikes fired in a burst and the

instantaneous frequency is the frequency between two subsequent

spikes. Numerical values are given as mean6s.e.m. Statistics were

performed using two-tailed t tests (Bonferroni-corrected for

multiple comparisons).
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