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Switzerland

Abstract

PAX transcription factors play an important role during development and carcinogenesis. In this study, we investigated
PAX2 protein levels in melanocytes and melanoma cells by Western Blot and immunofluorescence analysis and
characterized the role of PAX2 in the pathogenesis of melanoma. In vitro we found weak PAX2 protein expression in
keratinocytes and melanocytes. Compared to melanocytes increased PAX2 protein levels were detectable in melanoma cell
lines. Interestingly, in tissue sections of melanoma patients nuclear PAX2 expression strongly correlated with nuclear atypia
and the degree of prominent nucleoli, indicating an association of PAX2 with a more atypical cellular phenotype. In
addition, with chromatin immunoprecipitation assay, PAX2 overexpression and PAX2 siRNA we present compelling
evidence that PAX2 can regulate ADAM10 expression, a metalloproteinase known to play important roles in melanoma
metastasis. In human tissue samples we found co-expression of PAX2 and ADAM10 in melanocytes of benign nevi and in
melanoma cells of patients with malignant melanoma. Importantly, the downregulation of PAX2 by specific siRNA inhibited
the anchorage independent cell growth and decreased the migratory and invasive capacity of melanoma cells. Furthermore,
the downregulation of PAX2 abrogated the chemoresistance of melanoma cells against cisplatin, indicating that PAX2
expression mediates cell survival and plays important roles during melanoma progression.
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Introduction

Malignant melanoma represents a substantial clinical challenge.

It is one of the fastest-rising malignancies in the last several

decades [1] and it is notorious for the propensity for metastasis and

for the poor response to current therapeutic regimens. Under-

standing the molecular aberrations involved in the development

and progression of malignant melanoma will be therefore essential

for the development of new therapeutic strategies in the treatment

of this aggressive and lethal skin disease.

Melanoma arises from melanocytes, which are neural crest-

derived pigment cells that migrate to the subdermal layer of the

skin and retina of the eye during embryogenesis. It has been

reported that PAX3, one member of the PAX transcription factor

family, plays an important role in melanocyte differentiation and

proliferation [2]. The importance of PAX family members during

development has been underscored by several loss-of function

mutations that usually lead to a lack of the specific structures or

organs where the PAX protein is normally expressed [3]. In

addition, PAX genes are capable of acting as proto-oncogenes by

transactivating promoters of target genes involved in the

regulation of cell growth and apoptosis [4]. In humans, 9 PAX

genes have been identified. All PAX genes commonly possess a

paired domain, which can bind to DNA in sequence specific

manner in order to function as transcription factors [4]. It is

known that abnormal expression of PAX genes is associated with

cancer development and progression. Abnormal expression levels

of PAX genes through chromosomal translocations are found for

example in thyroid cancer and acute lymphoblastic leukaemia

[5,6]. In melanoma patients PAX3 has been identified as a

significant marker for melanoma staging [7,8] and for the

detection of circulating melanoma cells [7]. Importantly, the

transfection of melanoma cells with antisense PAX3 oligonucle-

otides triggers cell death by inducing apoptosis [9,10], highlighting

the potential therapeutic option of targeting PAX3 in melanoma

patients. In contrast to PAX3, no data exist about the expression

and function of PAX2 in melanoma development and progression.

In the kidney PAX2 is critical for the survival of fetal collecting

ducts and has a primary anti-apoptotic function in embryonic

renal cells [11]. PAX2 expression is often restricted to embryo-

genesis and is down-regulated in adults but is reexpressed in

several tumors like Wilms tumor [12], renal cell carcinoma [13],

breast cancer [14] and karposi sarcoma [15]. Interestingly, we

identified with the Transcriptional Element Search System (TESS)
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a published PAX binding site [16] in the promoter of ADAM10, a

metalloproteinase which was significantly overexpressed in

melanoma metastasis [17]. Therefore we wanted to characterize

PAX2 expression in melanoma and investigate its role in the

regulation of ADAM10. We found weak PAX2 expression in

melanocytes and keratinocytes, but increased PAX2 levels in

melanoma cell lines. Importantly, we present strong evidence, that

PAX2 can regulate ADAM10 expression and that the downreg-

ulation of PAX2 inhibits the anchorage independent cell growth of

melanoma cells. Furthermore we are able to demonstrate that

PAX2 expression in melanoma cells is involved in the migration,

invasion and cell survival of melanoma cells.

Results

PAX2 is differentially expressed in normal and neoplastic
cells of the human skin

To determine the expression of PAX2 in human skin tissue we

performed immunohistochemistry analysis on tissue sections of

benign nevi and malignant melanoma. In normal skin, PAX2 was

mainly expressed in nuclei of regenerating cells especially in

epithelial cells of sweat gland and the germinal basal cell layers of

the epidermis (Figure 1 A–C). In contrast, cells with low

regenerative potential such as corneocytes of the most apical

epidermal cell layer (Figure 1 B, C) or stromal cells intermingled

between adnexal skin tissue (Figure 1 A) were mainly negative for

PAX2. Both malignant melanomas (Figure 1 D) and intradermal

nevi (Figure 1 E, F) show heterogeneous PAX2 expression levels.

In malignant melanomas, nuclear PAX2 expression strongly

correlated with nuclear atypia and the degree of prominent

nucleoli (Figure 1 D) indicating an association of PAX2 with a

more atypical cellular phenotype. In contrast, the heterogeneous

PAX2 expression of intradermal naevi did not correlate with any

obvious histological features. In particular, PAX2 expression in

nevi was regionally regulated which was reflected in areas with

absent or very weak nuclear PAX2 expression (Figure 1 E) as well

as in regions with very prominent PAX2-positive nuclei (Figure 1

F).

PAX2 regulates ADAM10 expression in melanoma cells
To determine the expression levels of PAX2 and ADAM10 in

keratinocytes, melanocytes and melanoma cells we performed

Western Blot and immunofluorescence analysis. Although we

could not detect any PAX2 expression in melanocytes and

keratinocytes by Western Blot analysis (Fig. 2A), we found weak

nuclear PAX2 expression in both cell lines by immunofluorescence

analysis (Fig. 2B). In contrast to melanocytes and keratinocytes

strong PAX2 expression was found in 5 of 6 melanoma cells

(Fig. 2A). Comparing the PAX2 expression with ADAM10

expression, we found that all cell lines, which expressed PAX2

did also express ADAM10 (Fig. 2A). Only the melanoma cell line

NW1539 expressed neither PAX2 nor ADAM10 (Fig. 2A). To

determine the localisation of PAX2 and ADAM10 we performed

immunofluorescence analysis in melanocytes and melanoma cells.

Weak nuclear Pax2 expression was found in melanocytes

compared to stronger nuclear PAX2 expression in the melanoma

cell lines IPC298 and G631 (Fig. 2B). In contrast to nuclear PAX2,

cytoplasmic and membranous ADAM10 expression was detect-

able in melanocytes and melanoma cells. Quantification of

immunofluorescence staining in melanocytes revealed that weak

PAX2 expression correlated with weak ADAM10 fluorescence

intensity and stronger immunofluorescence staining of PAX2 in

melanoma cells was accompanied by increased ADAM10

expression (Fig. 2C). To investigate, if PAX2 is involved in the

regulation of ADAM10, we performed a chromatin immunopre-

cipitation (ChIP) assay. As shown in Fig. 3A the ADAM10

Figure 1. Immunohistochemical analysis of PAX2 expression in tissue sections of benign nevi and malignant melanoma. (A) In
normal sweat glands, PAX2 is expressed in gland epithelial cells (black arrows) while intermingled stromal cells only show very weak or absent nuclear
PAX2 expression (green arrow) Bar represent 100 mm. (B, C) Normal appearing epidermal cell layers adjacent to (B, bar represent 100 mm) nevi or (C,
bar represent 200 mm) malignant melanoma show a differentially PAX2 expression with strongest PAX2 levels in germinal basal cell layers (black
arrows) decreasing in higher differentiated keratinocytes and finally being absent in corneocytes (green arrows). (D) Malignant melanoma cells
constantly exhibit a heterogeneous nuclear PAX2 expression. Strongest expression is observed in large atypical nuclei with prominent nucleoli (black
arrows). Bar represent 50 mm. (E, F) PAX2 expression in intradermal nevi was heterogeneous and did not correlate with histological features (Original
magnification: A–C: 206; D–F: 406). Bars represent 50 mm.
doi:10.1371/journal.pone.0022312.g001
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promoter fragment containing the PAX2 binding site, was only

amplified in samples that were subsequently immunoprecipitated

with PAX2 antibodies but not with control IgG antibodies. In

addition to investigate if PAX2 can regulate ADAM10 protein

expression, we overexpressed PAX2 in SKMel5 cells and

determined ADAM10 expression by Western Blot analysis. As

shown in Fig. 3B the overexpression of PAX2 led to an induction

of ADAM10 protein levels. To further confirm that PAX2 is

involved in the regulation of ADAM10 we downregulated PAX2

with two different siRNA (PAX2-siRNA1/2) in SkMel5 cells and

performed Western Blot analysis. As shown in Fig. 3C by Western

Blot analysis, the downregulation of PAX2 significantly decreased

ADAM10 expression. To rule out off-targets effect by PAX2-

siRNA, we confirmed that the downregulation of PAX2 did not

reduce PAX8 levels (Fig. 3D). With immunofluorescence analysis

we could confirm that the downregulation of PAX2 led to a

decreased ADAM10 expression in melanoma cells (Fig. 3E and F).

In summary, we can show that PAX2 can bind to the ADAM10

promoter and regulate ADAM10 protein levels in melanoma cells.

PAX2 and ADAM10 are expressed in melanocytes of
benign nevi and in melanoma cells of patients with
malignant melanoma

To investigate the expression of PAX2 in tissue sections of

benign nevi and malignant melanoma we performed double

Figure 2. PAX2 and ADAM10 expression in melanocytes, keratinocytes and melanoma cells. (A) Western Blot analysis was performed to
determine the PAX2 and ADAM10 expression in melanocytes (Mel43), keratinocytes and melanoma cells (A375, G361, IPC298, MeWo, NW1539 and
SKMel5). Notably, 5 of 6 melanoma cell line show PAX2 and ADAM10 expression. b-Actin Western Blot analysis was performed to control equal
protein loading. (B) Immunofluorescence staining of primary melanocytes Mel43 (left image) and the melanoma cell lines IPC298 (middle image) and
G361 (right image) was performed to investigate the localisation of ADAM10 and PAX2. Cells were incubated with monoclonal ADAM10 and
polyclonal PAX2 specific antibodies, followed by Alex488 coupled secondary antibodies (green) and Cy3 coupled secondary antibodies (red). The cells
were stained with DAPI to visualize nuclei (blue). (C) The relative immunofluorescence intensity of ADAM10 and PAX2 expression in the melanocytes
Mel43 and the melanoma celllines IPC298 and G631 were determined and depicted in a graph. ***P,0.001 PAX2 immunofluorescence intensity
considered statistically significant compared to the PAX2 immunofluorescence intensity of melanocytes. ###P,0.001 ADAM10 immunofluores-
cence intensity considered statistically significant compared to ADAM10 immunofluorescence intensity. (D) The specificity of ADAM10 and PAX2
immunofluorescence staining was controlled by using isotype specific control (control IgG) antibodies.
doi:10.1371/journal.pone.0022312.g002
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immunofluorescence analysis. As shown in Fig. 4 PAX2 expression

was detectable in S100 positive melanocytes of benign nevi

(Fig. 4A) and in S100 positive melanoma cells (Fig. 4B).

Importantly, PAX2 expression was visible in nucleoli of melano-

cytes (Fig. 4A, white arrows in the insets of PAX2 and merged

images) and melanoma cells (Fig. 3B, yellow arrows in the insets of

PAX2 and merged images). Notably, in melanoma patients larger

PAX2 expressing nucleoli were detectable (Fig. 3B, merged image,

yellow arrows). To further determine if ADAM10 and PAX2 are

co-expressed in melanocytes and melanoma cells in situ double

immunoflourescence analysis on tissue sections were performed.

ADAM10 and PAX2 were co-expressed in melanocytes of benign

nevi (Fig. 5A, higher magnification of melanocytes expressing

ADAM10 and PAX2 is depicted in the inset) and in melanoma

cells of patients with malignant melanoma (Fig. 5B+C, higher

magnifications of melanoma cells expressing ADAM10 and PAX2

are depicted in the insets). In summary we can conclude, that

melanocytes and melanoma cells in situ co-express ADAM10 and

PAX2.

Knockdown of PAX2 by siRNA inhibits anchorage
dependent and independent cell growth of melanoma
cells

In the progression of melanoma the anchorage independent cell

growth of melanoma cells is a crucial point for the dissemination of

melanoma cells to other sides of the body [18]. To evaluate the

role of PAX2 in the anchorage-dependent and -independent cell

growth, PAX2 expression in SkMel5 cells was downregulated by

PAX2 specific siRNA. Importantly, the downregulation of PAX2

Figure 3. PAX2 regulates ADAM10 expression in melanoma cells. (A) Chromatin immunoprecipitation (ChIP) assay was performed with
SKMel5 cells as described in material and methods. One representative experiment of three independently performed experiments is shown. (B)
SKMel5 cells were transfected with pcDNA3.1 plasmid alone or with PAX2-pcDNA3.1 plasmid DNA. The expression of PAX2 and ADAM10 was
determined by Western Blot analysis. b-actin was used to determine equal protein loading. (C) SkMel5 were transfected with 10 nM scrambled siRNA
(sc-siRNA) or with 10 nM of two different PAX2-siRNAs (PAX2-siRNA1-2). 48 hours and 72 hours after the transfection, cells were lysed and the protein
expression level of PAX2 and ADAM10 was investigated by Western Blot analysis. b-actin was used to determine equal protein loading. (D) SkMel5
were transfected with 10 nM scrambled siRNA (sc-siRNA) or with 10 nM of two different PAX2-siRNAs (PAX2-siRNA1-2). 48 hours and 72 hours after
the transfection, cells were lysed and the protein expression level of PAX8 was investigated by Western Blot analysis. b-actin was used to determine
equal protein loading. (E) Immunofluorescence analysis with ADAM10 and PAX2 specific antibodies were performed in sc-siRNA (left image) and
PAX2- siRNA (right image) transfected SkMel-5 cells. ADAM10 expression was visualized by Cy3 coupled goat anti-mouse secondary antibodies,
whereas PAX2 expression was detected with Alexa488 coupled goat anti-rabbit antibodies. (F) In the graphs the quantification of ADAM10 and PAX2
immunofluorescence intensity is shown. ***P,0.001 considered statistically significant compared to the sc-siRNA transfected SkMel5 cells.
doi:10.1371/journal.pone.0022312.g003
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completely inhibited the anchorage-independent cell growth of

SkMel5 melanoma cells (Fig. 6A). In contrast, the PAX2

downregulation in SkMel5 cells did not lead to a complete

inhibition of the anchorage dependent cell growth, but signifi-

cantly reduced the proliferation of SkMel5 cells (Fig. 6B). As PAX2

is able to regulate ADAM10 expression, these data are in line with

our former study where we could demonstrate that the

downregulation of ADAM10 reduces the anchorage independent

cell growth [17]. To determine the role of PAX2 in the migration

and invasion of melanoma cells we performed migration and

invasion assays of SkMel5 cells after the knockdown of PAX2.

Importantly, the downregulation of PAX2 led to a significant

reduction of the migratory (Fig. 6C) and invasive capacity (Fig. 6D)

of melanoma cells.

Downregulation of PAX2 in melanoma cells abrogates
the chemoresistance against cisplatin

Melanoma cells are very resistant against chemotherapy and

only few melanoma patients show response rates against

chemotherapeutic reagents [19]. PAX2 expression has been

shown to be involved in cancer cell survival [15]. To investigate

if PAX2 is involved in the chemoresistance of melanoma cells, we

downregulated PAX2 protein expression in melanoma cells and

treated the cells with the chemotherapeutic reagent cisplatin.

Interestingly, the downregulation of PAX2 alone increased

significantly the number of apoptotic melanoma cells (Fig. 7). In

addition, compared to control siRNA transfected melanoma cells,

PAX2 downregulated melanoma cells showed a significant

induction of apoptosis after the treatment with cisplatin (Fig. 7).

In summary, we can conclude that PAX2 expression is involved in

melanoma cell survival.

Discussion

The PAX family of transcription factors consists of 9 members,

which play crucial roles during normal development and

carcinogenesis [20]. In melanocytes and melanoma it has been

shown, that PAX3 is critical for the normal development of

melanocytes, but plays also important roles during melanoma

progression (reviewed in [21]). To investigate the role of PAX2 in

melanoma development, we analyzed its expression in normal

melanocytes and melanoma cells and in tissue samples of benign

nevi and melanoma. Furthermore with in vitro assays we

determined the role of PAX2 in melanoma progression. We

found: 1) Weak PAX2 expression in normal melanocytes and

increased expression in melanoma cells. 2) PAX2 was involved in

the regulation of ADAM10, a transmembrane protease, which was

recently found from our group to be upregulated in melanoma

metastasis [17]. 3) The downregulation of PAX2 reduced the

anchorage dependent and independent cell growth of melanoma

cells. 4) PAX2 was involved in the migration and invasion of

melanoma cells. 5) PAX2 mediated melanoma cell survival against

therapeutic reagents like cisplatin. Taken all our results together,

we assume that PAX2 represents an interesting new therapeutic

target molecule for the treatment of patients with melanoma or

melanoma metastasis. The inhibition of PAX2 in melanoma cells

could reduce the proliferation, migration, invasion and chemore-

sistance of melanoma cells. In this context our novel and

important finding that PAX2 can regulate ADAM10 expression

could play a major role in the above mentioned tumor promoting

functions of PAX2 in melanoma. ADAM10 belongs to the ADAM

family, which cleave transmembrane proteins like growth factors,

cytokines, chemokines and adhesion molecules [22]. It is known,

that the soluble forms of the cleaved proteins can bind to receptors

Figure 4. PAX2 is expressed in melanocytes of benign nevi and melanoma cells of patients with malignant melanoma. Tissue sections
of benign nevi (A) and malignant melanoma (B) were investigated by double immunofluorescence analysis with S100 (melanocyte marker) and PAX2
specific antibodies. S100 expression was visualized by Cy3 coupled secondary antibodies (red) and PAX2 expression was detected with Alexa488
coupled goat anti-rabbit secondary antibodies (green). White arrows in the higher magnified insets indicate PAX2 expression in nucleoli of
melanocytes of benign nevi (A), yellow arrows in the higher magnified insets specify PAX2 expression in nucleoli of melanoma cells (B).
doi:10.1371/journal.pone.0022312.g004
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on other cancer cells and thereby induce the proliferation,

migration or invasion of cancer cells [23]. In our previous study

we demonstrated that ADAM10 is involved in the shedding of L1-

CAM [17], a neural cell adhesion molecule known to be

overexpressed in different types of cancer including melanoma

[24]. L1-CAM expression in melanoma cells mediates resistance

against chemotherapeutic reagents [17] and soluble L1-CAM can

induce tumor cell proliferation, migration and invasion [24].

Therefore the downregulation of ADAM10 by PAX2 siRNA in

melanoma cells will inhibit the production of soluble L1-CAM and

therefore will inhibit the tumor-promoting function of soluble L1-

CAM during melanoma progression. Another important aspect of

our study is that the downregulation of PAX2 in melanoma cells

abrogated the chemoresistance of melanoma cells against cisplatin.

The mechanism for PAX2-mediated protection from cell death is

unknown, although it has been shown that the closely related

PAX8 was reported to transcriptionally activate the anti-apoptotic

protein BCL2 [25]. Therefore further experiments have to be

performed to identify proteins which can be regulated through

PAX2 and are responsible for the chemoresistance of melanoma

cells against therapeutic reagents like cisplatin.

An interesting future topic of our research will be to identify

factors which are involved in the regulation of PAX2 in melanoma

cells. In renal cell carcinoma it has been shown that the loss of

VHL and hypoxia can upregulate PAX2 expression [26].There-

fore, determining factors and their signalling pathways which are

involved in the progression of melanoma which can upregulate

PAX2 expression, may identify new therapeutic target proteins for

the treatment of melanoma patients.

In tissue samples of benign nevi and melanoma we identified

PAX2 expression in nucleoli of melanocytes and melanoma cells.

Interestingly, nucleoli are dramatically modified in many human

cancers. The role of the nucleolus in tumorigenesis is highlighted

by the regulation of the powerful tumor supressor gene p53. It has

been shown that the retention of MDM2, a key regulator of p53,

in the nucleolus leads to an accumulation of p53 and the activation

of p53 dependent pathways [27]. Importantly, PAX2, PAX5 and

PAX8 are able to repress p53 [28]. Further experiments have to be

Figure 5. ADAM10 and PAX2 are co-expressed in melanocytes and melanoma cells in tissue sections of benign nevi and malignant
melanoma. To determine if ADAM10 and PAX2 are co-expressed in melanocytes of benign nevi or in melanoma cells of patients with malignant
melanoma, double immunofluorescence analysis on tissue sections has been performed. ADAM10 (green) and PAX2 (red) expression is detectable
in melanocytes of benign nevi (A insets represent higher magnification of the single channels and the merged image of all 3 channels) and in
melanoma cells of patients with malignant melanoma (B and C insets represent higher magnification of the single channels and the merged image of
all 3 channels).
doi:10.1371/journal.pone.0022312.g005
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performed to demonstrate that PAX2 can regulate p53 expression

in melanoma cells and that the downregulation of PAX2 may

activate p53 dependent pathways which are involved in mediating

cell survival in melanoma cells. In addition, it has been shown in

prostate cancer, that the inhibition of PAX2 resulted in cell death

independent of p53, demonstrating that additional tumor

supressors or cell death pathways are inhibited by PAX2 in

prostate cancer.

In summary, our data clearly demonstrate that PAX2

regulates ADAM10 expression in melanoma cells and to our

opinion PAX2 represents a new interesting therapeutic target

molecule in melanoma. Further experiments in rodents will

clarify, if the inhibition of PAX2 in melanoma cells will lead to

a reduced melanoma growth in vivo and the development of

small molecule inhibitors against PAX2 may represent a

potential therapeutic option for the treatment of melanoma

patients.

Materials and Methods

Antibodies
The ADAM10 antibody for immunofluorescence analysis was

purchased from Diaclone (Besancon, France), the ADAM10 antibody

for Western Blot analysis from Chemicon (Schwalbach, Germany).

The PAX2 antibodies for westernblot analysis were obtained from

Abcam (Cambridge, United Kingdom), for immunohistochemistry

and immunofluorescence analysis from Epitomics (California, USA).

The b-actin antibody for Western Blot analysis was purchased from

Sigma-Aldrich (Taufkirchen, Germany). The antibodies S100 (melon-

ocyte marker) was ordered from Santa Cruz (Heidelberg, Germany),

CD31 was obtained from Dako (Hamburg, Germany).

Human tissue samples
Slides for immune staining were prepared from excision

material stored at the histology laboratory, Department of

Figure 6. Downregulation of PAX2 decreases the proliferation, migration and invasion of melanoma cells. Anchorage-dependent (A)
and anchorage-independent (B) cell growth was investigated by using a MTT proliferation assay. Twenty-four hours after siRNA transfection, SkMel5
cells treated with transfection reagents alone (mock) or transfected with scrambled siRNA (sc-siRNA) or PAX2-specific siRNAs were seeded into
uncoated anchorage dependent cell growth) or polyHEME coated (anchorage independent cell growth) 96 well plates and cell growth was measured
24, 48 and 72 hours later using a MTT-assay. 3 independent experiments have been performed and statistical analysis has been performed using
Anova post-hoc analysis. ***P,0.001 considered statistically significant compared to control transfected cells (Mock). ###P,0.001 considered
statistically significant compared to scrambled-siRNA transfected cells, *P,0.01 considered statistically significant compared to scrambled-siRNA
transfected cells. (C) Migration assay of SkMel5 cells was performed 48 h after the transfection with control siRNA (sc-siRNA) or PAX2 specific siRNA
(PAX2-siRNA). ***P,0.001 considered statistically significant compared to control siRNA transfected cells (sc-siRNA). (D) The invasive capacity of
SkMel5 cells was analyzed 48 h after the transfection of contol (sc-siRNA) or PAX2 siRNA (PAX2-siRNA) in an invasion assay as described under
material and methods ***P,0.001 considered statistically significant compared to control siRNA transfected cells (sc-siRNA).
doi:10.1371/journal.pone.0022312.g006
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Dermatology, Clinic of the Goethe University, from a total of 13

patients. In 5 cases, the diagnosis was ‘‘naevus cell neavus’’, in the

8 other cases, the diagnosis of primary malignant melanoma had

been established. Tissue sections were obtained from the tissue

bank of the histology laboratory , Department of Dermatology,

university hospital in Frankfurt am Main (Germany).

Immunohistochemistry
All specimens were fixed in 4% formaline (pH 7.4), embedded

in paraffin followed by cutting with a microtome (3 mm thickness)

and placing on SuperFrost Plus slides (Microm International,

Walldorf, Germany). For immunohistochemistry, the following

antibody was used: monoclonal rabbit IgG anti-human PAX2

(Epitomics, California, USA). The slides were deparaffinized in

xylol for 20 minutes and then rehydrated in descending series of

ethanol (100%, 100%, 96%, 96%, 70%, and 70%). For antigen

retrieval the slides were boiled in citrate buffer (pH 6.0) for

40 min, and then allowed to cool down for 15 min. After washing

with PBS buffer the endogenous peroxidase was blocked with

H2O2 for 15 min at room temperature. After washing in PBS the

slides were incubated with the antibody against PAX2 (dilution

1:100) for 60 min at room temperature and washed in PBS again.

The secondary antibody was incubated for 20 min at room

temperature and after washing the slides in PBS the biotin

streptavidine label was incubated for 20 min at room temperature.

A detection kit including horseradish peroxidase and diamino-

benzidine as chromogene was applied for 5 min (DCS, Hamburg,

Germany). Counterstaining was performed with hematoxilin for

6 min.

Cell culture
The human keratinocyte cell line HaCaT and the melanoma

cell lines MeWo and Sk Mel 5 were provided from Prof. Jörg

Reichrath (Department of Dermatology, The Saarland University

Hospital, Homburg/Saar, Germany). The melanoma cell lines

A375, IPC298, G361, NW1539 were a kind gift from Dr. Claudia

Bürger (Department of Dermatology, Goethe University hospital)

and human melanocytes (Mel43) were isolated as described

elsewhere [29].

siRNA transfection
For downregulation of endogenous PAX2 expression the

following siRNA duplexes (MWG Biotech AG, Ebersberg,

Germany) were used: PAX2-siRNA1: 59-GAA GUC AAG UCG

AGU CUA U-39, PAX2-siRNA2:59AUC UUC AUC ACG UUU

CCU CCC CC-39. As a negative control unspecific scrambled

siRNA duplexes (59-AGG UAG UGU AAU CGC CUU GTT-39)

were used. 24 hours before the transfection 16105 cells were

seeded in 6-well plates. Transfection of siRNA was carried out

using Oligofectamine (InVitrogen, Karlsruhe, Germany) and

10 nM siRNA duplex (MWG Biotech AG, Ebersberg, Germany)

per well. Transfection was performed as previously described [30].

Specific silencing of targeted genes was confirmed by at least two

independent experiments.

Western Blot Analysis
Cell extracts were prepared and processed as described recently

[31] at times indicated. Western Blot membranes were incubated

with a rabbit antibody against human ADAM10 in a dilution of

1:2000 (Calbiochem, Darmstadt, Germany) in 2% non-fat dry

milk dissolved in TTBS (20 mM Tris, 150 mM NaCl pH 7.5,

0.1% Tween 20). Blots were developed using the ECL system

(AmershamPharmacia, Buckingshamshire, UK). To confirm equal

loading, blots were reprobed with a b-actin antibody (Sigma,

Deisenhofen, Germany).

Chromatin immunoprecipitation (ChIP) assay
The ChIP-IT Express kit (Active Motif, Rixensart, Belgium) was

used to perform the ChIP assay. Four dishes of Sk-Mel5 cells with

16106 cells/dish were incubated for 10 min with 1% formalde-

hyde, followed by glycine stop solution. Afterwards, cells were

harvested, centrifuged and resuspended in lysis buffer. After lysis

and homogenization in a douncer, nuclei were collected by

centrifugation and resuspended in shearing buffer. Enzymatic

Figure 7. Downregulation of PAX2 abrogates chemoresistance of melanoma cells against cisplatin. 48 hours after siRNA transfection,
SkMel5 cells were left untreated or treated for 24 hours with 40 mM cisplatin (CDDP). Melanoma cells were collected and analyzed with cell-cycle
analysis as described under material and methods. In the graph the percentage of cells in sub-G1 phase (apoptotic cells) after the different treatments
is shown. 3 independent experiments have been performed and statistical analysis was performed as described in material and methods. **P,0.01
considered statistically significant compared to Mock or Mock and cisplatin (CDDP) treated cells ##P,0.01 considered statistically significant
compared to scrambled-siRNA transfected or scrambled-siRNA transfected and cisplatin (CDDP) treated cells.
doi:10.1371/journal.pone.0022312.g007
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shearing cocktail was added for 10 min to digest DNA in

fragments with sizes ranging from 200–500 bp. After centrifuga-

tion, 10 ml of the sheared chromatin was used as an input control.

The immunoprecipitation was performed overnight using a head

to head rotator. The incubation mixture contained 50 ml sheared

chromatin, 100 ml protein G magnetic beads, and 3 mg PAX2

antibodies (Abnova, Heidelberg, Germany). After washing and

elution, the samples were reverse cross-linked and treated with

ribonuclease A and proteinase K. The DNA and the sheared

chromatin input were used directly for PCR. The primer pairs 59-

GCG CGT CAC GTG GTG AGG AA-39 and 59-CCC TGG

CAG GAG AAA CGG CG-39, was designed to amplify a 207-bp

product of the human ADAM10 promoter which contains the

PAX2 binding site (Sequence: NM_001110.2).

Fluorescence microscopy
Cells were grown on coverslips and fixed with 4% paraformal-

dehyde/PBS. After washing the cells with PBS, cells were

permeabilized and blocked with 0.1% Triton X-100/PBS

containing 5% BSA. The anti-human ADAM10 ectodomain

antibody (1:200 dilution) or PAX2 antibody (1:100 dilution) was

incubated for 1 hour at room temperature. Following 3 times

washing, bound antibodies were deteced by Alexa 488 conjugated

goat anti-mouse or Cy3 conjugated goat anti-mouse (Molecular

Probes, Karlsruhe, Germany) secondary antibodies. Following

PBS-washing nuclei were stained with 496-diamidino-2-phenylin-

dole (DAPI, Sigma, Munich, Germany) and cells were mounted in

Fluoromount-GTM (Biozol, Eching, Germany) and examined by

fluorescence microscopy (Keyence, Neu-Isenburg, Germany) or

with an LSM 510 Meta confocal laser-scanning microscope (Carl

Zeiss, Jena, Germany). Quantification of fluorescence intensity was

performed using software from Zeiss image program. All

fluorescence images were taken under identical conditions.

Immunofluorescence analysis of tissue sections
For immunofluorescence analysis, tissue sections were deparaffi-

nized as described under immunohistochemistry. Antigen retrieval

was performed incubating the tissue sections for 20 min in 0.01 M

sodium citrate buffer, pH 6.0 in a microwave oven (500 W). After

incubation with blocking buffer (0.1% Triton X-100/PBS contain-

ing 1% BSA and 10% horse serum) for 1 h, tissue sections were

incubated for two hours at 37uC, than overnight at 4uC with the first

antibodies (diluted in 1% BSA/10% horse serum/PBS/0.1% Triton

X-100) as indicated. Following washing, bound antibodies were

detected by Alexa 488 conjugated goat anti-mouse (Molecular

Probes, Karlsruhe, Germany) or goat anti-rabbit Cy3 (Molecular

Probes, Karlsruhe, Germany) secondary antibodies. Nuclei were

stained with 49,6-diamidino-2-phenylindole (DAPI, Sigma, Deisen-

hofen, Germany) and slides were mounted in Fluoromount G

(Southern Biotechm, Birmingham, USA). Evaluation was performed

by fluorescence microscopy and analyzed with an LSM 510 Meta

confocal laser-scanning microscope (Carl Zeiss, Jena, Germany).

Proliferation assay
24 hours after the transfection of siRNAs the MeWo cells or SK

Mel 5 cells were seeded into 96 well plates. For evaluation of the

anchorage-independent cell growth, plates were coated with poly-2-

hydroxyethyl methacrylate (Sigma, Deisenhofen, Germany). Cell

growth was monitored after 24, 48 and 72 hours using a CellTiter

96H Non-Radioactive Cell Proliferation Assay (Promega, Mann-

heim, Germany). The formation of formazan through cleavage of

the tetrazolium salt MTT in metabolically active cells was measured

at the absorbance of 570 nm using a spectrophotometer. Each assay

was performed in triplicates and repeated at least 3 times. Data are

presented by means 6 SD. Statistical and significant differences

were determined by ANOVA with post-hoc analysis.

Cell cycle analysis
Cells were seeded in 6 well plates and transfected with siRNA as

described before. 48 hours after siRNA transfection, cells were left

untreated or treated with 40 mM cisplatin (CDDP). Cells were

trypsinized, washed in PBS, and incubated overnight at 4uC in

1 ml hypotonic solution containing 50 mg/ml propidium iodide,

0.1% sodium citrate, 0.1% Triton X-100 and 20 mg/ml DNAse-

free RNAse A. Cells were analyzed with flow cytometry in linear

mode. Results were expressed as percentage of elements detected

in the different phases of the cell cycle, namely sub-G1 –peak

(apoptosis), G0/G1 (no DNA synthesis) S (active DNA synthesis),

G2 (premitosis) and M (mitosis). Statistical and significant

differences were determined using the Student’s T-Test.

Cell migration and invasion assay
The effect on cell migration was measured as the ability of cells

to migrate through Transwell filters (Corning, Amsterdam,

Netherlands, 6.5 mm diameter, 5 mm pore size). Transwell filters

were coated with fibronectin (10 mg/ml in PBS) or matrigel

(diluted 1:4) for 90 min before adding the cells. At 48 hours after

the siRNA transfection, cells were detached by trypsinization and

16105 cells were seeded into transwell filters in 100 ml starvation

medium. 500 ml growth medium was placed in the lower

compartment, and the cells were left to migrate for 16–20 hours.

Non migrated cells were removed by a cotton swab, the

transmigrated cells at the backside of the filter were stained with

crystal violet solution as described [32]. The eluted dye was

measured at 595 nm in an ELISA reader. Each experiment was

performed in triplicates and repeated at least thrice. Data are

presented by means6SD. Statistical and significant differences

were determined using Student’s t-test.
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