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Abstract

For every 100 purified proteins that enter crystallization trials, an average of 30 form crystals, and among these only 13–15
crystallize in a form that enables structure determination. In 2007, Dong et al reported that the addition of trace amounts of
protease to crystallization trials—in situ proteolysis—significantly increased the number of proteins in a given set that
produce diffraction quality crystals. 69 proteins that had previously resisted structure determination were subjected to
crystallization with in situ proteolysis and ten crystallized in a form that led to structure determination (14.5% success rate).
Here we apply in situ proteolysis to over 270 new soluble proteins that had failed in the past to produce crystals suitable for
structure determination. These proteins had produced no crystals, crystals that diffracted poorly, or produced twinned and/
or unmanageable diffraction data. The new set includes yeast and prokaryotic proteins, enzymes essential to protozoan
parasites, and human proteins such as GTPases, chromatin remodeling proteins, and tyrosine kinases. 34 proteins yielded
deposited crystal structures of 2.8 Å resolution or better, for an overall 12.6% success rate, and at least ten more yielded
well-diffracting crystals presently in refinement. The success rate among proteins that had previously crystallized was
double that of those that had never before yielded crystals. The overall success rate is similar to that observed in the smaller
study, and appears to be higher than any other method reported to rescue stalled protein crystallography projects.
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Introduction

The field of protein crystallography has seen great progress in

crystallization, data collection, phasing techniques, crystallization

screens, robotics, as well as in software for data reduction, phasing,

model building and refinement [1]. However, the overall success

rate (as measured by the number of deposited structures per

number of selected targets) remains relatively low [2,3]. On

average, only about 15–20% of protein targets that can be purified

will then crystallize in a form from which a structure can be

determined (http://www.targetdb.pdb.org; http://thesgc.com/

structures/target_progress.php).

The field of protein crystallization, which previously focused

almost entirely on the optimization of crystallization strategies, is

now increasingly addressing the improvement of the crystallization

properties of the proteins themselves [4]. This trend began in the

early 1990’s, with the advent of molecular biology techniques and

mass spectrometry. The use of these techniques allowed scientists

to focus crystallization efforts on the most stable domains of target

proteins, as identified by their pattern of resistance to limited

proteolysis [5,6]. Stable domains crystallize more readily and often

result in better-diffracting crystals [7,8,5]. Success rates were

further increased by expressing many variations of the protein

domain, as differences of a few residues at the N- or C- termini

often have dramatic effects on soluble protein expression and

protein crystallization. Graslund et al. found that by screening ten

derivatives of a given protein domain instead of one, the

probability of generating a soluble protein increased two-fold

and the probability of generating a structure increased four-fold

[9].

Crystallization can also be promoted by changing the surface

properties of the protein to reduce the conformational entropy of

surface residues. The most straight-forward approach is to use

reductive methylation of surface lysine residues [10]. In large,

systematic studies, lysine methylation rescued 6% of a set of

recalcitrant proteins [11,10]. Surface entropy can also be reduced

by site-directed mutagenesis of clusters of charged residues [12].

Protein crystallization can also be facilitated by the addition of

specific ligands or inhibitors, which bind to the protein and lower

its intrinsic heterogeneity [13]. Finally, the addition of trace

amounts of protease to the crystallization trials – in situ proteolysis

– rescued 10 out of 69 different proteins (,14%) that had

previously failed in crystallization and structure determination

[14].

In situ proteolysis appears to be the most efficacious crystalli-

zation rescue strategy. However, while the study of Dong et al. was

systematic and rigorous, all but one of the successful cases derived

from a single experimenter, and the proteins were predominantly

of bacterial origin. This prompted further inquiry into whether the

method (1) would be applicable to human proteins, (2) would be as
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successful in other hands, and (3) would be useful for those proteins

for which dozens of variants had already been tested. This paper

describes an expanded study: applying in situ proteolysis to 270

new proteins since the last paper, from prokaryotes and

eukaryotes, and by dozens of scientists.

Methods

All protein constructs contained an N-terminal hexahistidine

tag, with a recognition site for TEV protease (MGSSH-

HHHHHSSGRENLYFQG or MGSSHHHHHHSSGRENLYF-

QGH or MAPEHHHHHHDYDIPTTENLYFQGA). Proteins

were purified as described earlier [14,15,9]. All structures reported

here have been deposited into the Protein Data Bank (PDB, www.

rcsb.org).

Proteases were ordered from Sigma-Aldrich and stock solutions

made up as follows: a-chymotrypsin (C3142) was dissolved in

1 mM HCl and 2 mM CaCl2 at a concentration of 1 mg/mL.

Trypsin (T8003) was dissolved into 1 mM HCl and 2 mM CaCl2
at a concentration of 1.5 mg/mL. Elastase (E0127) was dissolved

into 200 mM Tris-HCl buffer (pH 8.8) at a concentration of

1 mg/mL. Papain (P5306) was dissolved into water at a

concentration of 1.2 mg/mL. Subtilisin A (P5380) was dissolved

into 10 mM Na acetate and 5 mM Ca acetate at a concentration

of 1 mg/mL. Endoproteinase Glu-C V8 (V8 protease) was

dissolved into water at a concentration of 2 mg/mL. Stock

solutions of protease were serially diluted into a buffer comprising

10 mM HEPES (pH 7.5) and 500 mM NaCl as needed.

In situ proteolysis
In situ proteolysis was performed essentially as described [14],

with the working set of proteases expanded, on a case-by-case

basis, to include trypsin (at a range of 1:10000 to 1:10 v/v), V8

protease (at a range of 1:100 to 1:40 v/v), papain (at a range of

1:1200 to 1:10 v/v), thermolysin (at 1:20 v/v), and subtilisin (at

1:20 v/v).

Pre-screening to identify a promising protease
Investigative limited proteolysis with a panel of proteases was

used occasionally to identify a protease that generated promising

degradation patterns, as detected by denaturing gel electrophoresis

or mass spectrometry. 5–10 mL of protein, dissolved at 10–20 mg/

mL, was incubated with a range of proteases for thirty minutes at

room temperature. The proteases were used at dilutions of 1:10,

1:100, and 1:1000. The reactions were stopped by the addition of

SDS-Coomassie sample loading buffer for analysis by gel

electrophoresis, or by formic acid for analysis by mass spectrom-

etry. The protease(s) and concentration that yielded the largest,

most stable domain were chosen for subsequent crystallization

experiments.

Results and Discussion

More than 270 proteins that failed to produce crystals or that

produced crystal forms unsuitable for structure determination

were subjected to in situ proteolysis crystallization trials over an

eight-month period in 2008. This set comprised about 200 yeast or

bacterial proteins, 70 human proteins, and 5 parasitic proteins. Of

these, 34 proteins generated crystals of sufficient quality for

structure determination (Table 1), for a rescue rate of ,13%. 10

additional crystals in the set are being optimized, so the number of

deposited structures may increase. We did not identify the protein

cleavage sites using mass spectrometry, as was done in Dong et al,

because of the effort involved. To indicate the approximate extent

of cleavage, we have included in the Supplementary Information

the sequence of each protein construct that entered crystal trials

and the regions of the protein for which electron density was

absent (Text S1).

Yeast and bacterial proteins
Of the initial 200 yeast and bacterial proteins, two-thirds had

previously resisted crystallization, and the remaining third had

formed crystals unsuitable for structure determination. These

crystals were too small, very thin, formed stacks, or diffracted

poorly and could not be improved upon with standard

optimization strategies. Occasionally, crystals diffracted well but

a very large number of copies in the asymmetric unit (more than

1MD in case of TM1086) made it impractical for structure

determination by SAD/MAD techniques. In situ proteolysis

treatment led to 20 structures from these recalcitrant proteins.

Before the in situ proteolysis process, 11 had not previously

crystallized at all (from ,135 tested), and the other 9 had formed

crystals unsuitable for structure determination (from ,65 tested).

From these data, the technique yields higher success rates within

the subset of proteins that had previously formed poor crystals.

This trend had been observed in the original study.

Human Proteins. Of the 70 human proteins targeted for

crystallization by in situ proteolysis, 54 had not previously formed

crystals, and 16 had formed poor-diffracting crystals. The set that

had not formed crystals comprised both those that had not been

tested previously as well as a set on which in situ proteolysis was

performed in parallel with conventional crystallization trials. In situ

proteolysis treatment led to 12 structures from these recalcitrant

proteins. Of these, 5 were from the set of 16 that had previously

formed crystals unsuitable for structure determination. This

success rate was notably high.

Parasitic proteins
Of the five proteins from human parasites targeted for

crystallization by in situ proteolysis, none had previously crystal-

lized. In situ proteolysis treatment led to 2 structures.

Variations on in situ proteolysis experimental approaches
The intent of Dong et al. was to carry out a systematic,

statistically significant, and well-controlled test of the efficacy of in

situ proteolysis. Each new crystal was analyzed using mass

spectrometry to ensure that the success of the method could be

attributed directly to the use of proteases. Their paper strongly

suggested that the method should be adopted as a primary

crystallization strategy due to its high success rate, but was

qualified by the fact that the method was being employed in a very

controlled setting.

The intent of this study was to examine the efficacy of the method

in practice, as carried out on a larger number of proteins by a larger

number of experimenters. This strategy had the advantage of

exploring the use of the method under less controlled conditions, in

which individual investigators adopted slightly different methodol-

ogies and strategies. The disadvantage of this strategy is that any

conclusions drawn have more caveats, due to the inability to control

all aspects of the experiments. We describe here several variations to

the original method that have proven successful.
In situ proteolysis using a wider array of proteases. In

the study of 69 target proteins by Dong et al., chymotrypsin was

used at a single concentration. In a few cases trypsin was also

tested at a single concentration. Chymotrypsin and trypsin are

selective proteases: chymotrypsin cleaves on the C-terminal side of

bulky hydrophobic side-chains such as phenylalanine, tyrosine, or

tryptophan; and trypsin cleaves on the C-terminal side of basic

In Situ Proteolysis: Crystals
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residues. It is likely that many target proteins were not optimal

substrates for these enzymes, but in the original study, it was

impractical and prohibitively expensive to systematically explore

other proteases for the 70 target proteins.

In this study, although chymotrypsin and trypsin accounted for

the most successes, other proteases were used, including V8

protease, thermolysin and papain. In total, 26 of the 34 structures

derived from the use of chymotrypsin or trypsin, 5 structures

derived from the use of the V8 protease, which cleaves on the C-

terminal side of acidic residues, two structures derived from the use

of thermolysin, and one from papain.

Identifying promising proteases in advance of

crystallization trials. In situ proteolysis was implemented in

three different experimental strategies. In the first, exemplified by

Dong et al, chymotrypsin and/or trypsin were added to the target

protein at a fixed concentration. In the second, promising

proteases were identified in advance of in situ proteolysis, by pre-

screening proteases in a range of concentrations and analyzing the

results by mass spectrometry or gel electrophoresis. Of the 34

structures, 4 derived from the use of a protease identified in this

manner. For example, the structure of N-carbamoylsarcosine

amidase from Thermoplasma acidophilum was determined after in situ

trypsinolysis. For this protein, previous attempts at removing the

N-terminal 6-His tag with TEV protease were unsuccessful. The

seleno-methionine protein was then subjected to limited

proteolysis with chymotrypsin, trypsin, V8, and papain prior to

Table 1. List of deposited protein targets crystallized by in situ proteolysis.

Target Name

Number of
Constructs
Designed PDB Code Crystal before protease

Resolution After
Protease Protease

CGD6_3220 20 2RHD No crystal 2.1 T

KIF22 22 3BFN No crystal 2.3 V8

EIF4A2 10 3BOR No crystal 1.9 C

EIF3J 12 3BPJ No crystal 1.9 C

RASL12 4 3C5C Poor crystal 1.9 V8

EPHA2 22 3C8X Poor crystal 2.0 T

REM2 8 3CBQ low resolution 1.8 T

BB3683_1_259 1 3CNV No crystal 2.0 T

NRAS 3 3CON low resolution 1.7 C

NR1D2-07 17 3CQV No crystal 1.9 T

TM1086 1 3DCL large unit cell 2.3 C

SETDB1 36 3DLM No crystal 1.8 T

ATC2088_1_254 1 3DNH Poor crystal 1.9 T

APC85800.6 9 3DOA No crystal 2.8 C

AF0924_65_195 1 3DT5 low resolution 1.9 T

TA0507_1_224 1 3DTZ Poor crystal 1.8 C

TBC1D22B 6 3DZX low resolution 2.3 C

DDB1 1 3E0C No crystal 2.4 C

ARHGAP11A 24 3EAP No crystal 2.3 V8

TA0454 1 3EEF No crystal 2.4 T

APC7436 1 3EET Twinned 2.0 Therm

XCC1504 2 3EFG No crystal 2.0 C

SSO8090 1 3EXC low resolution 2.3 C

YST5158_1_271 1 3F3K Poor crystal 1.8 T

YST4096_1_148 1 3F4A Poor crystal 1.8 T

YST2407_UMP 1 3F4F Poor crystal 2.0 T

YST5764_1_168 3 3F5R No crystal 1.7 C

RHA00566_1_118 1 3F6O No crystal 1.9 Therm

RHA06349_1_131 1 3F6V No crystal 1.5 Pa

ATC0911 1 3FD3 No crystal 1.7 V8

APC61717 2 3FDG Poor crystal 1.8 C

ATC1720_1_144 1 3FHM No crystal 2.7 V8

PF1953 1 3FIO No crystal 1.8 C

PF10_0328 8 3FKM No crystal 2.4 C

All structures deposited into the protein databank with corresponding accession code. Resolution numbers are rounded to the nearest tenth of an Angstrom.
C = chymotrypsin, T = Trypsin, Therm = Thermolysin, Pa = Papain, V8 = V8 protease.
doi:10.1371/journal.pone.0005094.t001
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analysis by mass spectrometry. Trypsin yielded the largest stable

domain and was used for crystallization assays. One condition

generated crystals of excellent quality, and the structure was

determined at 2.35 Å using SAD from a single data set (Luo et al.,

in preparation).

The third approach, used largely when the protein was very

abundant, is to screen a range of proteases using crystallization,

rather than gel electrophoresis, as the metric. This strategy has the

advantage that crystallization screens sample a wide range of

solution conditions in which the proteases may have more

favourable activities. This approach has proven particularly

successful for human small GTPases. Commonly, these protein

targets were crystallized with four different proteases in parallel –

typically chymotrypsin, trypsin, subtilisin, and V8 – at a 1:100 v/v

concentration. The target/protease mixtures were allowed to

incubate on ice for thirty minutes, at which point they were

subjected to crystallization trials. This technique was applied to 30

different target proteins; 8 structures resulted (PDB codes 3BFN,

3BOR, 3BPJ, 3C5C, 3CBQ, 3CON, 3DZX, and 3EAP), and

several more are in process.

Case studies
Sites of cleavage after in situ proteolysis. In most cases

described here, as in the study of Dong et al., the cleavage sites appear

to reside at the N- and/or C-termini. For instance, the

bromodomain of the PF10_0328 protein from Plasmodium

falciparum would not crystallize using typical crystallization

techniques. Eight different constructs were designed and many

different protein/crystal screen permutations were tested, with and

without tag, and in the presence of six different proteases. Crystals

appeared in conditions with chymotrypsin and the structure was

solved from selenomethionine-containing protein. From the original

construct of 166 residues, including a N-terminal His tag, only 120

residues could be seen in the electron density map. Mass

spectrometry analysis of the crystals revealed a large protein peak

at 17703 Daltons, which corresponds to chymotrypsin cleavage just

C-terminal to Trp463, and no cleavage at the N-terminus (Figure 1).

There are a few instances in which the proteins were cleaved at an

internal loop. For example, CGD6_3220 is a GTPase from

Cryptosporidium parvum that failed to crystallize despite repeated

attempts with many different constructs. After trypsin treatment, the

protein readily crystallized and the structure was solved to 2.2 Å

(PDB code 2RHD). All of the protein could be modeled into the

electron density map except for one loop corresponding to residues

68–76. Mass spectrometric analysis of the crystals revealed two

internal cleavage events at residues 71 and 73, respectively.

Interestingly, this loop is located at the interface between two

molecules in the crystal lattice (Figure 2). When a highly homologous

structure was superimposed on the model and the packing analyzed,

the intact loop would have clashed with the symmetry-mate

molecule and have inhibited this crystal formation.

In situ proteolysis removes large amount of protein. As

stated earlier, the most common cleavage events occurred near the

N and C termini, and usually 20–40 residues were removed.

However, in one previously reported case [14] and in one instance

reported in this work, a larger polypeptide fragment was removed.

For the eukaryotic translation initiation factor 3 (EIF3J; PDB code

3BPJ), 12 different protein constructs were designed in attempts to

refine the optimal domain boundaries for successful crystallization.

None of the proteins purified from these constructs yielded a

diffraction-quality crystal. Chymotrypsin treatment generated a

crystal that provided a 1.8 Å dataset from which the structure was

solved. The structure revealed that almost half of the protein had

been removed; the initial construct contained residues 76–220 but

only the C-terminal fragment (141–220) was ordered in the crystal

structure. Secondary structure prediction using the JPred server

[16] suggested this region was buried, and thus this position would

likely not have been selected for construct design.

Immediate successes after exhaustive trials. Our default

strategy for human proteins is to design 10–15 different constructs

for each protein and to attempt to crystallize each one that can be

purified, in both the presence and absence of the histidine tag [9].

If this first round fails, more constructs with slight variations at the

N- and C-terminal positions are often created, though this strategy

is met with significantly diminishing returns. In situ proteolysis is

now being used to resuscitate some of the failed projects. In one

case, 36 constructs were purified for the histone methyltransferase

SETDB1 protein, and none crystallized, either with or without the

histidine tag. In the first experiment with in situ proteolysis,

excellent crystals were obtained directly from a matrix screen, and

after minor optimization led to crystals diffracting to 1.8 Å (PDB

code 3DLM).

The heme-binding transcription factor rev-erbb and its

Drosophila orthologue E75 were the subject of extensive efforts

Figure 1. CGD6_3220 proteolytic digestion and subsequent
crystal structure. (A) SDS-PAGE gel, lane 1 is untreated protein.
Following lanes consist of two concentrations each of chymotrypsin,
Trypsin, Elastase, Papain, Subtilisin, and V respectively. Note both
chymotrypsin and trypsin yield 2 large stable domains. (B) Ribbon
diagram of CGD6_3220. Dotted lines signify missing density, large
diamond represents plane of crystal packing.
doi:10.1371/journal.pone.0005094.g001
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over a 2–3 year period. Dozens of constructs, including a number

of cysteine mutants and internal deletions, were tested to no avail.

Two of the constructs that were expressed to high levels

precipitated during concentration for crystallization. A small

amount of trypsin was added to facilitate concentration. After

successful concentration, the samples were analyzed by denaturing

gel electrophoresis, which showed that both proteins had been

digested to a single, large, stable domain. Accordingly, in situ

proteolysis trials with trypsin were pursued with the protein

constructs in the presence of the ligand, heme. Initial crystals from

a minimal screen were optimized and the protein to protease ratio

adjusted, and excellent crystals were obtained from which the

structure was solved to 1.9 Å resolution (PDB code 3CQV; Pardee

et al, submitted).

Crystallization efforts for the protein TA0507 were initiated in

2001. Several rounds of protein purification and crystallization

trials yielded tiny needle clusters that could not be improved in size

or quality. The project was abandoned and the protein stored at

280 C for seven years until the in situ proteolysis method became

more widely used in the laboratory. At that point, the original

protein was thawed and chymotrypsin was added. Single crystals

were generated from the first crystal screen, and the conditions

refined to produce large, single crystals that diffracted to 2.1 Å

(PDB code 3DTZ).

Reproducibility. Despite initial concerns, crystallization

using in situ proteolysis appears to be reproducible. In all the

experiments reported here, no trouble was observed in

reproducing additional crystals for improvement or data

collection. On some occasions, the ability to regenerate crystals

was remarkable. For example, in the case of SETDB1, the tudor

domain of human histone-lysine N-methyltransferase (PDB code

3DLM), excellent native crystals were obtained with

chymotrypsin. The experimenter was able to repeatedly obtain

crystals with this treatment for extensive testing. Subsequent in situ

proteolysis trials with the selenomethionine-incorporated protein

formed crystals of the same morphology; there was no need to re-

test the protease concentration or to re-screen the protein.

Alternate protein conformations after in situ

proteolysis. Crystallization can trap proteins into rare,

perhaps non-physiological, conformations; this can also be the

case for proteins crystallized after in situ proteolysis. The

crystallization of rev-erbb provides such an example. Rev-erbb
crystallized in a number of crystal forms, one of which diffracted to

1.9 Å. In this structure, the heme ligand is coordinated by a

histidine residue in the middle of the protein and a cysteine residue

in the N-terminal region of the fragment; both residues had been

suggested to be ligands for the heme in biochemical and genetic

studies [17,18]. One of the earlier crystal forms of rev-erbb
diffracted to about 3.5 Å. In this crystal form, (Figure S1), the N-

terminal portion of the protein had partially unfolded and the

protein dimerized around the heme group which was coordinated

by the histidine residue in each monomer. The in depth analysis of

this crystal form was not pursued, and it is not known if its

formation was dependent on proteolysis, or if the conformation

represents a physiologically-relevant state.

Greater efficacy of method in cases where protein has

crystallized previously. The method of in situ proteolysis, in its

various iterations, has now been applied to over 300 soluble

proteins that had previously failed to yield a structure. Of these

proteins, ,200 had never before generated crystals and ,100 had

formed crystals that were unsuitable for structure determination.

The success rates of in situ proteolysis differed dramatically

between these subsets. Of the proteins that had failed to

crystallize, 24 structures were obtained, for a success rate of

,12% (24 structures from 200 proteins). For the proteins that had

previously generated crystals, the success rate was almost double at

,21% (21 structures from 100 proteins).

This large discrepancy between successes of this technique with

the two populations could possibly be explained by inherent

stability of the purified protein. A protein that had crystallized

previously must have been stable enough over the time period

required to form crystals. However, the population of proteins that

never crystallized might contain a population of unstable proteins,

prone to denature or aggregate over the crystallization period. We

analyzed possible relationships among the group of proteins that

could not crystallize, such as pI or predominant predicted

secondary structure, but could not find any common trend among

them.

Conclusions. In this greater sampling of human and

bacterial proteins, in situ proteolysis has proven effective when

even dozens of constructs failed to produce a protein amenable to

crystallization. The method has rescued proteins stored for years

and has proven remarkably reproducible. Although we have

shown that other proteases can also be used effectively, it is as yet

unknown if their use on a large scale is economical, or whether the

Figure 2. PF10_0328 proteolytic cleavage and crystal structure.
(A) Mass spectrometry analysis of chymotrypsin-treated protein crystals.
The major peak corresponds to a C-terminal cleavage of 17 residues,
largest mass peak corresponds to full length construct, and the third
peak corresponds to the C-terminal cleavage plus His-tag cleavage. (B)
Ribbon diagram of PF10_0328 bromodomain. Dotted lines signify
missing density.
doi:10.1371/journal.pone.0005094.g002
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use of chymotrypsin and trypsin would capture most of the cases

that would be successful. The method appears doubly effective

when applied to proteins that have already formed crystals as

compared to proteins that have never crystallized.

Supporting Information

Text S1 Original sequences of proteins subjected to in situ

proteolysis.

Found at: doi:10.1371/journal.pone.0005094.s001 (0.05 MB

DOC)

Figure S1 Crystal structure figure of a possible non-physiolog-

ical dimer. Possible non-physiological dimer obtained from a

3.5 Å dataset collected on a crystal of rev-erbb.

Found at: doi:10.1371/journal.pone.0005094.s002 (0.48 MB TIF)
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