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Abstract

Determination of the relevance of both demanding classical epidemiologic criteria for control selection and robust handling
of population stratification (PS) represents a major challenge in the design and analysis of genome-wide association studies
(GWAS). Empirical data from two GWAS in European Americans of the Cancer Genetic Markers of Susceptibility (CGEMS)
project were used to evaluate the impact of PS in studies with different control selection strategies. In each of the two
original case-control studies nested in corresponding prospective cohorts, a minor confounding effect due to PS (inflation
factor l of 1.025 and 1.005) was observed. In contrast, when the control groups were exchanged to mimic a cost-effective
but theoretically less desirable control selection strategy, the confounding effects were larger (l of 1.090 and 1.062). A panel
of 12,898 autosomal SNPs common to both the Illumina and Affymetrix commercial platforms and with low local
background linkage disequilibrium (pair-wise r2,0.004) was selected to infer population substructure with principal
component analysis. A novel permutation procedure was developed for the correction of PS that identified a smaller set of
principal components and achieved a better control of type I error (to l of 1.032 and 1.006, respectively) than currently used
methods. The overlap between sets of SNPs in the bottom 5% of p-values based on the new test and the test without PS
correction was about 80%, with the majority of discordant SNPs having both ranks close to the threshold. Thus, for the
CGEMS GWAS of prostate and breast cancer conducted in European Americans, PS does not appear to be a major problem
in well-designed studies. A study using suboptimal controls can have acceptable type I error when an effective strategy for
the correction of PS is employed.
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Introduction

Genome-wide association studies (GWAS) have emerged as an

effective approach to identify common polymorphisms underlying

complex traits [1–4]. In place of a family-based design frequently

employed in linkage scans, GWAS use a case-control design

primarily because of its efficiency in investigating a large number

of common variants in the genome together with the availability of

sufficiently large collections of unrelated cases with or without

coordinated collections of controls.

The presence of population stratification (PS)—allele frequency

differences between cases and controls due to systematic ancestry

differences—can lead to greater than nominal type I error rate [5–

11]. Differences in the origin of populations of cases and controls

can arise if the two groups are recruited independently or have

different inclusion criteria. Differences in ancestry between cases

and controls can also occur even if cases and controls are drawn

from the same heterogeneous population, such as the European

American population, when the disease risk varies across

subpopulations due to differences in distribution of unmeasured

risk factors [5]. Although the potential for an increase in false

positives in well-designed association studies conducted in a

stratified population is indisputable [6,7,12], the extent and impact

of PS on case-control association studies in practice, particularly in

GWAS, can now be thoroughly investigated as empirical evidence

from recent association studies becomes available.

One principle of classical epidemiologic study design is that the

distribution of risk factors of interest in controls should be the same

as the distribution in the population from which cases have been

ascertained [13]. A population-based study satisfies this principle

by choosing a random sample of controls from the same

population from which cases are selected. Violation of this

principle in the studies of genetic effects may be of less concern

than in the studies of environmental risk factors, if the distribution
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of population ancestry in individual cases and controls is available

and can be used to control the type I error rate at the cost of only a

modest drop in power. Principal component analysis [14–17] or

other methods [18,19] can be used to estimate the population

ancestry from the genotypes on a panel of SNPs not associated

with the disease status. The SNP panel can be selected from the

large number of SNPs typed in GWAS, of which the vast majority

(.99%) are not expected to be related to the disease under study.

Furthermore, a second set of SNPs, minimally correlated with the

previous one chosen for ancestry inference can be used to evaluate

the extent of confounding by PS as well as the effectiveness of the

correction for PS, by comparing the distribution of the test statistic

(with or without the correction for PS) observed over the second

set of SNPs with its expected distribution under the null

hypothesis. Systematic inflation in the observed statistics would

indicate that ancestry effects have not been fully controlled. Thus,

we postulate that the analysis of thousands of well-chosen SNPs

distributed throughout the genome could permit relaxation of the

requirement that cases and controls share the same population of

origin. In this regard, it is possible to analyze cases and controls

recruited from independently designed studies or allow the use of a

single, common control group for a variety of disease groups, a

strategy successfully used by the Welcome Trust Case Control

Consortium (WTCCC) to identify novel variants in a number of

common diseases [20].

The Cancer Genetic Markers of Susceptibility (CGEMS)

project has conducted two multi-stage GWAS in breast cancer

and prostate cancer [1,3,21]. For each disease, the initial genome-

wide scan was performed in a nested case-control study drawn

from a prospective cohort in self-described European Americans.

The CGEMS data provides the opportunity for empirical

evaluation of the impact of population stratification in an optimal

study design. By exchanging the control groups of the two studies,

we have explored the consequences of the non-standard strategy of

using external controls. We thus can make comparisons between

the two approaches.

We identified a set of autosomal SNPs common to both the

Illumina and Affymetrix commercial platforms that can robustly

monitor residual population structure in European American

populations. One commonly used approach for the correction of

PS is to adjust simultaneously for a fixed number of top-ranked

principal components (PCs) resulting from a principal component

analysis [15,16]. However, this approach may have an overly

negative impact on the power if the cases and controls are equally

distributed along the selected PCs, or if the adjustment of certain

covariates (such as self identified ethnicity, or recruitment center)

already included in the association analyses correctly maps to

major axes of genetic heterogeneity. To efficiently identify the

relevant PCs and keep their number to a minimum while allowing

an effective correction, we have developed a permutation

procedure to evaluate their effectiveness on PS correction as

additional PCs are taken for adjustment in the association test.

Taken together, these developments provide a procedure that

should be helpful for both PS evaluation and adjustment in

GWAS.

Materials and Methods

Study material
Both the genome-wide scans used in this study analyzed

approximately 550,000 SNPs on the Illumina platform. The

prostate cancer study genotyped cases and matched controls

collected from the Prostate, Lung, Colorectal and Ovarian

(PLCO) Cancer Screening Trial using the HumanHap300

(Illumina, San Diego, CA) and HumanHap240 chips (Illumina,

San Diego, CA) [1]. The breast cancer scan used the

HumanHap550 chip (Illumina, San Diego, CA), which is

equivalent to the HumanHap300 and HumanHap240 chips

combined, to genotype cases and their matched controls collected

from the Nurses’ Health Study (NHS) cohort [2]. In both studies,

participants were restricted to individuals who were of self-

described European descent. Quality control and quality assess-

ment removed subjects with low completion rates (,90%),

subjects with evidence of an intercontinental admixture (European

admixture coefficient less than 90%, estimated by STRUCTURE

[19]), and removal of one of each pair of first-degree relatives

(identified using PREST [22]). No second degree relatives were

detected. For this study, the test set for the PLCO prostate cancer

study consisted of 1,171 prostate cancer cases and 1,094 controls

while the test set for the NHS breast cancer study included 1,140

breast cancer cases and 1,138 controls. Four combinations of cases

and controls were analyzed: PLCO cases vs. PLCO controls

(PLCOca-PLCOco), NHS cases vs. NHS controls (NHSca-

NHSco), PLCO cases vs. NHS controls (PLCOca-NHSco), and

NHS cases vs. PLCO controls (NHSca-PLCOco).

Further data cleaning of the autosomal SNPs typed in both

PLCO and NHS scans retained SNPs with MAF .5%, a P-value

for fitness for Hardy-Weinberg proportion equilibrium exact test

.1025 in both control sets, and a rate of missing genotypes ,5%.

A handful of SNPs that had different genotype frequencies

between the PLCO controls and NHS controls (with P-value

,1027 based on the 2-df chi-squared test) were removed, most

likely due to informatic inconsistencies in SNP identification

between studies. In total, 475,116 autosomal SNPs (hereafter

called the testing SNPs) were identified for further analysis.

Algorithm to select a set of SNPs for population structure
inference

To optimize the principal components analysis of population

structure, we identified a set of SNPs with low background LD,

i.e., r2 LD statistic [23] less than a given threshold r2
0 (e.g., 0.004)

within a given physical distance d (e.g., 500 kb). Our algorithm

modifies the greedy search algorithm of Carlson et al. [24], which

selects the minimum number of SNPs (called tagSNPs) necessary

to monitor remaining non-tagSNP above a threshold level of

correlation (measured by r2). For our purposes, the SNP selection

algorithm differs in that it identifies the maximum number of

mutually ‘‘independent’’ SNPs for the inference of population

structure.

The algorithm selected a panel of population structure inference

SNPs by iterating over the following three steps. First, for each

SNP (called the reference SNP in this process) in the selection pool,

all SNPs that are within the distance d of the reference SNP and

have the r2 LD measure with the reference SNP above the

threshold r2
0 were identified and grouped as a bin. Second, the bin

with the smallest size is identified, with its reference SNP being

added to the list of structure inference SNPs. If more than two bins

have the minimal size, we randomly pick one. Third, the selection

pool of SNPs is updated by removing every SNP included in the

bin identified in the second step. The process is complete when no

SNP is left in the selection pool.

The above algorithm can be used with no prior information

concerning population structure but when prior information on

the population structure, such as ethnic background, is available, it

may be of interest to identify a smaller set of highly informative

SNPs. In this case, the criteria suggested by Pfaff et al [25] can be

used in the bin selection applied in step 2. Also the algorithm can

Population Structure in GWAS

PLoS ONE | www.plosone.org 2 July 2008 | Volume 3 | Issue 7 | e2551



be modified in a straightforward manner to expand an existing list

of structure inference SNPs from an augmented pool of SNPs.

Statistical analysis
Here we provide more details on main statistical methods used

in the analyses.

Principal component analysis. We chose a panel of M

structure inference SNPs for the detection and correction of

population substructure in a GWAS with a total of N cases and

controls. The genotype at a marker locus is coded as 0, 1 or 2,

corresponding to the copy number of an arbitrary allele. Let gi,m be

the genotype measured at SNP m for the ith subject, 1#i#N,

1#m#M. The PCA summarizes the information measured on M

structure inference SNPs and represents study participants by their

projected positions (called principal components, or PCs) along a

few orthogonal axes with ‘‘large’’ genetic variations.

There are various forms of PCA for genetic data depending on

how the covariance matrix is calculated. Here we follow the

EIGENSTRAT method [15,16]. We first standardize each

genotype coding as ĝi,m~
gi,m{2fmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fm 1{fmð Þ
p , with fm~ 1

2N

PN

l~1

gl,m being

the allele frequency for the mth marker. In the following discussion,

we always use the standardized genotype and still represent it as

gi,m, and organize all genotypes into the matrix G = (gi,m)N6M. We

obtain the sample covariance matrix
P

~ 1
N

G0G for the M

markers. For the PCA, we find the first L (say L = 3) largest

eigenvalues of S, and their corresponding normalized eigenvec-

tors, v1, v2, …, vL, with vl = (vl,1,vl,2,…,vl,M)9, 1#l#L. For the ith

subject with genotypes (standardized as above) gi = (gi,1,gi,2,…,gi,M)9,

its lth principal component (PC) is given by ul,i~g0ivl , 1#l#L.

Thus, vl defines the PC direction with the lth largest ‘‘genetic’’

variation and ul,i is the ith subject’s projected position onto this axis.

Following Patterson et al., the significance level of the genetic

variation along a given PC direction is evaluated by the Tracy-

Widom test [16].

In the eigenvector vl = (vl,1,vl,2,…,vl,M)9, its mth element vl,m,

called loading, 1#m#M, reflects the influence of mth marker on

shaping vl. Following suggestions from the WTCCC, the loading

of every SNP on the vl can be used to search for chromosomal

regions where variation pattern among samples would determine

the lth PC direction. A PC that reflects regional genetic variation

will be evidenced by a spike of high loadings for markers in that

chromosomal region.

Measuring the correlation between two PC directions. If

two groups of subjects (e.g., PLCOca-PLCOco and NHSca-

NHSco) are collected from the same population, we expect the

significant PC directions from both groups to point in similar

directions. We can quantify the similarity of two directions using

the Spearman rank correlation coefficient of the loading of every

SNP along these directions.

Between-groups comparison along a PC direction. The

confounding effect of PS only occurs when systematic

population structure differences exist between cases and

controls. Once one or more PC directions with large genetic

variation are identified through PCA, comparison of PCs for

cases along that axis with those of controls using the Wilcoxon

rank sum test can be informative. This is a non-parametric test

for evaluating whether two sets of observations have comparable

distribution.

Selection of PC for PS correction. An approach commonly

used to correct for PS is to adjust simultaneously for a fixed

number of top- ranked PCs or for those PCs that have significantly

large genetic variation according to the Tracy-Widom test [15,16].

This approach might not be optimal if selected PCs are distributed

almost equally in cases and controls [26]. In Text S1, we have

presented an illustrative example of how unnecessary adjustment

of population substructure (even one PC) could lead to a

significant loss in power (Text S1, Table S1).

Our selection procedure attempts to include only PCs that are

useful for the correction of PS. A PC is chosen whenever its

inclusion can significantly reduce the inflation in type I error rate,

measured by the over-dispersion factor, in comparison with the

addition of a randomly generated covariate. Once a set of PCs has

been identified, they are adjusted with other covariates in a

standard logistic regression model.

To apply this procedure, it is necessary to determine a set of

markers for which the inflation in type I error for the chosen test

statistic (with or without PC adjustment) can be properly

measured. Ideally, to avoid bias, this set of markers should be

uncorrelated with the set of markers used for PC detection, and

not associated with the disease risk. To such an end, we can

identify a large set S (approximately 240,000 SNPs) of genomic

control markers that do not exceed a threshold level of LD with

any SNPs used in the PCA. Although several disease-related SNPs

might be included in this set, their effect on the inflation estimation

can be ignored as the vast majority of the SNPs in the set S would

not be disease-related. For each genomic control SNP in S,

assuming an additive genetic model, a 1-df Wald test can be

performed by adjusting any chosen PCs and other covariates.

Following Devlin and Roeder [27], the over-dispersion factor can

be estimated as the median of Wald test statistics over the set of

genomic control SNPs divided by the expected median of the

chosen test statistics under the null hypothesis (i.e., in the present

case 0.456). The intent in our study is to use the over-dispersion

factor for the purpose of evaluating the effectiveness in the

correction of PS by adjusting for a given set of PCs, but not for the

adjustment for association testing results as originally proposed by

others [27,28]. The over-dispersion factor provides a summary

measure for the inflation level in the type I error. Although, as we

show below, the over-dispersion factor tends to be positively

correlated with empirical type I errors under various considered

significant levels, there is no simple analytic relationship between

them. For example, in our analysis of NHSca-PLCOco described

later, the over-dispersion factor at the level of 1.06 corresponds to

14%, 20% and 30% inflation in type I error under the significant

level of 0.05, 0.01 and 0.001, respectively.

To limit the searching space, we focus on only PCs with

significantly large genetic variation (with P-values less than 0.05

based on the Tracy-Widom test). The number of significant PCs,

represented by L, is either 4 or 5 among the four considered scans (the

two original and the two reconstructed). Let ul = (ul,,1,ul,2,…,ul,N)9,

1#l#L be the vector of the lth PCs for all subjects. To reduce the

computing time further, we order those L PCs u1, u2, …, uL

according to their Wilcoxon rank-sum test statistics that compare the

distributions between cases and controls along individual PCs, and

define them in that order as u(1), u(2), …, u(L), with u(1) being the PC

with the largest Wilcoxon rank-sum test statistic. We use the following

greedy search algorithm to choose a subset of PCs for the correction

of PS by sequentially evaluating u(1), u(2), …, u(L).

1. Define E to be the set of selected PCs, starting with E = w, the

empty set.

2. Iterate the following two steps for l = 1 to L.

a. Use a permutation procedure (described below) to

evaluate the empirical P-value associated with the

‘impact’’ of adjusting for the PC u(l) in addition to

those already in E.

Population Structure in GWAS
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b. If the estimated P-value is less than a chosen threshold

(say, 0.05), expand the set E by adding u(l), otherwise,

leave the set E unchanged

3. The set E at the end of L iterations is the final set of PCs to be

adjusted in the association test.

The permutation procedure used in step 2.a is designed to

determine if adjusting for the PC u(l) in addition to those already

included in E results into a significantly lower over-dispersion

factor, compared with the level expected under the situation when

the additional covariate to be adjusted for is randomly generated,

and thus has no contribution to the correction of PS. The rationale

is that we should adjust for u(l) whenever its inclusion makes a

‘‘significant’’ impact on the correction of PS. Here are the basic

steps for the permutation procedure used in the lth iteration of the

search algorithm.

i. Obtain the ‘‘observed’’ over-dispersion factor l̂ by

applying the test with adjustment for the PC u(l) as well

as those already included in E on SNPs from the set S.

ii. Randomly permute entries in the vector u(l) a predeter-

mined number of times, B, and denote the resulting

permuted version of u(l) as u
bð Þ
lð Þ , b = 1,…,B.

iii. Based on u
bð Þ
lð Þ , b = 1,…,B, obtain the over-dispersion

factor l(b) by applying the test with adjustment for u(b) as

well as those included in E on SNPs within the set S.

iv. The empirical P-value associated with the PC u(b) is

estimated as the proportion of l(b), b = 1,…,B, that are

smaller than the ‘‘observed’’ l̂.

In the above permutation procedure, each l(b) is the over-

dispersion factor based on the test adjusting for covariates included

in E as well as u
bð Þ
lð Þ , which is a the permuted version of u(l). All l(b),

b = 1,…,B, provide the reference distribution for the evaluation of

l̂. We find in our numerical experiments that the median of l(b),

b = 1,…,B, is roughly at the same level as lCurrent, the over-

dispersion factor for the test adjusting for only covariates included

in E. Thus, if the additional adjustment of u(l) (in addition to the

ones already in E) does not lead to an over-dispersion factor l̂l that

is lower than the current level (lCurrent), we skip the permutation

procedure and do not choose u(l).

In our analyses, we used 100 permutation steps and approx-

imately 240,000 genomic control SNPs for the evaluation of the

over-dispersion factor in each permutation step. Thus, the

permutation procedure may be computationally intensive. If

necessary, the computing time may be shortened by selecting

SNPs that are unrelated (i.e., low background LD).

Implementation. The algorithm for the selection of

structural inference SNPs was implemented in the Python

programming language. All the other analyses were conducted

using the open-source R language.

Results

The set of structure inference SNPs
To assemble a set of common SNPs informative for inference of

population substructure (called structure inference SNPs) for

GWAS, initially we identified a set of 40,817 autosomal SNPs

common to Affymetrix 500 k, Illumnia HumanHap300 and

Illumina HumanHap550, filtered on the basis of a completion

rate greater than 95% in both CGEMS scans, minor allele

frequency (MAF) .5%, and a fitness for Hardy-Weinberg

proportion exact test P-value .1023 in both control sets. From

this pool of SNPs, using our described selection algorithm we

selected 12,898 structure inference SNPs that had low background

LD in the joint PLCO and NHS control samples (r2 less than 0.004

for any pair located within 500 kb on the same chromosome). The

detailed list is provided in the Table S2, together with a visual

representation of the position and observed MAF of the SNPs on

the chromosomes (Figure S1).

The set of structure inference SNPs was used in the PCA to

detect axes with large genetic variations for the two original

genome wide scans and the two test studies in which controls were

swapped between PLCO and NHS. Inspection of the SNP

loadings plotted along each chromosome indicated that none of

the top 5 PCs from each of 4 studies showed evidence of being

driven by regional genetic variation pattern (see example of Figure

S2).

Using a slightly modified version of the SNP selection algorithm

described in the Material and Methods Section, from the list of

475,116 testing SNPs monitored by the Illumina HumanHap550

chip, we identified a new second set of 7,017 structure inference

SNPs that are locally uncorrelated (r2 less than 0.004 for any pair

located less than 500 kb apart on the same chromosome) among

themselves and similarly uncorrelated to the 12,898 SNPs already

identified. The dependence of the PCA conclusions on the set of

structure inference SNPs can be evaluated by comparing the

results using the first set of 12,898 SNPs to those obtained with the

second set of 7,017 SNPs

The set of genomic control SNPs for the assessment of
over-dispersion

For association tests without PC adjustment, an unbiased

evaluation of the over-dispersion factor l can be obtained using all

the 475,116 testing autosomal SNPs. For evaluation after PC

adjustment, it is however important to avoid the potential bias that

can arise from SNPs highly correlated to the initial structure

inference SNP set. Thus, l is better estimated based on testing

statistics measured on a set of genomic control SNPs with no

correlation with the set of structure inference SNPs. To remain

consistent throughout the analyses, the over-dispersion factor l for

tests with or without PC adjustment was systematically evaluated

with the same set of 241,238 genomic control (autosomal) SNPs

having r2 less than 0.01 with any nearby (within a distance of

500 kb) structure inference SNP from either the 12,898 or the

7,017 SNP sets. See Figure 1 for a summary of the relationship

among the three sets of SNPs.

Population structure in the PLCO prostate cancer study
We applied the PCA using the set of 12,898 structure inference

SNPs in the original nested case-control study of prostate cancer

(PLCOca-PLCOco) and found that the top 4 PCs are strongly

significant with P-values less than 1024 based on the Tracy Widom

test, while the 5th is borderline significant (Table 1). To further

justify the existence of axes with large genetic variation, we

conducted a new PCA on PLCOca-PLCOcn using the alternative

7,017 structure inference SNPs described above (Table S3). In this

case, the first two PCs were highly significant, namely a Tracy-

Widom test P-value ,1027, but the additional lower ranked PCs

(third and onwards) had P-value larger than 0.05. It is notable that

there is a significant correlation for the first, as well as the second

PC between the two PCAs (with Spearman rank correlation

coefficient larger than 0.5 and P-value less than 10215). Since the

lower ranked (third and onwards) PCs estimated by the smaller set

of SNPs were not significant, their correlations with the ones

estimated by the larger set of SNPs were not evaluated.

Population Structure in GWAS
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Population structure in the other three combinations of
cases and controls

An analysis of the 12,898 structure inference SNPs in the

original breast cancer study (NHSca-NHSco) as well as the two

reconstructed studies using external controls (PLCOca-NHSco

and NHSca-PLCOco) demonstrated that there were at least 3 PC

directions with highly significant large genetic variations (Table 1).

The PCA with the second set of 7,017 structure inference SNPs

indicates that there are three major PCs (Tracy-Widom test P-

value ,0.05) in NHSca-NHSco and NHSca-PLCO but only two

major PCs in PLCOca-NHSco (Table S3). The estimated PCs

along each major direction (the first three for NHSca-NHSco and

NHSca-PLCOco, the first two for PLCOca-NHSco) are highly

correlated with the counterparts estimated by the set of 12,898

SNPs (Spearman rank correlation coefficient .0.26 and P-value

,10215).

Population structure comparison between PLCO prostate
cancer and NHS breast cancer studies

To compare the population substructure between the original

two CGEMS initial scans, the PLCOca-PLCOco and NHSca-

NHSco, we identified the PC directions by applying the PCA on

each study separately, and compared directions between two

studies using the Spearman rank correlation coefficient of the SNP

loadings (Table 2). The top three PC directions between the two

studies are significantly correlated (with Spearman rank correla-

tion coefficient .0.14, and P-value ,10215).

We performed a PCA on the joint sample including subjects

from both studies. A representation of each subject by its first 2

PCs in a scatter plot stratified by the study (PLCO or NHS) is

shown (Figure 2). Visual inspection of Figure 2A and 2B indicates

that patterns of population structure of the two studies are indeed

similar in the plane of the first 2 PCs. However, further scrutiny

reveals very significant difference between the two studies.

Between-studies comparisons using the Wilcoxon rank-sum test

suggest that the subjects from the two studies have significantly

Figure 1. A diagram for the three main sets of SNPs used in the text. The first set of PCA SNPs is used to identify hidden population
substructure. The set of genomic control SNPs is used to evaluate the over-dispersion factor in a given study, as well as in the proposed permutation
procedure to select relevant PCs for the correction of PS. The second set of PCA SNPs is used to validate findings from the first set of PCA SNPs. In
applications, only the first set of PCA SNPs is recommended.
doi:10.1371/journal.pone.0002551.g001

Table 1. Tracy-Widom tests and associated P-values (in
parenthesis) for the significance of principal components.

PLCOca-
PLCOcoa

PLCOca-
NHScob

NHSca-
NHScoc

NHSca-
PLCOcod

PC #1 514.40 (,1027) 572.44 (,1027) 771.37 (,1027) 722.58 (,1027)

PC #2 179.90 (,1027) 211.20 (,1027) 160.31 (,1027) 142.95 (,1027)

PC #3 9.90 (,1027) 9.63 (,1027) 35.38 (,1027) 27.69 (,1027)

PC #4 4.52 (7.061025) 1.05 (0.045) 9.66 (,1027) 3.54 (5.861024)

PC #5 1.02 (0.047) 20.34 (0.238) 20.16 (0.168) 2.07 (9.261023)

Note: The tests are based on the principal components analyses with 12,898
population structure inference SNPs.
aPLCOca-PLCOco is the original PLCO prostate cancer study.
bPLCOca-NHSco is the reconstructed study with prostate cancer cases from the

PLCO, and external controls from NHS.
cNHSca-NHSco is the original NHS breast cancer study.
dNHSca-PLCOco is the reconstructed study with breast cancer cases from the

NHS, and external controls from PLCO.
doi:10.1371/journal.pone.0002551.t001
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different distributions (with P-values ,1024) along each of the top

4 PC directions.

In summary, the comparable patterns in population substruc-

ture for the two genome-wide scans in PLCO and NHS suggest

that controls from one study may reliably be used to contrast with

cases from the other study in an association analysis. This

similarity is remarkable since the PLCO prostate cancer study was

assembled from male volunteers of European origin participating

in a cancer screen trial and enrolled at 10 screening centers while

the NHS breast cancer study was based on a sample of female

registered nurses participating in a long-term epidemiology study

originally enrolled from 14 large US states. However, because we

have also shown that the two studies have demonstrable genetic

background differences, using external controls in association

studies requires a careful examination of the confounding effect

due to PS. The observed genetic background difference between

the two studies could in part be due to the difference in geographic

locations of the source populations which were sampled, as people

from distinct regions tend to have different genetic background.

For example, by using the Kruskal-Wallis test [29], which is the

non-parametric version of the ANOVA test, we find that several

major PCs in each study have significantly different distributions

across different geographic locations (defined by either the

recruitment center in the PLCO prostate cancer study, or the

state of residence in the NHS breast cancer study).

Evidence of confounding by PS
Although we see evidence of at least three axes with large

genetic variations in each of the four combinations of cases and

controls considered here, confounding by PS would occur only

when cases and controls distribute differently along one or more

main axes of variations. To assess confounding by PS in each

study, we compared the distribution of the cases and controls for

each of the top 5 PC directions by using the Wilcoxon rank-sum

test (Table 3). The analysis was restricted to the first 5 PC

directions in each study since all other directions were not

significant by the Tracy-Widom test.

Table 2. Spearman rank correlation coefficients between
pairs of principal component directions from the original
PLCO prostate cancer and NHS breast cancer studies.

NHS
PC #1

NHS
PC #2

NHS
PC #3

NHS
PC #4

NHS
PC #5

PLCO PC #1 0.73 0.05 0.01 0.00 0.00

PLCO PC #2 0.04 0.51 0.03 0.02 0.00

PLCO PC #3 0.01 0.03 0.14 0.06 0.00

PLCO PC #4 0.02 0.00 0.10 0.05 0.03

PLCO PC #5 0.00 0.00 0.00 0.00 0.00

doi:10.1371/journal.pone.0002551.t002

Figure 2. Samples represented by their first two principal components. Principal components (PC, the 1st along the horizontal direction, the
2nd along the vertical direction)) were obtained by applying the PCA on the joint sample of PLCO prostate cancer and NHS breast cancer studies. A)
First two PCs for subjects from the PLCO prostate cancer study. B) First two PCs for subjects from the NHS breast cancer study.
doi:10.1371/journal.pone.0002551.g002

Table 3. Principal component comparisons (P-values)
between cases and controls based on the Wilcoxon rank-sum
test.

PLCOca-
PLCOcoa

PLCOca-
NHScob

NHSca-
NHScoc

NHSca-
PLCOcod

PC #1 0.294 4.561028 0.664 4.361026

PC #2 0.871 2.261027 0.289 6.9610212

PC #3 0.340 0.282 0.036 4.061023

PC #4 0.588 1.261024 0.015 0.191

PC #5 0.490 0.385 0.943 0.157

Note: For each case-control combination, the Wilcoxon rank-sum tests are
based on principal components estimated with 12,898 population structure
inference SNPs.
aPLCOca-PLCOco is the original PLCO prostate cancer study.
bPLCOca-NHSco is the reconstructed study with prostate cancer cases from the

PLCO, and external controls from NHS.
cNHSca-NHSco is the original NHS breast cancer study.
dNHSca-PLCOco is the reconstructed study with breast cancer cases from the
NHS, and external controls from PLCO.

doi:10.1371/journal.pone.0002551.t003
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For the two initial scans, PLCOca-PLCOco and NHSca-

NHSco, no significant difference (after multiple comparison

adjustments) was observed between cases and controls with respect

to the distribution on each of the top 5 PC directions (Table 3).

Thus, a strong confounding effect by PS in either study is not to be

expected, even though PC directions with significantly large

genetic variation are evident in these studies. For the two

reconstructed studies with external controls, i.e., PLCOca-NHSco

and NHSca-PLCOco, cases and external controls display

significantly different distributions along the first two PC

directions. There is also a third direction (the 4th PC direction in

PLCOca-NHSco, and the 3rd PC direction in NHSca-PLCOco)

along which cases and external controls differ, although to a lesser

extent. Thus, compared with the two studies with internal controls,

these findings suggest that the confounding effects by PS are

accentuated when controls are culled from an independent study.

Confounding by PS could lead to an inflated type I error rate

for the association test. For each of the four combinations of cases

and controls, assuming an additive genetic model we performed a

1-df Wald test (without adjusting for PS) using the standard logistic

regression for each testing autosomal SNP. Table 4 shows the

over-dispersion factor and empirical type I error (assuming the

vast majority of testing SNPs are disease unrelated) under various

significance levels. All estimates presented in Table 4 are based on

tests performed with the same set of 241,238 genomic control

SNPs. They are close to estimates obtained when all 475,116

testing SNPs were used (results not shown). As expected, the two

reconstructed studies with external controls have larger over-

dispersion factors and higher empirical type I errors compared

with the original studies with internal controls. Similar conclusion

can be reached based on the Q-Q plot (on the log scale)

comparison in Figure 3. From Table 4, the over-dispersion factor

is positively correlated with empirical type I errors under various

considered significant levels. The over-dispersion factor is indeed a

good summary indicating the level of inflation in type I error, as

well as the extent of confounding effect. This justifies the use of

over-dispersion factor in the permutation procedure.

PC adjustment and its impact on over-dispersion factor
Following Price et al. [15], the confounding effect of PS can be

corrected by adjusting for a defined set of PCs. The typical method

adjusts for L top-ranked PCs, with L being either pre-determined

(e.g., 10), or the number of significant PCs (e.g., those with P-value

,0.05 based on the Tracy-Widom test). To evaluate this strategy,

we estimated over-dispersion factors for association tests (1 d.f.

Wald test) based on results on the set of 241,238 genomic control

SNPs with adjustment for varying numbers (from 1 to 10) of top

ranked PCs (Table 5). We observe that the over-dispersion factor

does not necessarily decrease as the number of adjusted PCs

increases. Table 5 also suggests that adjusting non-significant PCs

does not appear to have a major impact on the inflation reduction

The following simulation further supports this observation. For

each of the four considered studies, we rearranged each subject’s

case/control status so that new designated case and control groups

were completely separately on a chosen PC direction (e.g., the first

PC direction), and evaluated the over-dispersion factor and

empirical type I error rate in the new generated dataset. Results

are summarized in Table S4). When the mismatch (to the most

extreme extend) between cases and controls occurred on a PC with

large genetic variation, the resultant inflation in type I error was

much more severe than the one observed when the disparity

occurred on a PC with relatively low variation (high Tracy-Widom

test P-value). For all 4 considered studies, the over-dispersion

factor was around or less than 1.05 when the mismatch (in the

worst scenario) of cases and controls occurred on a PC with the

associated Tracy-Widom test P-value larger than 0.05.

Using 0.05 as the P-value threshold for selecting PCs with large

variation, four or five PCs were chosen for the four studies under

investigation (Table 1). Moreover, results from Table 5 suggest that

adjustment of a PC with significantly large variation may not

necessarily reduce the over-dispersion factor if cases and controls

have comparable distribution over that PC. For example, in the

original prostate cancer scan, the cases and controls have very similar

genetic background as seen in the 2nd PC direction (see Table 5). In

this case, compared to adjustment of the first PC, adding the 2nd PC

into the adjustment does not reduce the over-dispersion factor.

To minimize the number of adjusted PCs while allowing an

effective correction of the confounding effect by PS, our proposed

selection procedure identifies PCs that are effective in the reduction

of the over-dispersion factor. A PC is chosen for the correction of PS

whenever the over-dispersion factor in the model with the PC

included is significantly lower than the expected value of the factor

from including an additional randomly generated covariate. When

applied to the two original studies, this new procedure identified a

single PC to achieve the optimal PS correction. Interestingly, the

procedure selected the first PC (corresponding to the largest genetic

variation) for the PLCO prostate cancer study, but the second PC

for the NHS breast cancer study suggesting that the control selection

procedure used in the NHS study effectively removed the

confounding that might have been caused by the axis with the

largest genetic variation. When the controls were exchanged

between the two studies, the procedure required the 1st, 2nd, and

4th PCs in PLCOca-NHSco, and the 1st, 2nd, and 3rd PCs in

NHSca-PLCOco. Thus, the increased heterogeneity between cases

and controls created in the two reconstructed studies resulted in the

inclusion of two additional PCs in order to sufficiently correct for the

confounding effect.

Compared to the strategy of adjusting for PCs with large genetic

variation, the proposed permutation procedure picks fewer PCs and

reduces the over-dispersion factor to a similar or even lower level

(Table 5). With either strategy, the over-dispersion factor is slightly

decreased from its uncorrected level in the two original studies with

Table 4. Over-dispersion factors and empirical type I errors
for the association test without the correction of PS.

Significance level

Study Over-dispersion 0.05e 0.01e 0.001e

NHSca-NHScoa 1.005 0.0505 0.0100 0.0010

PLCOca-PLCOcob 1.025 0.0527 0.0110 0.0012

NHSca-PLCOcoc 1.062 0.0572 0.0120 0.0013

PLCOca-NHScod 1.090 0.0588 0.0127 0.0016

Note: The over-dispersion factor and empirical type I errors under various
significant levels are estimated by applying the 1-df Wald test statistic without
the correction of PS on the set of 241,238 genomic control SNPs. We assume all
genomic control SNPs are disease unrelated.
aNHSca-NHSco is the original NHS breast cancer study.
bPLCOca-PLCOco is the original PLCO prostate cancer study.
cNHSca-PLCOco is the reconstructed study with breast cancer cases from the
NHS, and external controls from PLCO.

dPLCOca-NHSco is the reconstructed study with prostate cancer cases from the
PLCO, and external controls from NHS.

eEmpirical type I error rates under the given significant level (assuming all
genomic control SNPs are disease-unrelated).

doi:10.1371/journal.pone.0002551.t004
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internal controls. In the two reconstructed analyses, the over-

dispersion level can be reduced substantially and an improved fitting

of the Q-Q plot to the diagonal can be achieved. Comparison of

Figures 3 with 4 demonstrates the conspicuous effect of PC

adjustment in the two reconstructed analyses as this effect is hardly

visible on the two original studies with internal controls.

The impact of PC adjustment on SNP ranking and
selection for follow-up study

In a multiple-stage association study [30], the number of SNPs

to be taken into the follow-up steps is usually fixed in advance by

cost considerations so that the SNPs are selected based on the

ranking of their test statistics rather than their P-values. In

CGEMS, the number of SNPs to be taken in follow-up 1 was

approximately 5% of those used in the initial genome wide scan

[21]. Consequently, adjusting for PCs in the association test would

be expected to change the ranking of the SNPs. In Figures 5, 6 and

7 we show the rank shuffling among the set of 475,116 testing

SNPs in the prostate cancer study with internal controls (PLCOca-

PLCOco) and with external controls (PLCOca-NHSco). In either

case, PCs were selected by the proposed permutation procedure. A

similar pattern can be observed in the breast cancer studies with

Figure 3. Q-Q plot based on the test without PC adjustment. For each of the four analyses, the Q-Q plot is based on P-values (in log10 scale)
that correspond to the 1 d.f. Wald test on 475,116 testing autosomal SNPs by assuming an additive risk model (in logit scale) and without PC
adjustment. A) Results for the original prostate cancer study (prostate cancer cases and controls from PLCO). B) Result for the reconstructed prostate
cancer study using external controls (prostate cancer cases from PLCO, and external controls from NHS). C) Results for the original breast cancer study
(breast cancer cases and controls from NHS). D) Results for the reconstructed breast cancer study using external controls (breast cancer cases from
NHS, and external controls from PLCO).
doi:10.1371/journal.pone.0002551.g003
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internal and external controls (results shown in Figures S3, S4, S5).

Comparing Figure 5A with 5B shows the high correlation of the

two sets of ranks in the original study with internal controls and the

lower correlation in the reconstructed studies using external

controls. Figures 6 and 7 show the histogram of ranks according to

the test without PC adjustment for SNPs ranked within a given

range by the test with PC adjustment. Again, the discordance

between two ranks in the analyses with external controls is more

prominent than in the original study.

On the premise that the top 5% of the testing SNPs ranked by

the statistic using a given PC adjustment strategy are to be

followed-up to the next stage, we evaluated the concordance

between two sets of follow-up SNPs, namely, those chosen by the

test adjusting for PCs selected by the permutation procedure, and

those chosen by the test adjusting for PCs selected by an

alternative strategy (such as adjusting for the top 10 PCs, or no

PC adjustment). In PLCOca-PLCOco, among the follow-up SNPs

chosen by test without PC adjustment, approximately 7% of them

would not have been chosen by the test with the adjustment of PCs

identified by the permutation procedure. The discrepancy

increases to 23% in the corresponding study with external controls

PLCOca-NHSco (Table 6). A similar pattern was also observed in

the breast cancer studies with swapping of internal and external

controls. We note that in each of the four studies considered the

vast majority of SNPs ranked in the top 1% by the test with PC

adjustment were ranked within the top 5% by the test without PC

adjustment (Figures 6A, 7A, S5A, and S6A). Figures 5 and S3

show that both ranks of the most discordant SNPs are close to the

threshold.

Compared to the proposed permutation procedure, strategies

that would have taken the top 10 PCs or only the significant PCs

(P-value ,0.05 based on the Tracy-Widom test) would have

changed the selection of the follow-up SNPs by an average of 6.7%

or by an average of 4.6% among the four considered studies

(Table 6).

Numbers of SNPs needed for the PCA in GWAS
To empirically evaluate the relationship between the reduction

in the over-dispersion factor and the number of structure inference

SNPs used in the correction of PS, we focused on the

reconstructed study PLCOca-NHSco, where the most extensive

confounding by PS was observed (l = 1.090). We conducted PCA

using nested sets of 1,500, 3,000, 6,000, 9,000 and 12,898

population structure inference SNPs (Table 7).

Table 7 shows that, as expected, using a larger number of SNPs

in the correction of PS results in the detection of more subtle

population structure. For example, with 12,898 SNPs, we can

detect four significant PCs (P-value ,0.05 based on the Tracy-

Widom test). With 6,000 or fewer population structure inference

SNPs, only two significant PCs can be identified. Also, the over-

dispersion factor of the test with the adjustment of PCs chosen by

the proposed permutation procedure decreases as the number of

SNPs used in the PCA increases. When 12,898 SNPs are used in

the correction of PS, we can reduce the over-dispersion factor to

an acceptable level (l = 1.032) with the adjustment of 3 PCs.

The importance of choosing SNPs with low background
LD for PCA

The set of structural inference SNPs we chose for the PCA

consists of 12,898 SNPs that had low background LD measured in

the joint PLCO and NHS control samples (r2 less than 0.004 for

any pair located within 500 kb on the same chromosome). The

restriction to SNPs with very low local pairwise correlation ensures

that the PCA findings reflect the genome-wide variation pattern,

and are not overly influenced by regional LD pattern. WTCCC

also adopted this strategy [20].

To demonstrate the importance of the selection of SNPs with

low background LD, we conducted PCA on the study PLCOca-

NHSco using all 12,536 autosomal SNPs located on chromosome

20 without filtering out SNPs in high LD, and summarized the

results in Table S5 and Figure S6. By inspecting the SNP loadings

Table 5. Over-dispersion factor (and the empirical type I error under the significant level of 0.05) for association tests with
adjustment for various numbers of PCs.

PCs chosen for the adjustment PLOCca-PLCOcoa PLCOca-NHScob NHSca-NHScoc NHSca-PLCOcod

0 PC 1.025 (0.053) 1.090 (0.059) 1.005 (0.051) 1.062 (0.057)

1st PC 1.020 (0.052) 1.055 (0.055) 1.006 (0.050) 1.040 (0.055)

1–2 PCs 1.022 (0.052) 1.040 (0.053) 1.004 (0.050) 1.013 (0.052)

1–3 PCs 1.021 (0.052) 1.040 (0.053) 1.005 (0.050) 1.006 (0.052)

1–4 PCs 1.021 (0.052) 1.032 (0.053) 1.005 (0.050) 1.007 (0.052)

1–5 PCs 1.023 (0.052) 1.032 (0.053) 1.006 (0.050) 1.008 (0.052)

1–6 PCs 1.024 (0.052) 1.032 (0.053) 1.007 (0.050) 1.010 (0.052)

1–7 PCs 1.025 (0.052) 1.033 (0.053) 1.008 (0.050) 1.010 (0.051)

1–8 PCs 1.025 (0.052) 1.036 (0.053) 1.007 (0.051) 1.011 (0.052)

1–9 PCs 1.025 (0.053) 1.036 (0.053) 1.007 (0.051) 1.011 (0.052)

1–10 PCs 1.025 (0.053) 1.036 (0.053) 1.008 (0.051) 1.010 (0.052)

Selected PCse 1.020 (0.052) 1.032 (0.053) 1.003 (0.050) 1.006 (0.052)

Note: The over-dispersion factor (and the empirical type I error under the significant level of 0.05) are estimated by applying the 1-df Wald test statistic with the
adjustment for selected PCs on the set of 241,238 genomic control SNPs.
aPLCOca-PLCOco is the original PLCO prostate cancer study.
bPLCOca-NHSco is the reconstructed study with prostate cancer cases from the PLCO, and external controls from NHS.
cNHSca-NHSco is the original NHS breast cancer study.
dNHSca-PLCOco is the reconstructed study with breast cancer cases from the NHS, and external controls from PLCO.
eThose PCs were chosen by the proposed permutation procedure for the correction of PS. The selected sets of PCs for individual analyses (from left to right) are: 1st PC;
1st, 2nd, and 4th PCs; 2nd PC; and 1st, 2nd, and 3rd PCs. The PCs were ordered according to their corresponding eigenvalues

doi:10.1371/journal.pone.0002551.t005
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on a given PC direction, it is evident that each of the top 5 PC

directions is heavily driven by regional LD patterns (Figure S6).

Thus, it is not surprising to see from Table S5 that the over-

dispersion is still high even after the adjustment of the top 10 PCs,

in contrast to the results shown in Table 5.

Discussion

We used empirical data from two GWAS within the CGEMS

project to assess the extent and impact of PS in studies with two

distinct control selection strategies. We also evaluated our

proposed procedures for choosing structural inference SNPs as

well as for selecting the PCs for correction of PS. In the two

original GWAS based on the nested case-control design, we

observed only minor confounding effect by PS with over-

dispersion factors of 1.025 and 1.005 for prostate and breast

cancer studies, respectively. These small inflations, which in

practice may not raise major concern, can be further reduced by

adjustment for a single PC. In the two reconstructed studies where

cases and controls were collected independently using different

Figure 4. Q-Q plot based on the test with PC adjustment. For each of the four analyses, the Q-Q plot is based on P-values (in log10 scale) that
correspond to the 1 d.f. Wald test on 475,116 testing autosomal SNPs by assuming an additive risk model (in logit scale) and with PC adjustment. The
PCs used in adjustment are selected by the proposed permutation procedure. A) Results for the original prostate cancer study (prostate cancer cases
and controls from PLCO). B) Results for the reconstructed prostate cancer study using external controls (prostate cancer cases from PLCO, and
external controls from NHS). C) Results for the original breast cancer study (breast cancer cases and controls from NHS). D) Results for the
reconstructed breast cancer study using external controls (breast cancer cases from NHS, and external controls from PLCO).
doi:10.1371/journal.pone.0002551.g004
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designs, we observed more extensive confounding effect by PS

with over-dispersion factors of 1.090 and 1.062. In these studies

with external controls, three principal components were required

to optimally correct for the confounding effect of PS, resulting in

the reduction of the inflation factor to a level comparable to that in

the original nested case-control studies. Our conclusions are based

on two actual studies of two cancer sites and two hypothetical ones

Figure 5. SNP ranking correlation in prostate cancer studies. In each plot, SNPs’ rankings based on the 1 d.f. Wald test on 475,116 testing
autosomal SNPs without PC adjustment are compared with their rankings based on the 1 d.f. Wald test with adjustment for PCs chosen by the
permutation procedure. The SNPs in blue are ranked among the top 5% by tests both with and without PC adjustment. The SNPs in green and
orange are ranked among the top 5% by only one of the tests. A) Results based on the original prostate cancer study (prostate cancer cases and
controls from PLCO). The 1st PC was chosen for PS correction. B) Results based on the reconstructed prostate cancer study using external controls
(prostate cancer cases from PLCO, and external controls from NHS). The 1st, 2nd and 4th PCs were chosen for PS correction.
doi:10.1371/journal.pone.0002551.g005

Figure 6. The conditional ranking distribution for the original
PLCO prostate cancer study. Each plot shows the histogram of
ranks according to the test without PC adjustment for SNPs ranked
within a given range by the test with the adjustment for the 1st PC
(chosen by the proposed permutation procedure). The ranking ranges
(%) are shown on the horizontal axis. The frequencies (%) are shown on
the vertical axis. A) The histogram of ranks for SNPs ranked in the top 0–
1% by the test with PC adjustment. B) The histogram of ranks for SNPs
ranked in the top 1–2% by the test with PC adjustment. C) The
histogram of ranks for SNPs ranked in the top 2–3% by the test with PC
adjustment. D) The histogram of ranks for SNPs ranked in the top 3–4%
by the test with PC adjustment. E) The histogram of ranks for SNPs
ranked in the top 4–5% by the test with PC adjustment.
doi:10.1371/journal.pone.0002551.g006

Figure 7. The conditional ranking distribution for the recon-
structed prostate cancer study using external controls. Each
plot shows the histogram of ranks according to the test without PC
adjustment for SNPs ranked within a given range by the test with the
adjustment for the 1st, 2nd, and 4th PCs (chosen by the proposed
permutation procedure). The ranking ranges (%) are shown on the
horizontal axis. The frequencies (%) are shown on the vertical axis. A)
The histogram of ranks for SNPs ranked in the top 0–1% by the test with
PC adjustment. B) The histogram of ranks for SNPs ranked in the top 1–
2% by the test with PC adjustment. C) The histogram of ranks for SNPs
ranked in the top 2–3% by the test with PC adjustment. D) The
histogram of ranks for SNPs ranked in the top 3–4% by the test with PC
adjustment. E) The histogram of ranks for SNPs ranked in the top 4–5%
by the test with PC adjustment.
doi:10.1371/journal.pone.0002551.g007
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using observed data in the European American populations. The

impact of PS in other populations, such as African Americans,

may be different and thus, requires independent assessment.

Case-control studies nested in prospective cohorts, such as the

two original GWAS in the CGEMS project, tend to minimize

biases introduced when cases and controls are selected from

different populations. We found that cases and controls had

comparable genetic background and only minor confounding

effect by PS in these two studies. In stand-alone case-control

studies, which are not nested within a cohort, the bias is likely to be

somewhat greater because of difficulties in control selection when

there is no roster of the underlying population producing the cases.

A more extreme but convenient and cost-efficient design

alternative, notably taken recently by the WTCCC [20], is the

use of external controls that are collected independently with little

reference to the population from which cases are selected. The

large number of disease-unrelated SNPs measured in a GWAS can

be utilized to evaluate and when applicable, correct for the

confounding effect induced by the genetic ancestral disparity

between the case and control groups. Therefore, the stringent

requirement of control selection imposed according to the classical

epidemiology paradigm could be relaxed to some extent. This

view is supported by our analyses of two reconstructed studies with

independently collected controls. It appears that an appropriate

PC adjustment can effectively correct for the elevated confounding

effect introduced by the use of less desirable controls.

Adjusting for unnecessary covariates incurs the risk of

decreasing power [31]. We have presented a simulation to

demonstrate that the unnecessary adjustment of population

substructure (even one PC) could lead to a significant loss in

power (Text S1, Table S1). A permutation procedure is proposed

to identify the minimal number of PCs while allowing an effective

correction of the confounding effect. By applying this new

procedure to the two original GWAS with internal controls and

two reconstructed studies with external controls, we documented

its advantage over other commonly used PC selection strategies.

At the expense of computing time, the new procedure is able to

pick fewer PCs while reducing the over-dispersion factor to a

similar or even lower level.

The identified set of 12,898 SNPs with low background LD in

European American population and common to both the Illumina

and Affymetrix commercial platforms can be used in PCA for

evaluation of population structure. We detected similar patterns of

population substructure in the original scans even though they were

nested within different cohorts. The top three axes from the two

independent studies appear to point to similar directions and are

likely to be a characteristic of the European American population.

Further studies are required to correlate differences along the axes

Table 6. Discrepancy in SNP selection for the follow-up study between the permutation procedure and an alternative PC
adjustment strategy.

PC adjustment Strategy PLOCca-PLCOcoa PLCOca-NHScob NHSca-NHScoc NHSca-PLCOcod

0 PC adjustmente 7.3% 22.8% 5.6% 22.6%

Adjustment for top 10 PCsf 4.5% 6.3% 9.4% 6.4%

Adjustment for Significant PCsg 3.7% 2.6% 8.2% 4.0%

Note: Under the premise that the top 5% of the testing SNPs ranked by the statistic using a given PC adjustment strategy are to be followed-up to the next stage, the
discrepancy the proportion of SNPs selected by this procedure and not selected by the permutation procedure.
aPLCOca-PLCOco is the original PLCO prostate cancer study.
bPLCOca-NHSco is the reconstructed study with prostate cancer cases from the PLCO, and external controls from NHS.
cNHSca-NHSco is the original NHS breast cancer study.
dNHSca-PLCOco is the reconstructed study with breast cancer cases from the NHS, and external controls from PLCO.
eNo PC adjustment in the association test.
fAdjustment for the top 10 PCs ranked by their associated eigenvalues.
gAdjustment for the PCs with significant genetic variation (P-value ,0.05 by the Tracy Widom test).
doi:10.1371/journal.pone.0002551.t006

Table 7. Detection and correction for population stratification using various numbers of SNPs for PCA in the reconstructed study
comparing prostate cancer cases from PLCO with controls from NHS.

Number of SNPs used in
PCAa

PCs with large genetic
variationb

PCs associated with
outcomec

PCs chosen for PS
correctiond

Over-dispersion factor after PS
correctione

1,500 1st, 2nd none 1st 1.067

3,000 1st, 2nd 1st, 2nd 1st, 2nd 1.052

6,000 1st, 2nd 1st, 2nd 1st, 2nd 1.043

9,000 1st, 2nd, 3rd 1st, 2nd 1st, 2nd 1.039

12,898 1st, 2nd, 3rd, 4th 1st, 2nd, 4th 1st, 2nd, 4th 1.032

aSNPs are randomly (except that the large set contains the smaller set) selected from the panel of 12,898 PS inference SNPs that are common to both the Illumina and
Affymetrix commercial platforms.

bThese PCs have a significantly large genetic variation (with P-values less than 0.05 based on the Tracy Wildom test).
cThese PCs have a significantly different distribution between case and control groups (with P-value less than 0.05 based on the Wilcoxon rank-sum test).
dThese PCs were chosen by the proposed permutation procedure for the correction of PS.
eThe over dispersion factor was estimated by applying the 1-df Wald test statistic with the adjustment for the chosen PCs on the set of 241,238 genomic control SNPs.
doi:10.1371/journal.pone.0002551.t007
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of genetic variation with groups defined by self-described ethnic

background, geographic location or specific demographic histories.

Based on our present experiences, we believe that this set of SNPs

should be sufficient for the inference and correction of population

structure in GWAS conducted using either the Illumina or

Affymetrix commercial platforms within the European American

populations, and enables the comparison of population structure

between studies performed on different platforms without relying on

genotype imputation. The same search algorithm can be used to

identify structure inference SNPs suitable for GWAS in other

populations, such as African Americans.

In the replication stages of a multi-stage GWAS, it would be

impractical to genotype the entire list of 12,898 SNPs for the

correction of PS. In the process of selecting a fixed number of

SNPs for the follow-up study that would typically involve 10,000 to

50,000 SNPs, there is always a trade-off between the number of

SNPs allocated for population structure inference and the number

of candidate disease-associated SNPs chosen for the validation/

replication. Recently, Price et al. [32] and Tian et al. [33]

identified panels of SNPs that are informative for discerning major

European ancestries in European American populations. For

example, Price et al. [32] designed a panel of 300 SNPs that aims

to distinguish northwest European, southeast European, and

Ashkenazi Jewish ancestry. These panels of ancestral informative

SNPs are potentially useful in replication studies with a similar

anticipated population substructure, but may not be as robust in

studies where the population sub-structure may be different or

unknown. Rapid accumulation of GWAS and their replication

studies should provide ample opportunities for designing and

validating panels of ancestral informative markers targeting

various stratified or admixed populations.

Our analysis has focused on the confounding effect of PS on

single-marker association analyses. While there is an increasing

emphasis on detecting interactions between genes and between

genes and the environment, Wang et al. [34] recently evaluated

the bias resulting from the confounding effect of PS in studies of

gene-gene or gene-environment interactions. Based on simulation

studies, they showed that bias due to PS could be large for studies

of interactions, especially when strong correlation between genes

(or between genetic and environmental factors) takes place. Using

data generated from the CGEMS project and tools developed in

this paper, we can empirically evaluate the impact of PS on the

study of gene-gene interaction under different control selection

strategies. However, valid assessment of effect of PS on gene-

environment interaction may require additional assumptions

depending on the control selection procedure chosen.

There are several additional issues other than the type I error

inflation arising from PS to consider when evaluating the

appropriateness of convenience controls versus controls selected

to reflect the study-base that produced the cases. There may be

differential genotyping error between cases and controls due to

variation in the processing of biological samples. Also, selection

bias for non-genetic covariates that can not be corrected by PCA

could lead to misleading estimates of interactions [35]. The

selection of cases and controls from a common prospective cohort

tends to minimize potential discrepancies.

The analyses of empirical data generated from the CGEMS

project suggest that the effect of PS in the GWAS of prostate and

breast cancers conducted in European American is small when the

study is epidemiologically well designed, but can be substantial

when controls and cases are drawn from separate studies. The

elevated confounding effect of PS due to the use of less desirable

controls can be effectively mitigated by methods such as the one

proposed here. The impact of using convenience controls on the

power for the detection of disease related markers needs to be

further investigated, especially in recently admixed populations.

Supporting Information

Text S1 An example demonstrating the loss in power due to

unnecessary adjustment of population substructure

Found at: doi:10.1371/journal.pone.0002551.s001 (0.09 MB

DOC)

Table S1 Power comparison between the association tests with

and without population substructure adjustment

Found at: doi:10.1371/journal.pone.0002551.s002 (0.03 MB

DOC)

Table S2 List of 12,898 population inference SNPs

Found at: doi:10.1371/journal.pone.0002551.s003 (1.13 MB

XLS)

Table S3 Tracy-Widom tests and associated P-values (in

parenthesis) for the significance of principal components based

on 7,017 structure inference SNPs

Found at: doi:10.1371/journal.pone.0002551.s004 (0.03 MB

DOC)

Table S4 Over-dispersion factor (and the empirical type I error

under the significant level of 0.05) when cases and controls are

reassigned so that they are completely separated along a chosen

PC direction.

Found at: doi:10.1371/journal.pone.0002551.s005 (0.03 MB

DOC)

Table S5 Results on the PLCOca-NHSco using the set of

12,536 SNPs on chromosome 20 in the principal components

analysis

Found at: doi:10.1371/journal.pone.0002551.s006 (0.03 MB

DOC)

Figure S1 Distribution of the minor allele frequency of 12,898

population substructure inference SNPs on each autosome. Each

SNP’s physical map position on the chromosome is based on the

reference genome build 36.2 and the latest dbSNP build 128. One

SNP (rs3789771) has no map information and is excluded from the

figure.

Found at: doi:10.1371/journal.pone.0002551.s007 (0.22 MB TIF)

Figure S2 SNP Loadings from PCA using 12,898 population

substructure inference SNPs in the PLCO prostate cancer study.

SNPs are organized according to the order of their chromosome

positions.

Found at: doi:10.1371/journal.pone.0002551.s008 (0.12 MB TIF)

Figure S3 SNP ranking correlation in breast cancer studies. In

each plot, SNPs’ rankings based on the 1 d.f. Wald test on 475,116

testing autosomal SNPs without PC adjustment are compared with

their rankings based on the 1 d.f. Wald test with adjustment for

PCs chosen by the permutation procedure. The SNPs in blue are

ranked among the top 5% by tests both with and without PC

adjustment. The SNPs in green and orange are ranked among the

top 5% by only one of the tests. A) Results based on the original

breast cancer study (breast cancer cases and controls from NHS).

The 2nd PC was chosen for PS correction. B) Results based on the

reconstructed breast cancer study using external controls (breast

cancer cases from NHS, and external controls from PLCO). The

1st, 2nd and 3rd PCs were chosen for PS correction.

Found at: doi:10.1371/journal.pone.0002551.s009 (0.29 MB TIF)

Figure S4 The conditional ranking distribution for the original

NHS breast cancer study. Each plot shows the histogram of ranks
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according to the test without PC adjustment for SNPs ranked

within a given range by the test with the adjustment for the 2nd

PC (chosen by the proposed permutation procedure). The ranking

ranges (%) are shown on the horizontal axis. The frequencies (%)

are shown on the vertical axis. A) The histogram of ranks for SNPs

ranked in the top 0–1% by the test with PC adjustment. B) The

histogram of ranks for SNPs ranked in the top 1–2% by the test

with PC adjustment. C) The histogram of ranks for SNPs ranked

in the top 2–3% by the test with PC adjustment. D) The histogram

of ranks for SNPs ranked in the top 3–4% by the test with PC

adjustment. E) The histogram of ranks for SNPs ranked in the top

4–5% by the test with PC adjustment.

Found at: doi:10.1371/journal.pone.0002551.s010 (0.02 MB TIF)

Figure S5 The conditional ranking distribution for the recon-

structed breast cancer study using external controls. Each plot

shows the histogram of ranks according to the test without PC

adjustment for SNPs ranked within a given range by the test with

the adjustment for the 1st, 2nd, and 3rd PCs (chosen by the

proposed permutation procedure). The ranking ranges (%) are

shown on the horizontal axis. The frequencies (%) are shown on

the vertical axis. A) The histogram of ranks for SNPs ranked in the

top 0–1% by the test with PC adjustment. B) The histogram of

ranks for SNPs ranked in the top 1–2% by the test with PC

adjustment. C) The histogram of ranks for SNPs ranked in the top

2–3% by the test with PC adjustment. D) The histogram of ranks

for SNPs ranked in the top 3–4% by the test with PC adjustment.

E) The histogram of ranks for SNPs ranked in the top 4–5% by the

test with PC adjustment.

Found at: doi:10.1371/journal.pone.0002551.s011 (0.02 MB TIF)

Figure S6 SNP loadings from PCA using SNPs on chromosome

20 in prostate cancer study using external controls. SNPs are

organized according to their positions (in base pair) on

chromosome 20.

Found at: doi:10.1371/journal.pone.0002551.s012 (0.09 MB TIF)
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