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Abstract

Background: Metabotropic glutamate receptors (mGluRs) are ubiquitous throughout the body, especially in brain, where
they mediate numerous effects. MGluRs are classified into groups of which group I, comprising mGluRs 1 and 5, is especially
important in neuronal communication. Group I actions are often investigated with the selective agonist, S-3,5-
dihydroxyphenylglycine (DHPG). Despite the selectivity of DHPG, its use has often led to contradictory findings. We now
report that a particular commercial preparation of DHPG can produce mGluR-independent effects. These findings may help
reconcile some discrepant reports.

Methods: We carried out electrophysiological recordings in the rat in vitro hippocampal slice preparation, focusing mainly
on pharmacologically isolated GABAA-receptor-mediated synaptic currents. Principal Findings: While preparations of DHPG
from three companies suppressed GABAergic transmission in an mGluR-dependent way, one batch had an additional,
unusual effect. Even in the presence of antagonists of mGluRs, it caused a reversible, profound suppression of inhibitory
transmission. This mGluR - independent action was not due to a higher potency of the compound, or its ability to cause
endocannabinoid-dependent responses. Field potential recordings revealed that glutamatergic transmission was not
affected, and quantal analysis of GABA transmission confirmed the unusual effect was on GABA release, and not GABAA

receptors. We have not identified the responsible factor in the DHPG preparation, but the samples were 99% pure as
determined by HPLC and NMR analyses.

Conclusions: In certain respects our observations with the anomalous batch strikingly resemble some published reports of
unusual DHPG effects. The present findings could therefore contribute to explaining discrepancies in the literature. DHPG is
widely employed to study mGluRs in different systems, hence rigorous controls should be performed before conclusions
based on its use are drawn.
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Introduction

The synthetic amino acid S-3,5-dihydroxyphenylglycine

(DHPG) is a potent group-I-selective mGluR agonist [1]that is

widely used in areas of research as diverse as pain [2] cancer

[3], drug abuse [4] and learning [5]. Activation of group I

mGluRs by DHPG affects synaptic transmission in various ways

[6], including the mobilization of endogenous cannabinoids

(endocannabinoids, eCBs [7,8]) and induction of eCB –

mediated forms of short and long term synaptic plasticity

[9,10] by activating the cannabinoid receptor, CB1R. Despite

its extensive use, DHPG sometimes produces controversial

results, leading to variation in its reported potency and the

degree to which antagonists of mGluRs and CB1Rs can oppose

its functional actions, e.g., [11–16]. We have tested the

hypothesis that some commercial preparations of DHPG harbor

a chemical activity that can cause mGluR-independent actions.

We compared the actions of DHPG from three different

companies (Ascent Scientific, Sigma-Aldrich and Tocris Biosci-

ence) on well-established bioassays of mGluR-mediated effects in

the in vitro hippocampal slice. Multiple samples from one batch

of DHPG obtained from Ascent Scientific transiently suppressed

hippocampal GABAergic transmission in an mGluR- and

CB1R-independent manner, whereas another batch from this

source and batches from the other sources did not. We have

not fully identified the contaminant responsible for the

anomalous effects. It could not be distinguished from DHPG

by HPLC, and may have a distinctive signature by proton

NMR. The unrecognized presence of such effects could explain

some controversial findings regarding mGluR control of

synaptic transmission that have been reported. Finally, the

ability of the unknown factor to reduce GABA, but not

glutamate, release suggests that its identification may be of

scientific interest in its own right.
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Results

Comparison of the maximal potency of different batches
of DHPG

We began by comparing the abilities of (S)-3,5 DHPG from

three commercial sources – Ascent Scientific, Tocris, and Sigma-

Aldrich – to suppress inhibitory synaptic transmission to pyramidal

cells in CA1 region of the hippocampal slice. For convenience the

drugs are designated A-DHPG, T-DHPG, and S-DHPG in the

figures. Furthermore, we distinguish between batches Asc-08007-

1-1 and Asc-08116-5-3 from Ascent Scientific; Asc-08007-1-1 was

used throughout the study, except as noted.

Evoked inhibitory postsynaptic currents (eIPSCs) were pro-

duced in CA1 pyramidal cells by stimulating in CA3 in the

presence of 2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxa-

line-7-sulfonamide (NBQX, 10 mM) and D-(-)-2-Amino-5-phos-

phonopentanoic acid (D-AP5, 20 mM), using either KGluconate

(KGluc) - or KCl-based electrode solutions (Materials and

Methods). Responses were evoked continuously at 0.25 Hz

throughout the experiments. The outward eIPSCs recorded with

the KGluc electrodes were smaller than the inward eIPSCs

because of the smaller driving force, but otherwise the recording

conditions were the same.

DHPG was bath-applied at a maximal concentration of 50 mM

for 10 min. All samples of DHPG triggered an initial strong

depression of synaptic activity that recovered only partially after

washout and remained at a reduced level for the duration of the

recordings ($25 min). The peak eIPSC decreases expressed as

percent of baseline eIPSC amplitude occurred during or slightly

after agonist application. Peak decreases were to ,50% of baseline

for T-DHPG and S-DHPG, but were significantly larger (p,0.05),

to ,20% of baseline for Asc-08007-1-1 (Figs. 1B, 1C). The

persistent suppression, called inhibitory long-term depression

(iLTD), was measured at 25 min of washout of DHPG and had

the same properties as previously reported [10]. There were no

significant differences in iLTD magnitude caused by the various

DHPG batches (Fig. 1C).

Effects of mGluR antagonists on different batches of
DHPG

The marked initial depression caused by the Asc-08007-1-1

might be explained by a greater potency of this drug for group I

mGluRs, or perhaps another effect unrelated to mGluRs. To

distinguish among these possibilities, we used potent group I

mGluR antagonists, which have been repeatedly found to block all

actions of DHPG in a variety of settings [13,17–20]. The selective

group I mGluR antagonists, 6-Amino-N-cyclohexyl-3-methylthia-

zolo[3,2-a]benzimidazole-2-carboxamide (YM298198, for

mGluR1) and 2-Methyl-6-(phenylethynyl)pyridine hydrochloride

(MPEP, for mGluR5), completely blocked the effects of T- and S-

DHPG, as no significant eIPSC suppression was observed during

application or washout of DHPG when they were present. Since

the values for S- and T-DHPG do not differ significantly, they

were pooled in Fig. 2A. In contrast, even in the presence of these

group I mGluR antagonists, Asc-08007-1-1 caused a very

substantial depression in peak eIPSC amplitudes, to ,30% of

baseline level. The depression was still present after a 10-min

washout, but not after a 25-min washout (Fig. 2A). Figure 2B

illustrates that the differences between Asc-08007-1-1 and the T-

and S-DHPG can be demonstrated within the same cell. In this

experiment (n = 5) all three DHPGs were applied sequentially in

the presence of mGluR antagonists. Only Asc-08007-1-1 sup-

pressed eIPSCs in these conditions. Taken together, the results

suggest that Asc-08007-1-1 has an early, group I mGluR-

independent, suppressive effect on eIPSCs. We considered the

possibility that the residual effect of Asc-08007-1-1 was mediated

by another type of mGluR, and so we also compared its effects in

the presence of the non-selective mGluR blocker (2S)-2-Amino-2-

[(1S,2S)-2-carboxycyclorop-1-yl]-3-(xan th-9-yl) propanoic acid

Figure 1. Comparison of eIPSC suppression caused by DHPG
from different sources. (A) Representative traces showing how
eIPSCs recorded with KGluc-filled electrodes were affected by 10-min
applications of DHPG from Tocris Bioscience (T, left), Ascent Scientific,
Asc-08007-1-1 (A, middle), or Sigma Aldrich (S, right). In this and all
other experiments except those in Fig. 4, S-3,5 DHPG was applied at
50 mM. Black trace = baseline, dashed trace = DHPG, gray trace
= 25 min washout. Each trace is the average of ten consecutive
responses. Cal. bars: y:100 pA, x: 50 ms. Results are expressed as percent
of baseline eIPSC amplitudes. (B) Group data obtained with T-DHPG
(white circles) or Asc-08007-1-1 (black circles) DHPG; S-DHPG data were
omitted from the graph for clarity. (C) Summary of peak eIPSC
depressions: T-DHPG: 54.066.7%, n = 8, p,0.01; S-DHPG: 51.765.5,
n = 8, p,0.01, and Asc-08007-1-1, 18.563.6%, n = 5, p,0.001). Late
eIPSC depressions (iLTD) were measured after 25-min DHPG washout
(Wash) period. T-DHPG: 64.468.0%, n = 7, p,0.01; S-DHPG: 73.468.2,
n = 5, p,0.05, and Asc-08007-1-1, 54.265.6%, n = 5, p,0.05). The effect
of Asc-08007-1-1 differed significantly from the others during DHPG
application (asterisk, p,0.05) but not after a 25-min washout.
doi:10.1371/journal.pone.0006122.g001

mGluR-Independent DHPG Effects
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(LY341495) [18]. LY341495 also failed to inhibit the eIPSC

suppression caused by Asc-08007-1-1, implying that the early

transient effect is independent of all mGluRs.

CB1R antagonists do not block actions of Asc-08007-1-1
In view of contradictory reports on the ability of mGluR

antagonists to prevent CB1R-dependent actions of mGluRs (cf

[11,12]), it was important to test the CB1R-dependent effects of

DHPG from another source against those of Asc-08007-1-1. If

Asc-08007-1-1 does mediate transient, mGluR-independent

effects, then it should also mediate transient, CB1R-independent

effects. In confirmation of previous reports, we found that N-

(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophen yl)-4-methyl-

1H-pyrazole-3-carboxamide (AM251, 4 mM) or 5-(4-Chlorophe-

nyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperdin-1-yl)-1H-pyr-

azole-3-carboxamide (SR 141716A, 2 mM) completely blocked the

acute effects of T-DHPG on eIPSCs (Fig. 3). Neither short- nor

long-term eIPSC depression occurred. However, in the presence

of a CB1R antagonist, Asc-08007-1-1 caused a significant

transient depression to ,50% of the baseline eIPSC. Again, no

significant depression remained after 25 min of washout (Fig. 3).

Unspecific effects of Asc-08007-1-1 are seen at low
concentrations

We considered that the unexpected effects of Asc-08007-1-1

could be related to the concentration used. Our standard dose,

50 mM, was chosen to be functionally maximal and it seemed

possible that lower concentrations of Asc-08007-1-1 would have

effects that would be fully blocked by mGluR antagonists. To test

this, we compared the effects of Asc-08007-1-1 at concentrations

of 1, 10, 20, and 50 mM, each applied for 5 min, in the presence or

absence of YM298198 plus MPEP, or LY341495 alone (Fig. 4). At

all concentrations .1 mM, Asc-08007-1-1 significantly reduced

eIPSC amplitudes either in the presence or absence of mGluR

antagonists. The antagonists did decrease Asc-08007-1-1 effects, as

concentrations .10 mM were less efficacious (p,0.05) in their

presence than in control solution. Probably the greater variability

of the 10 mM dose in control solution accounts for the lack of

statistically significant antagonism at this concentration. In any

case, the results show that Asc-08007-1-1 has mGluR-antagonist-

resistant effects even at low concentrations.

Only inhibitory synaptic transmission is sensitive to the
unusual action of ASC-08007-1-1

Thus far the data reveal an mGluR- and CB1R-independent

suppression of eIPSCs by Asc-08007-1-1. The question arises as to

the nature of the cellular mechanism by which Asc-08007-1-1

affects synaptic transmission. If it is a general, non-specific block of

a fundamental step in the transmitter release process, then Asc-

08007-1-1 should reduce excitatory synaptic transmission as well.

Figure 2. Inhibition of DHPG-induced iLTD by group I mGluR
antagonists. The selective mGluR1 antagonist, YM298198 (4 mM) and
the mGluR5 antagonist, MPEP (10 mM), were present throughout all
experiments. (A) For display and statistical comparison among groups,
the data from T-DHPG and S-DHPG were pooled (white circles). As no
significant depression was observed with these compounds, recordings
were stopped after 10 min of washout. Peak eIPSC depressions as
percent of baseline for each drug individually (data not shown): T-
DHPG: 95.466.3%, n = 5, n.s.; S-DHPG: 93.961.8%, n = 3, n.s.; Asc-08007-
1-1: 30.765.2%, n = 7, p,0.001. Late eIPSC depressions (after 10 min
washout): T-DHPG: 100.369.8%, n = 4, n.s.; S-DHPG: 101.865.6%, n = 3,
n.s.; Asc-08007-1-1: 40.664.1%, n = 7, p,0.001. After 25-min of
washout, there was no significant depression caused by Asc-08007-1-
1 DHPG (black circles): 85.564.8%, n = 7, n.s. Insets: Representative
traces: black trace = baseline, dashed trace = DHPG, gray trace

= 25 min washout. Each trace is the average of ten consecutive
responses; KGluc-based electrode solution was used (Materials and
Methods). Cal. bars: y:100 pA, x: 50 ms. (B) Continuous recorder trace
showing the effects of T-DHPG, S-DHPG, and Asc-08007-1-1 DHPG
sequentially applied, after washout of the previous appolication, to the
same cell. A KCl-based electrode solution was used, so the eIPSCs are
downward deflections that appear as straight lines at this time
resolution. One-s voltage steps were given every 90 s to elicit Ca2+

influx through voltage-gated Ca2+ channels (VGCCs) and DSI [13], which
appears as the transient reductions of eIPSCs. For display purposes, a
small portion of the trace is omitted after each drug’s washout. Note
the strong remaining effect of Asc-08007-1-1, compared to the lack of
effect of T-DHPG and S-DHPG. Cal. bars: y: 200 pA, x: 1 min.
doi:10.1371/journal.pone.0006122.g002

mGluR-Independent DHPG Effects
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To test this prediction, we recorded excitatory fEPSPs that are

mediated largely by AMPARs in CA1 s. radiatum. NBQX and AP5

were absent and mGluR antagonists YM298198 and MPEP were

present in these experiments. After a 5-min application of Asc-

08007-1-1 (50 mM) the field potentials showed evidence of

hyperexcitability in the form of population spike potential oscillations

on the wave. The fEPSP amplitudes appeared to be decreased (to

88.960.9% of baseline, p,0.05, n = 5; Fig. 5A), but this is probably

attributable to interference from the population spikes. The slope of

the fEPSP (measured at 1–1.5 ms after the fiber volley) on the other

hand, did not change during Asc-08007-1-1 application (98.561.5%

of baseline, n = 5). The apparent lack of effect on the excitatory

synapses themselves, together with the increase in excitability seen in

the repetitive population spike discharge could be explained by a

selective effect on inhibitory transmission. The hyperexcitable state

made it difficult to examine excitatory synaptic responses directly,

however. We therefore recorded field potentials in the presence of

the GABAA channel blocker, 6-Imino-3-(4-methoxyphenyl)-1(6H)-

pyridazinebutanoic acid hydrobromide (gabazine, 20 mM). For these

experiments, the CA3 region was removed from the slice and in some

cases small amounts of ionotropic GluR antagonists were used to

reduce hyperexcitability (Materials and Methods). If Asc-08007-1-1

increases excitability only by suppressing inhibition, then it should

have no effect when GABAergic synapses are blocked. We found

that, indeed, in the presence of gabazine and group I mGluR

antagonists Asc-08007-1-1 had no significant influence on the

amplitudes (9760.9% of baseline, n = 7) or the slope (94.762.7% of

baseline, n = 7; Fig. 5B). It appears that the mGluR- and CB1R-

independent effects of Asc-08007-1-1 only affect GABAergic

synapses.

The unexpected effects of Asc-08007-1-1 target GABA
release

Since it does not affect excitatory transmission, Asc-08007-1-1

probably affects eIPSCs by a postsynaptic action on GABAARs or

a presynaptic effect on GABA release. To distinguish between

these possibilities, we switched to a strontium (Sr2+)-substituted

[21–24] extracellular solution. Replacing extracellular Ca2+ with

Sr2+ causes copious asynchronous quantal release of GABA

(mIPSCs) after stimulation of inhibitory interneurons [24] (Fig. 6A).

Quantal analysis of release can then be done by counting evoked

mIPSCs and measuring their amplitudes. To control for the

sporadic occurrence of spontaneous (not evoked) mIPSCs, which

could conceivably confound the analysis, we also measured

mIPSCs occurring in a 150-ms window prior to the stimulus.

These ‘background’ mIPSCs (Fig. 6B) were not altered by Asc-

08007-1-1, indicating that any measured changes in evoked

mIPSCs were not contaminated by the background events.

Application of the Asc-08007-1-1 for 5 min significantly decreased

the frequency of evoked asynchronous mIPSCs (p,0.05, n = 7)

during drug application; a 10-min washout was accompanied by

partial recovery (p,0.05; Fig. 6B). Amplitude distributions were

assessed via cumulative frequency plots followed by K-S tests. In

contrast to the consistent reduction of mIPSC frequency in all

cells, in 6 of 7 cells there was no significant reduction in the

distribution of evoked asynchronous mIPSC amplitudes (e.g.,

Fig. 6C). We conclude that Asc-08007-1-1 reduces GABA release.

Figure 4. Concentration-response curves for Asc-08007-1-1
DHPG. Concentration-response curves in the presence (black circles) or
absence (white circles) of mGluR antagonists (YM298198 plus MPEP, or
LY341495 alone). Peak eIPSC amplitude depressions expressed as
percent of baseline. Depression caused by all DHPG concentrations
.1 mM are significant (p,0.01) in the presence and absence of
antagonists. White circles: 1 mM: 89.962.5%, n = 4; 10 mM: 64.967.6%,
n = 6; 20 mM: 38.864.3%, n = 6; 50 mM: 18.862.7%, n = 4. Black circles:
1 mM 96.463.3%, n = 4; 10 mM: 80.064.2%, n = 5; 20 mM: 63.861.3%,
n = 6; 50 mM: 31.363.3%, n = 6. The difference between the depressions
observed in the presence or absence of antagonists is significant for
concentrations .10 mM (p,0.05).
doi:10.1371/journal.pone.0006122.g004

Figure 3. Inhibition of iLTD by CB1R antagonists. AM251 or
SR141716A was present throughout all experiments. T-DHPG (T, white
circles), Asc-08007-1-1, A, black circles). As T-DHPG caused no significant
depression, recordings were stopped after 10 min of washout. Insets
show representative traces for each condition. Black trace = baseline,
dashed trace = DHPG, gray trace = 25 min washout. Each trace is the
average of ten consecutive responses. Peak eIPSC depression expressed
as percent of baseline: T-DHPG 98.365.3%, n = 7, n.s.; Asc-08007-1-1:
53.668.7%, n = 6, p,0.01. Late eIPSC depressions (10-min washout); T-
DHPG: 99.868.3%, n = 6, n.s.; Asc-08007-1-1: 57.567.6%, n = 6, p,0.05.
Peak eIPSC was not significant from baseline after a 25 min washout of
Asc-08007-1-1: 85.862.1%, n = 4, n.s. Cal. bars: y:100 pA, x: 50 ms.
doi:10.1371/journal.pone.0006122.g003

mGluR-Independent DHPG Effects
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A newer batch of Ascent Scientific DHPG did not elicit
mGluR-independent effects

To determine if the unusual actions of Ascent Scientific

DHPG were unique properties of batch Asc-08007-1-1, or if they

are common to all DHPG samples from this company, we tested

batch Asc-08116-5-3 as well. In this series of experiments the

slices had been pretreated in 300 nM v-agatoxin IVA (agatoxin),

to block GABA release from interneurons that release through

P/Q type VGCC and do not express CB1Rs. As eCBs primarily

inhibit release from interneurons that release GABA through N-

type VGCC [25], agatoxin increases the relative contribution of

GABA release from eCB-sensitive interneurons [26,27], and thus

provides a more sensitive assay for possible anomalous effects on

these cells. We observed that, whereas group I mGluR

antagonists YM298198 and MPEP fully blocked the effects of

Asc-08116-5-3, Asc-08007-1-1 continued to reduce the eIPSCs to

,28% of baseline values (p,0.01). The effects of T-DHPG and

S-DHPG (Fig. 7) were also abolished by mGluR antagonists.

This indicates that the factor responsible for mGluR-independent

effects is not a universal property of (S)-3,5 DHPG from Ascent

Scientific, but thus far has only been found in multiple samples

from one batch.

Chemical analysis of DHPG
The data point to an mGluR- and CB1R-independent property

of Asc-08007-1-1 that affects GABA release. One possibility is that

there is a chemical factor in Asc-08007-1-1 that is responsible.

Although a thorough chemical analysis of Asc-08007-1-1 was

beyond the scope of this investigation, we did obtain both HPLC

and proton NMR comparisons of T-DHPG, S-DHPG, Asc-

08007-1-1, and Asc-08116-5-3. All analyses were carried out

‘‘blind’’; i.e., the technicians had only a series of coded and

otherwise unmarked samples. The code was broken by the authors

after the analyses had been performed. The HPLC analysis was

carried out by Ascent Scientific laboratory. By HPLC, samples of

(S)-DHPG from all sources were essentially identical (data not

shown). They were $98% pure; the racemate, (R)-DHPG

constituted a small contaminant that was present in all samples,

indicating that it could not account for the unusual effects. We also

obtained proton-NMR spectra from the NMR facility at the

University of Maryland School of Medicine. Two independent

runs were done, and T-DHPG, S-DHPG, Asc-08116-5-3, and two

different samples of Asc-08007-1-1, were tested. Unique, irregular

minor peaks indicative of contaminants or impurities were present

in all samples in the range from 0 to 4.8 ppm (data not shown).

Figure 5. Asc-08007-1-1 DHPG does not affect fEPSPs in the presence of mGluR antagonists and gabazine. Traces in (A) and (B) show
representative fEPSPs for each condition; NBQX and AP5 absent, and YM298198 and MPEP present for all experiments. Each trace (black = baseline,
dashed = DHPG) is the average of 10 responses. (A) Left graph: raw amplitude measurement of fEPSPs before (control, n = 5) or during Asc-08007-1-1
application (DHPG, n = 5). Right graph: raw slope measurement of fEPSPs before (control, n = 5) or during DHPG application (DHPG, n = 5). (B) Same as
in (A), but fEPSPs were recorded in the presence of gabazine, 20 mM. Left graph: raw amplitude measurement of fEPSPs before (control, n = 7) or
during Asc-08007-1-1 application (DHPG, n = 7). Right graph: raw slope measurement of fEPSPs before (control, n = 7) or during Asc-08007-1-1
application (DHPG, n = 7, n.s.). Cal. bars: y: 0.1mV, x: 10 ms. Asterisk: significant difference, p,0.05, paired t-test.
doi:10.1371/journal.pone.0006122.g005

mGluR-Independent DHPG Effects
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However, a uniform series of four doublets clearly distinguished

the Asc-08007-1-1 sample from all other samples, including Asc-

08116-5-3 (Fig. 8). Relative to the tetramethylsilane (TMS)

reference signal at zero, the four doublets (perhaps a doublet of

doublets) have chemical shifts of between 7.2 and 8.2 ppm. The

doublet peaks appear to be correlated, suggesting they may be part

of the same molecule. If they do represent one molecule, then

estimating its relative abundance by integrating the areas under

the peaks, and comparing the sum to the integrated peak areas

associated with DHPG, suggests that this molecule could account

for ,1% of the sample. We do not know the identity of the

molecule or indeed if it has any relationship to the anomalous

properties of Asc-08007-1-1.

Discussion

A batch of the widely used selective group I agonist, (S)-3,5

DHPG, Ascent Scientific Asc-08007-1-1, causes a major, revers-

ible, suppression of GABAergic synaptic transmission that is

Figure 7. Asc-08116-5-3 DHPG does not cause mGluR-inde-
pendent effects. Representative traces (top) and pooled data
(bottom) showing the effects of 50 mM Asc-08116-5-3 DHPG for 5 min
on eIPSCs in slices pretreated in v-agatoxin IVA (300 nM) and YM298198
plus MPEP. Traces (black = baseline, dashed = DHPG) are represen-
tative averages of 10 consecutive responses in each condition. Peak
eIPSC amplitude depressions expressed as percent baseline amplitudes:
Asc-08007-1-1(A-007): 28.565.9%, n = 5; T-DHPG (T): 80.2610.0%, n = 4;
S-DHPG (S): 85.364.9%, n = 3; Asc-08116-5-3 (A-116): 86.266.1%, n = 6.
Asterisk: significant difference from baseline responses, p,0.05. Cal.
bars: y:200 pA, x: 100 ms.
doi:10.1371/journal.pone.0006122.g007

Figure 6. Asc-08007-1-1 DHPG reduces frequency but not
amplitude of asynchronous, evoked mIPSCs in the presence of
mGluR antagonists. (A) Representative traces showing stimulation-
evoked, asychronous mIPSCs in control conditions (Sr2+-substituted
bathing solutions for all experiments; see Materials and Methods) (C), in
DHPG (D) and after 10 min. of washout (W). Cal. bars: y: 13 pA, x: 40 ms.
(B) Numbers of asynchronous evoked mIPSCs (white bars; counted in
31 traces per cell within a 150-ms window beginning 200 ms after a
field stimulus in s. radiatum). Gray bars: frequency of spontaneous
mIPSCs measured before stimulation (background). Events were
counted in control condition (C), during DHPG application (D) and
DHPG washout (W). Numbers of evoked mIPSCs (n = 6 cells); control:
30.265.6, DHPG: 21.265.9, Wash: 22.265.6. Numbers of background
mIPSCs (same cells): control: 16.363.4 DHPG: 13.663.2; Wash: 14.566.4.
Asterisks: significant differences from control evoked responses,
p,0.05. No other groups differed by ANOVA followed by multiple t-
tests. (C) Cumulative frequency of the amplitude distribution of evoked
mIPSCs from one cell – control = white circles, DHPG = black circles,

wash = gray triangles. Results typical of 6 of 7 cells analyzed. Inset:
Average of superimposed traces (n = 53) of evoked mIPSCs before
(control) and during DHPG application - C: Control, D: DHPG. Cal. bars: y:
8.6 pA, x: 13 ms.
doi:10.1371/journal.pone.0006122.g006
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evidently independent of mGluR and CB1R activation. In our

hands, the action is not shared by preparations of the same drug

from other companies, or by a different batch from Ascent

Scientific. The observations are important because they reveal that

a preparation of a widely used selective group I mGluR agonist

that is ,99% pure by HPLC and NMR can have pronounced

non-specific effects. Moreover, the resemblance between our

observations and published reports of anomalous mGluR agonist

effects of DHPG suggests that our data could help reconcile the

contradictory observations if the enigmatic action of DHPG were

occasionally to be found in preparations from other sources.

Among the controversial results are those pertaining to the

mobilization of eCBs by mGluRs, an area of intense current

research interest. Finally, in pointing to the existence of a factor

that selectively reduces GABA release without affecting glutamate

release, the data could lead to discovery of novel regulators of

transmitter release.

DHPG is a selective group I mGluR agonist [28]. (S)-(+)-a-

Amino-4-carboxy-2-methylbenzenacetic acid (LY367385) and

MPEP are selective antagonists of mGluR1 and mGluR5,

respectively, that in combination generally inhibit all effects of

DHPG. However, antagonist-resistant DHPG actions have been

reported. Activation of group I mGluRs can mobilize eCBs in

hippocampus [8] and cerebellum [7]. However, some data show

that while bath-applied DHPG rapidly suppresses eIPSCs,

pretreatment of slices with a CB1R antagonist only reveals a

reduction of eIPSC suppression after $10 min of DHPG

treatment (e.g. [11][19], Figs. 5C, 8B). DHPG must have reduced

the eIPSCs by a CB1R-independent mechanism prior to this time.

The results [11] would also suggest that the CB1R-independent

suppression of IPSCs is caused by DHPG, but not by synaptically-

released glutamate ([11], Figs. 4A, 5C). CB1R-independent effects

like this are not always seen, however [7,8,12]. These discrepan-

cies could be explained if an unrecognized mGluR- and CB1R-

independent factor transiently suppressed eIPSCs and occluded

the actual mGluR- and CB1R-dependent actions of DHPG.

Unfortunately, it is not reported whether or not mGluR

antagonists inhibited the DHPG-mediated responses [11], so this

inference remains unverified.

Volk et al. [15] show that, although the combination of

LY367385 and MPEP abolishes DHPG-induced LTD of fEPSPs

as well as the phosphorylation of ERK, the antagonists leave

untouched a large, transient, DHPG-induced fEPSP depression.

The magnitude and time course of this antagonist-resistant effect

are essentially identical to the anomalous IPSC suppression that

we observe. Volk et al. [15] used either R,S- or S-DHPG obtained

from Tocris, suggesting the possibility that effects like those seen

with Asc-08007-1-1 are not unique, but may be associated with

preparations from other sources. Note, however, that in our hands

Asc-08007-1-1did not affect glutamatergic transmission.

We observe that the mGluR antagonist-resistant early eIPSC

suppression caused by Asc-08007-1-1 is followed by the mGluR-

and CB1R-antagonist-sensitive iLTD that is normally produced

Figure 8. Distinctive peaks in proton NMR spectrum of Asc-
08007-1-1 DHPG. Segments of 1D proton NMR spectra derived from
samples of Asc-08007-1-1 (A-007), Tocris DHPG, Sigma DHPG, and Asc-
08116-5-3 (A-116). The samples were prepared in D2O and the x-axis
shows the chemical shifts in parts per million (ppm) with respect to the
tetramethylsilane (TMS) reference signal at zero. The most striking
difference between Asc-08007-1-1 and all other samples is the series of
4 doublets between about 7.2 and 8.2 ppm. The arrow in the top trace

shows an enlargement of one of the doublets. Various organic
molecules have chemical shifts in the range of 7.2 to 8.2 ppm, but
the one responsible for the doublet pattern has not been identified. Not
shown are the regions of the spectra between 0 and the water peak at
4.8 ppm in which irregular sequences of peaks were found in all
samples. Each irregular sequence appeared to be unique for each
preparation and did not obviously distinguish Asc-08007-1-1 from the
others.
doi:10.1371/journal.pone.0006122.g008
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by DHPG or glutamate released by synaptic stimulation [10].

Similarly mGluR-dependent LTD is produced as usual after the

early mGluR- or CB1R-independent phase in other work [11,15].

In other words, even when DHPG samples do produce anomalous

effects, they retain their expected efficacy at group I mGluRs. In

our case, this is not surprising: Asc-08007-1-1 resembled all other

compounds in HPLC and proton NMR analyses. Thus the

anomalous effects must be attributed to an additional action,

rather than an entirely different one. We do not know the origin of

the additional activity. The HPLC results and the series of doublet

peaks found uniquely in the proton NMR analysis of Asc-08007-1-

1 are the only clues. If this contaminant is responsible, it must be

quite potent in antagonizing GABA release, since by both

chemical assays the purity of Asc-08007-1-1 is ,99%. Given the

broad use of DHPG in diverse areas of research, proper care must

be taken to verify its specificity.

Materials and Methods

Animal Treatment and slice preparation
Ethics Statement. All animal handling work was conducted

in accordance with national and international guidelines. All

animal handling protocols were reviewed and approved by the

University of Maryland School of Medicine IACUC. The number

of animals used was minimized, and all necessary precautions were

taken to mitigate pain or suffering. Five- to seven-week old

Sprague–Dawley (Charles River) rats were deeply sedated with

isoflurane and decapitated. Slices, 400-mm-thick, were cut on a

Vibratome (model VT1200s Leica Microsystems) in an ice-cold

bath solution and then stored at room temperature for 1 h before

transfer to the recording chamber (RC-27L, Warner Instruments,

CT, USA) at 30uC. The extracellular recording solution contained

(in mM) 120 NaCl, 3 KCl, 2.5 CaCl2, 2 MgSO4, 1 NaH2PO4, 25

NaHCO3, and 20 glucose, and was bubbled with 95%O2, 5%CO2

(pH 7.4). Ionotropic glutamate responses were blocked with 2,3-

Dioxo-6- nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-

sulfonamide (NBQX, 10 mM) and D-(2)-2-Amino-5-

phosphonopentanoic acid (D-AP5, 20 mM). When they were

used, the mGluR antagonists were bath-applied at the following

concentrations: YM298198 – 4 mM, MPEP – 10 mM, LY341495 –

100 mM.

Electrophysiology
Whole-cell pipettes were pulled from thin wall glass capillaries

(1.5 O.D., World Precision Instruments, Florida, USA). They

contained (in mM) either 146 KGluconate (KGluc), 1 NaCl, 1

MgSO4, 0.2 CaCl2, 2 EGTA, 10 HEPES, 4 MgATP, 0.3 tris

GTP, or 90 CsCH3SO4, 1 MgCl2, 50 CsCl, 2 MgATP, 0.2 Cs4-

BAPTA, 10 HEPES, 0.3 Tris GTP and 5 QX314. Electrode

resistances in the bath were 3–6 MV. If the series resistance, when

checked by a –5mV step, changed significantly (,20%), the data

were discarded. In recordings done with the KGluc-based

electrode solution, pyramidal cells from the CA1 hippocampal s.

pyramidale region were clamped at a holding potential of –50 mV.

In experiments with the KCl-based electrode solution cells were

held at 270 mV. Monosynaptic eIPSCs were elicited by 200-ms-

long extracellular stimuli delivered at 0.25 Hz with concentric

bipolar stimulating electrodes placed in s. radiatum. Data were

collected using either an Axopatch 200B or an Axopatch 1C

amplifier (Molecular Devices, Pennsylvania, USA), filtered at

2 kHz and digitized at 5 kHz using a Digidata 1322 (Molecular

Devices) and Clampex 9.0 (Molecular Devices).

Asynchronous mIPSCs were recorded in the whole cell

configuration described above with the KCl-based intracellular

solution. After breaking into a cell, the extracellular solution was

changed to one containing 4 mM MgSO4 and 4 mM strontium

(Sr2+) instead of Ca2+. The amplitude and frequency of

asynchronous sIPSCs that followed an evoked IPSC were

measured 200 ms after the stimulation artifact, during a 150 ms

windows for each trace (to obtain a sufficient number of events,

data was gathered from 31 traces per condition), following the

procedures of Morishita et al [24].

For experiments involving field excitatory postsynaptic poten-

tials (fEPSPs), patch electrodes were filled with 2 M NaCl. The

fEPSPs were recorded in s. radiatum, between CA3 and subiculum.

Extracellular stimulation was given at 0.05 Hz with a bipolar

electrode located in either s. radiatum near CA3 or subiculum. When

fEPSPs were recorded in the presence of gabazine, the CA3 area

was cut off to prevent the development of spontaneous

epileptiform activity. In some cases, the extracellular solution

was also changed to one containing, in mM: 120 NaCl, 2.4 KCl, 6

MgSO4, 1 NaH2PO4, 25 NaHCO3, 20 glucose, 1.5 CaCl2, as well

as AP5 10 mM and NBQX 0.01 mM, which helped suppress

hyperexcitability. When tested without gabazine, this extracellular

solution did not to affect our basic results.

Chemicals
(S)-3,5 DHPG was obtained from Tocris Bioscience (Missouri,

USA) batch 26, Sigma-Aldrich (Missouri, USA), batch

087k46202, and Ascent Scientific (Bristol, UK), batches Asc-

08007-1-1 and Asc -08116-5-3. All drugs were made up as

1000X stocks in distilled water (except for AM251 and

SR141716, which were made at a 10000X concentration in

DMSO) as soon as they were obtained. Stocks were immediately

divided into 20 mL aliquots and frozen at 220uC until use.

Once thawed, aliquots were either used or discarded; none were

refrozen and reused. Care was taken to see that all samples were

handled identically, and were used within two months after

preparation. AM251 and stocks were dissolved in DMSO. Final

concentration of DMSO in the bath was 0.01%. Drugs were

obtained from Tocris Bioscience (AM251, MPEP, SR95531, and

LY341495), Ascent Scientific (NBQX, AP5, and YM298198),

and NIDA (SR141716). All other drugs and chemicals were

purchased from Sigma-Aldrich.

Data Analysis
Statistical tests among groups were done with one-way ANOVA

with repeated measures (two way ANOVA for the data presented

in Fig. 1) followed by a Student- Newman-Keuls (SNK) test

(SigmaStat). Paired t tests were used for single comparisons. The

significance level for all tests was p,0.05 (*), except the

Komolgorov-Smirnov (K-S) tests in Fig. 7 where the significance

level was 0.005. Group mean6SEMs are shown for display

purposes. Measurements of mIPSC frequency and amplitude

(Fig. 6) were performed with the Mini Analysis Program

(Synaptosoft, New Jersey, USA). For comparison of cumulative

amplitude distributions (mIPSCs experiments) we used the

Kolmogorov-Smirnov test, available at http://www.physics.

csbsju.edu/stats/KS-test.n.plot_form.html. In Figures 1–3 the

group data for experimental time courses were smoothed by

running averages (n = 10), and incremental sampling (nth = 10) in

SigmaPlot 11.0.
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