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Abstract

Protein lysine acetylation is a type of reversible post-translational modification that plays a vital role in many cellular
processes, such as transcriptional regulation, apoptosis and cytokine signaling. To fully decipher the molecular mechanisms
of acetylation-related biological processes, an initial but crucial step is the recognition of acetylated substrates and the
corresponding acetylation sites. In this study, we developed a position-specific method named PSKAcePred for lysine
acetylation prediction based on support vector machines. The residues around the acetylation sites were selected or
excluded based on their entropy values. We incorporated features of amino acid composition information, evolutionary
similarity and physicochemical properties to predict lysine acetylation sites. The prediction model achieved an accuracy of
79.84% and a Matthews correlation coefficient of 59.72% using the 10-fold cross-validation on balanced positive and
negative samples. A feature analysis showed that all features applied in this method contributed to the acetylation process.
A position-specific analysis showed that the features derived from the critical neighboring residues contributed profoundly
to the acetylation site determination. The detailed analysis in this paper can help us to understand more of the acetylation
mechanism and can provide guidance for the related experimental validation.
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Introduction

Proteins are created through a biological process called protein

biosynthesis. This process begins with transcription from DNA

and the splicing of genes into messenger RNA (mRNA) molecules,

which are later translated into polypeptides. At the time of

translation, a protein can either be active or inactive, and its

subsequent activity is usually regulated by chemical modifications

referred to as post-translational modifications (PTMs) [1]. Lysine

(K) acetylation is an essentially reversible and highly regulated

PTM that has been shown to occur in many protein targets,

including core histones, approximately 40 transcription factors and

over 30 other proteins [2,3]. This modification is catalyzed by

conserved enzymatic machinery composed of lysine acetyltrans-

ferases (KATs, also known as histone acetyltransferases (HATs)),

which transfer the acetyl-group of acetyl-CoA to the epsilon-amino

group of an internal lysine residue, and lysine deacetylases

(KDACs, also known as histone deacetylases (HDACs)) that

remove the acetyl-groups [4]. Certain KATs have been shown to

also acetylate non-histone transcription-related proteins, and

acetylation has been shown to play a critical role in human

biology and disease. Promising advances have been made recently

in developing drug therapies that target HDACs for certain

cancers [5]. Of the known PTMs, lysine acetylation has the

capacity to destabilize the chromatin polymer through charge

neutralization of the basic lysine residues, potentially harboring

structural consequences for higher-order chromatin structures

[6,7,8]. This scenario is not only crucial in the nucleus but is also

important for regulating different cytoplasmic processes, including

cytoskeleton dynamics, energy metabolism, endocytosis, autoph-

agy, and even signaling from the plasma membrane [9]. There are

many individual reports of lysine acetylation sites on proteins that

are involved in diverse biological processes, which suggest that

acetylation has broad regulatory functions in addition to the few

functions that have actively been studied [10].

The full extent of regulatory roles of protein acetylation is still

elusive. Importantly, the identification of acetylation sites will be a

foundation for understanding the molecular mechanism of protein

acetylation. There are several ways to identify potential acetylation

sites, such as mass spectrometry [11], the radioactive chemical

method [12], and chromatin immunoprecipitation (ChIP) [13].

However, the conventional experimental identification of lysine

acetylation substrates is inefficient; it is laborious and has low

throughput [14]. Therefore, the prediction of acetylation sites with

computational approaches is desirable and necessary. Moreover,

the sites that are predicted by computational models, especially

models for performing large-scale predictions, could be of interest

with respect to general implications for cell biology and biological

experiments.

Various computational approaches have been attempted to

predict acetylation proteins based on primary sequences

[15,16,17,18,19,20]. For example, to fully utilize the available

information that is extracted from the original sequence and to

overcome the disadvantage of highly unbalanced datasets, Xu
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et al. [18] proposed a novel predicted method called Ensemble-

Pail, which encodes sequences based on improved position weight

matrices (PWMs) and then implements an ensemble of support

vector machine (SVM) classifiers trained on the ‘‘natural’’

distribution of the data that were extracted from the original

sequence data. Basu et al. [14] performed a hierarchical clustering

of core histone lysines based on the sequences surrounding each of

these given lysines, in which all 56 histone core sequences were

aligned to one another, creating a matrix of pairwise alignment

scores; then, a hierarchical tree of the histone sequences was

generated. Lee et al. [17] proposed a method called N-Ace to

recognize acetylated sites on alanine, glycine, lysine, methionine,

serine and threonine. Several important features, such as solvent

accessibility and physicochemical properties, were considered

when implementing the encoding scheme; then, a two-stage

SVM was utilized to learn the computational models. Although

those methods achieved great progress in predicting acetylation

sites, almost all of them gained high specificity but had low

sensitivity, and they lacked detailed analysis and explanation for

their results. Some drawbacks of these models in this field should

be noted. (i) Some proteins with high homology were not excluded.

Many studies barely discarded sequence fragments that had high

sequence identity and did not consider the sequence identity of the

whole protein sequences. (ii) It is well known that the original

sequences contain enormous amounts of information; however,

the methods of feature extraction in most of the papers were based

on a single technique; thus, it is inevitable that some useful

information would be missed. (iii) Almost all of the studies

investigated only the amino acid residues that continuously

surrounded the central acetylation sites. From a structural

biological point of view, KATs docking not always binds with

the region that is symmetrically balanced around acetylation sites

[21,22,23]. Therefore, new methods must be established and used

for more effective lysine acetylation site identification.

To fully extract information from the original sequence and to

discern the amino acid residues that work on the prediction of

acetylation sites as accurately as possible, our paper presents a

promising method called PSKAcePred. From the consideration of

amino acid composition and position information, evolutionary

similarity and physicochemical properties in protein sequences,

three methods for feature extraction, namely binary encoding

(BE), K-nearest neighbors (KNN) scores and average accessible

surface area (AASA), were employed to effectively mine the

information. Meanwhile, the theory of information gain (IG) [24],

which is considered to be a type of tool for analyzing the

conservatism of amino acid sequences, was utilized to optimize the

positions of the amino acid residues that surround the lysine. We

demonstrated that our model outperformed general continuous

sequence implementations and achieved both high sensitivity

(78.02%) and high specificity (81.66%) in 10-fold cross-validation.

Here, we present details on the construction of PSKAcePred, the

overall performance assessment, and the intensive benchmark

experiments against some existing predictors. A user-friendly web

interface is now freely available at: http://bioinfo.ncu.edu.cn/

inquiries_PSKAcePred.aspx.

Methods

Data Collection and Preprocessing
All lysine acetylation data were extracted from UniProtKB/

Swiss-Prot [25] (2012_08, www.uniprot.org), CPLA [26]

(2012_08, http://cpla.biocuckoo.org/), PhosphoSitePlus [27]

(2012_08, www.phosphosite.org), HPRD [28] (2012_08, http://

hprd.org/) and SysPTM [29] (2012_08, http://www.biosino.org/

SysPTM/) databases, where UniProtKB/Swiss-Prot is a non-

redundant protein database and the acetylation protein were

retrieved with the keywords ‘‘Acetyllysine’’ and ‘‘Experimental’’,

CPLA is a an integrated database of protein which specifically

concentrate to lysine acetylation, and PhosphoSitePlus, HPRD,

SysPTM are the systematic resources for post-translational

modifications which contain the data of lysine acetylation. After

retaining one protein sequence and removing other identical

sequences among those five databases, we finally collected 9829

experimental acetylation protein sequences. It is well known that if

the datasets are highly homologous, then the accuracy of

prediction can be overestimated. Homology reduction allows us

to avoid such a bias. Therefore, we clustered the protein sequences

with a threshold of 30% identity using the CD-HIT [30] and 5202

proteins were extracted for further preprocessing. An independent

dataset was constructed by randomly selecting 10% of all non-

homologous protein entries (5202 protein sequences), which

consisted of 520 proteins with 1224 acetylation sites. It was used

as a benchmark for evaluating our model as well as for comparing

it with other published methods. The remaining 4682 proteins

with 9815 acetylation sites were used as the training dataset.

Thereafter, acetyllysine fragments were extracted as positive set.

We used the same type of residue (lysine), excluding known

acetylation sites, as the negative set (non-acetylation sites).

Although not all of these non-acetylation sites are necessarily true

negatives, it is reasonable to believe that a large majority of them

are.

For both the positive and negative sets, we defined a local

window with each acetylation or non-acetylation site in the middle

and several sequence neighbors on each side; the window was

denoted by a sequence fragment x = (s-m…s-2s-1s0s1s2…sn). Because

the structural studies have shown that KAT domains coupled with

peptide substrates typically do not exceed 14–20 amino acids in

length [21], we first chose maximum number of 10 (m = 10, n = 10)

residues that were upstream and downstream of the acetylation or

non-acetylation site in such a way that the whole length of the

peptide became 21. Subsequently, the highly similar sequence

fragments were removed again from the positive set. For two

sequence fragments with more than 30% similarity, only one site

was kept while the other was discarded. After that, the non-

redundant positive set was composed of 9232 acetylated sequence

fragments. The non-redundant negative set and independent set

were generated using the same approach as for the positive set.

The detailed information for data collection was displayed in

Supplementary Table S1.

To perform the cross-validation, all of the non-redundant

positive samples were selected to be in the positive training set.

The balanced negative training set [17] was randomly extracted

from the non-redundant negative samples. However, the negative

training set, which was randomly selected, might be not sufficiently

response to the characteristics of the overall non-redundant

negative samples. Therefore, five negative training sets balanced

with the positive sets were obtained by random extraction from the

non-redundant negative set. The data of training set and

independent set of this paper can be obtained at: http://bioinfo.

ncu.edu.cn/inquiries_PSKAcePred.aspx.

Information Gain (IG)
To obtain new information from the data, we require a good

measure for the uncertainty of the given data and the uncertainty

between the predicting information and the given data. The

information entropy from information theory, which was devel-

oped by Shannon [31], provides an effective measure of the

uncertainty for a given system. It has been confirmed that the

Prediction for Lysine Acetylation
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physical entropy used in thermodynamics is more or less closely

related to the concept of information used in communication

theory [31]. Therefore, information gain (IG), which measures the

decrease in information entropy when a given variable is used to

group values of another (class) variable, can also be considered to

be a measure of the degree of ordering [32,33].

In fact, for a given protein sequence fragment, the conservative

property varies from site to site, and some residues near the central

site have little contribution to the identification of the acetyllysine

sites [23]. Thus, the current problem is how to choose the specific

residues that have a positive influence on the predictive models. In

our solution we choose a correlation measure based on the

information-theoretical concept of IG, a measure of the uncer-

tainty of a random variable. Here, we define the information

entropy Hc(X) of each amino acid residue in all sequence fragments

as the following:

Hc(X )~{
X

i

Pc(xi)log2(Pc(xi)) c~1,2 . . . n; i~1,2

and the entropy of X after observing values of another variable Y is

defined as:

Hc(X jY )~

{
X

j

Pc(yj)
X

i

Pc(xijyj)log2(Pc(xijyj)) j~1,2 . . . 20

where n is the length of the sequence fragments, Pc(xi) is the prior

probabilities for acetylation and non-acetylation sites in all

sequence fragments, Pc(yj) is the probability of the jth amino acid

occurring in position c in those fragments, and Pc(xi|yi) is the

posterior probabilities of jth amino acid in acetylation and non-

acetylation sequence fragments. The amount by which the entropy

of X decreases reflects additional information about X provided by

Y and is called information gain [24].

IGc(X jY )~Hc(X ){Hc(X jY )

According to the above theory, we can draw the conclusion that

the larger the value of IG is, the greater the impact of the

corresponding amino acid residue on the acetylation site.

Amino Acids Binary Encoding (BE) Scheme
The type and position of the amino acid residues are the basic

information for a protein sequence. This approach is the simplest

and most intuitive algorithm of feature extraction and is based

only on the compositional characteristics of the amino acid

sequences. To transform protein sequences into numeric vectors,

we adopted orthogonal binary vectors. Thus, 20 different amino

acids are considered in the binary encoding, which are ordered as

ACDEFGHIKLMNPQRSTVWY. Briefly, each amino acid is

represented by a 20 dimensional binary vector. For example,

amino acid A was expressed as 10000000000000000000, amino

acid C as 01000000000000000000, and so on. Therefore, if the

length of a protein sequence is n, the dimension of the numeric

vector is 20*n.

K Nearest Neighbors (KNN) Score
Local sequence clusters often exist around acetylation site

because substrate sites of same KATs or KATs family usually

share similar patterns in local sequence fragments [23]. To take

advantage of such cluster information of local sequence fragments

for predicting acetylation sites, we took the local sequence around

the acetylation site in a query protein and extracted features from

its similar sequences in both positive and negative datasets by a

KNN score algorithm [34,35,36].

For a query acetylation site, we first find its K nearest neighbors

in both positive and negative sets according to local sequence

similarity. For example, for two local sequence fragments S1 and S2

(the window size is 2n+1), define the distance D(S1,S2) between S1

and S2 as:

D(S1,S2)~1{

Pn

i~{n

Sim(S1(i),S2(i))

2nz1

Sim(a,b)~
M(a,b){min(M)

max(M){min(M)

where, Sim is derived from the normalized amino acid substitution

matrix. a and b are the two amino acids, M is the substitution

matrix (BLOSUM62 was used in this paper).

After that, the corresponding KNN score was then extracted as

follows: (i) Calculate the average distances from the query

sequence fragment S to all the training set (contain the positive

and negative sets); (ii) Sort the neighbors by the distances and

choose the K nearest neighbors; (iii) Calculate the percentage of

positive neighbors in its K nearest neighbors as the KNN score.

Last, to take advantage of different properties of neighbors with

various similarities, we chose different K values to obtain multiple

scores. In this paper, K was chosen to be 0.025%, 0.05%, 0.1%,

0.2% and 0.4% of the size of the training set, and the five KNN

scores were extracted as features for acetylation prediction.

Amino Acid Physicochemical Property
Physicochemical property is the most intuitive feature for

biochemical reactions and is extensively applied in bioinformatics

studies [37]. Each of the 20 amino acids has multifaceted

properties that are responsible for the specificity and diversity of

protein structure and function. A large body of experimental and

theoretical research has been performed to characterize different

kinds of properties of individual amino acids and to represent them

in terms of the numerical index [38,39]. Version 9.1 of Amino

Acid index database (AAindex) [40] has a total of 544 amino acid

indices. It includes many published indices that specify the

physicochemical properties of amino acids. The amino acid

indices with the value ‘‘NA’’ were replaced by 0. Then, the amino

acids around the acetylated sites can be encoded according to the

values associated with each physicochemical property. All of the

544 physicochemical properties were examined with the default

parameters of SVM to determine the prediction ability for model.

The properties that were associated with high accuracy were

defined as useful features for prediction model. Through testing,

the average accessible surface area (AASA) [41] was chosen as the

best physicochemical property for acetylation prediction. The

cross-validation accuracy of all 544 physicochemical properties is

listed in Supplementary Table S2.

Prediction for Lysine Acetylation
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Model Optimization and Evaluation
SVMs were used to evaluate the effects of different types of

features. The concept of the SVM is to map the input samples into

a higher dimensional space using a kernel function and then to

find a hyper-plane that discriminates between the two classes. In

this paper, a radial basis function (RBF) was chosen as the kernel

function, and two parameters, the penalty parameter C and the

kernel width parameter c, were tuned based on the training set,

using the grid search strategy in LIBSVM. For the actual

implementation, we used the LIBSVM package (version 3.1),

which can be freely downloaded from http://www.Csie.Ntu.Edu.

Tw/̃ cjlin/libsvm/. To evaluate the predictive performance of the

models, cross-validation was performed. In previous studies, the

jackknife method was demonstrated to be the most objective

validation method [42,43], but it is time-consuming when the

feature-dimension is large. Therefore, 10-fold cross-validation was

applied to optimize the parameters, such as the window size and

training feature.

The accuracy (Acc), specificity (Sp), sensitivity (Sn) and the

Matthews correlation coefficient (MCC) were utilized to assess the

predictive performance. In the following formulas, the accuracy

denotes the percent of correct prediction in both the positive and

negative sets. The sensitivity (the true positive rate) and the

specificity (the true negative rate) represent the percentage of the

positive set and the negative set that were correctly predicted,

respectively. The MCC accounts for the true and false positives

and negatives and is usually regarded as a balanced measure that

can be used even if the classes are of very different sizes.

Sn~
TP

TPzFN
Sp~

TN

TNzFP
Acc~

TPzTN

TPzFPzTNzFN

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)(TNzFP)(TPzFP)(TNzFN)
p

These parameters were defined in terms of the true positive

(TP), false negative (FN), true negative (TN), and false positive

(FP).

Results

Analysis of Different Features
To extract the information comprehensively, we carefully

analyzed protein sequence fragments from aspects of amino acid

composition and position information, evolutionary similarity and

physicochemical properties. The feature encoding scheme includ-

ed three types of features: amino acids binary encoding (BE), K

nearest neighbors (KNN), and the average accessible surface area

(AASA). Here, we analyzed the distinction between acetylation

and non-acetylation from those three features.

Analysis of BE features. BE feature reflects the amino acid

composition and position information of residues surrounding

acetylation sites and non-acetylation sites. In order to analyze

specific properties of amino acids, we first calculate the amino acid

frequency of both acetylation and non-acetylation samples. As

shown in Figure 1A, the amounts of lysine (Lys), arginine (Arg) and

Glycine (Gly) that are in acetylation samples are much higher than

that of in non-acetylation samples. Indeed, a protein that has a

surface that is composed mainly of negatively charged amino acids

will bind to a protein with mainly positively charged molecules,

such as lysine and arginine [44,45,46,47,48]. This shows that the

acetylation substrates which bind to KATs are much different

from non-acetylation. We also adopted a Two Sample Logo [49]

(a P-value of 0.0001 and a t-test) of 21-mer compositional biases

around acetylation conjugation sites compared to non-acetylation

conjugation sites. Using this procedure, the amino acid residues

that are significantly enriched and depleted around lysine

acetylation sites are identified. As shown in Figure 1B, we

determine that the characteristics of the residues in the position of

28,21 and +1 had significant differences between acetylated

and non-acetylated samples. In addition, the ratios of lysine (K) in

upstream and arginine (R) in downstream of acetylation sites are

higher than those of non-acetylation sites, which is in accordance

with the above result. This analysis suggests that sequence profiles

of the flanking regions of acetylation sites are more conservative

with higher specificity than those of non- acetylation sites.

Analysis of KNN features. KNN scores measure the

evolutionary similarity of the local sequence surrounding a query

site between acetylation sequence fragments (positive set) and non-

acetylation sequence fragments (negative set). A score greater than

0.5 means the query site is more similar to the acetylation samples;

a score smaller than 0.5 means it is more similar to the non-

acetylation samples. The larger the KNN score is, the more similar

the site is to some known acetylation sites, and thus, the more

likely it is an acetylation site. Figure 2 compares the KNN scores of

acetylation sites with those of non-acetylation sites. Overall,

acetylation sites have larger scores than non-acetylation sites. For

acetylation sites, the average KNN scores with different sizes of

nearest neighbors are within 0.55,0.7. Therefore, the local

sequences surrounding known acetylation sites are more similar to

their nearest neighbors in positive set (excluding self-matches) on

average as expected. Note that such similarities are not due to

protein homology as the global sequence similarity between any

two proteins in our dataset is either insignificant or low [36]. This

result confirms that acetylation related clusters exist in acetylation

fragments. For non-acetylation sites, the KNN scores are within

0.35,0.5, which means that the sequences in negative set are

more similar to nearest neighbors in negative set. With the

increasing of the value of K, the gap of KNN scores between

acetylation and non-acetylation sites is getting smaller and smaller,

which is consistent with the theory of KNN, as shown in Figure 2B.

Through testing, when K was chosen to be 0.025%, 0.05%, 0.1%,

0.2% and 0.4% of the size of the training set, the predictive result

reached its maximum. In short, the KNN scores capture

evolutionary similarity information in the local sequence around

acetylation sites and hence distinguish them from the background.

Therefore, KNN scores are suitable to be used as features for

acetylation site prediction.

Analysis of AASA features: Pang et al. [50] investigated the

structural environment of 8378 incidences of 44 types of PTMs

and found a side-chain of amino acid that undergoes post-

translational modification (PTM) prefers to be accessible on the

surface of a protein. Therefore, the solvent accessibility of amino

acid residues surrounding the acetylation sites may be adapted

when distinguishes between the acetylation site and non-acetyla-

tion sites. In this section, we will demonstrate the effectiveness of

AASA as features for acetylation site prediction. Figure 3 plots the

AASA formed from the 21-mer acetylation sites in the constructed

data set. Most of the acetylation or non-acetylation sites (0

position) are located in the highly ASA, which is consistent with

those data reported in the literature [50]. The average AASA of

neighborhood residues are 47 to 55 for acetylation sites. The

fluctuant range of AASA of residues surrounding acetylation sites

is bigger than that of non-acetylation sites. This implies that the

acetylation processing might have occurred where the structural

Prediction for Lysine Acetylation
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surroundings are relatively large variation range. The AASA that

surrounds the acetylation sites exceed that around non-acetylation

sites, especially in the 28, 27, 26, 25 and 24 positions.

Generally speaking, the AASA of residues around the acetylation

sites and non-methylation sites have a little difference. The

possible reason for limiting the ASA analysis in the acetylation

might be that the AASA values of different amino acids are

statistical results, and there may be certain differences with the

experimental results.

Using IG to Analyze and Extract Sequences
It is well known that acetylation is catalyzed by conserved

enzymatic machinery composed of KATs and KDACs. Chou

et al. [51] stated that part of the biochemical preference of the

enzyme for a given substrate could be determined by critical

neighboring residues that surround the site of action immediately.

This pattern of residues along the short span of a protein or

polypeptide is known as a short linear motif [52]. And also,

according to site-level conservation analysis, Weinert et al. [23]

revealed that acetylation sites are highly conserved, significantly

more so than phosphorylation sites. These suggest that the

catalytic of KATs or KDACs are significantly determined by

specificity residues surrounding the acetylation sites. Therefore, it

is necessary to carefully examine the position specific amino acid

within the sequences of acetylated and non-acetylated proteins and

to identify distinctive amino acid enrichment/depletion profiles for

acetylated proteins.

Based on the measurement of the IG in a large window size

(210,K,+10), Figure 4 displays the statistically significant

composition of each position of amino acid residues. The

surrounding positions that have high values (significant for

differentiating the acetylation sites from the non-acetylation sites)

are the significant amino acids in the surrounding region. We find

that the values in different positions of residues had relatively large

changes. Simultaneously, the curves obtained by the experimental

acetylation and non-acetylation sequences are clearly above the

random curve (created by the random sequence fragments, the

number of which is the same as the experimental samples). From

this observation, we can draw conclusions that the local acetylation

sequences have own unique nature and characteristics and that it

can also effectively reflect the differences among the different

positions of the amino acid residues. The residues that are closer to

the sites did not obtain all of the higher values; in contrast, some of

the residues that are far from the acetylated site had higher values.

For example, the positions of 28, 27, 26, 25, 24, 23, 22, 21

and +1 have higher values, while compared with other surround-

Figure 1. Comparison of sequence information between acetylation sites and non-acetylation sites. (A) Amino acid average
composition of acetylation and non-acetylation sites. (B) A two-sample logo of the compositional biases around the acetylation sites compared to the
non-acetylation sites.
doi:10.1371/journal.pone.0049108.g001
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ing positions, +5 and +8 have small scores. More interestingly, we

can find that the value of the upstream residues generally is higher

than that of downstream. It can imply that the KATs more tend to

conjugate upstream amino acid residues of the acetylation sites,

and this corresponded with the result of Lu’s [53]. In this regard,

to improve the prediction performance of acetylation site, we need

only choose those locations of amino acids with higher values to

rebuild new sequence fragments. Here, we defined the length of

new sequence fragment as IG window size. Table 1 displays the

different IG window sizes according to the IG values of different

positions of amino acid residues. The most appropriate size of IG

window was examined in the following work.

Position-specific Prediction of Acetylation Site
To evaluate the performance of PSKAcePred, we chose IG

window size as 13 and carried out a 10-fold cross-validation. The

predictive performances of models trained with various features for

lysine acetylation are shown in Table 2. The predictive results of

these models with IG window size 9, 11, 15 and 17 are

summarized in Supplementary Table S3–S6. According to

statistical comparison of MCC based on the paired Welch’s t-

test (see Table S7), the model trained with KNN outperformed

that trained with BE and AASA (P#7.83e-10), which is in

agreement with the results of above feature analysis. But in

general, the models trained with single features could not

effectively distinguish acetylation sites from non-acetylation sites.

Fortunately, when the model was trained with the combination of

BE, KNN and AASA features (BE+KNN+AASA), the perfor-

mance was remarkably enhanced (P#1.47e-08). The average

accuracy, sensitivity, specificity and MCC for acetyllysine were

79.84%, 78.02%, 81.66% and 59.72%, respectively. This result

demonstrated that all three types of features contributed to

distinguishing between acetylation sites and non-acetylation sites.

There was a strong complementary effect among these features.

Henceforth, the combination of BE+KNN+AASA was selected as

an optimal feature set to improve the predictive model.

Determination of the Best IG Window Size
For each acetylation or non-acetylation site, its profile features

were taken from a sequence fragment containing several key

residues (spatially); thus, it was crucial to confirm the optimal IG

window size and to realize its effects on the prediction

performance. When using the optimal feature (BE+KNN+AASA),

and with the window size changed from 9 to 17 (Table 1), the

performance of the models had some differences, as shown in

Table 3. The results showed that the IG window size had certain

impact on all prediction performance. Based on statistical

comparison of MCC (see Table S8), there were significant

differences between the prediction model with IG window size

of 13 and those of 9, 11, 15, 17 (P#3.01e-07). With the increase of

the length of the IG window, the predictive performance was not

always increased. When the IG window was too large, much

redundant information would be contained, while the IG window

was too small, a lot of useful information would lose. The

predictive accuracy, sensitivity and MCC reached maximums with

the IG window size of 13. Then, based on the computational

Figure 2. Comparison of KNN scores between acetylation sites and non-acetylation sites. (A) Box plots of KNN scores for acetylation sites
and non-acetylation sites. The bottom and top of the box are the 25th and 75th percentiles, respectively. (B) Comparison of mean KNN scores between
acetylation sites and non-acetylation sites.
doi:10.1371/journal.pone.0049108.g002
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Figure 3. The average accessible surface area (AASA) of residues around acetylation sites and non-acetylation sites.
doi:10.1371/journal.pone.0049108.g003

Figure 4. The information gain values at different positions of residues in the sequence fragments.
doi:10.1371/journal.pone.0049108.g004

Prediction for Lysine Acetylation

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e49108



efficiency and overall performance of the trained models, 13-mer

was selected as the best IG window size in the following

implementation.

General Prediction of Acetylation Site
To determine the superiority of the IG for optimizing the

windows, we construct other seven models by using different

general window sizes (where the upstream and downstream amino

acids around the central site were continuous and the numbers of

them were the same). As shown in Table 4, when using the

BE+KNN+AASA feature in 10-fold cross-validation, the predic-

tion performances had significant change with the window size of

9, 11 and 13 (2.72e-06#P#9.73e-03, see Table S9). When the

window size increased to 15, the prediction performances had

significant increase (5.17e-08#P#1.68e-03). However, with the

window size continues to increase, the performances did not

change significantly (P$0.05). The best prediction performances

were obtained when adopted the general window size of 15.

However, the average accuracy, sensitivity, specificity and MCC

for this best window size were only 76.85%, 74.90%, 78.80% and

53.74%, respectively. Compared with the best result that was

obtained by the position-specific prediction method with the IG

window size of 13 (Table 3), all of the predictive performances of

general prediction method were far inferior to position-specific

prediction method, especially for the MCC (reduced by 5.98%,

P = 1.47e-08). The main reason for this result might be that the

KATs are position-specific catalysts that catalyze the acetylation

substrate and there are specific conservative residues around the

acetylation sites. The IG method could effectively extract those key

conservative residues for acetylation prediction.

Independent Test and Comparisons with Existing
Methods

To determine whether the predictive model PSKAcePred is

over-fitting for the training data, we applied an independent test

set as the benchmark. The test set covered 520 lysine acetylated

proteins, which contained 1068 acetylation sites and 15152 non-

acetylation sites. None of independent test proteins was included

in the training dataset (as described in Data collection and

preprocessing). As shown in Table 5, the average accuracy,

sensitivity, specificity and MCC for PSKAcePred were 78.79%,

77.34%, 80.24% and 57.61%, respectively. Generally, the

prediction model is acceptable and reasonable when the

performance in an independent test is just a little lower than

those obtained in training test (Table 3 of IG window size 13)

[17]. Therefore, the model PSKAcePred is reasonable for

predicting lysine acetylation.

In order to further evaluate the prediction performance of the

PSKAcePred objectively, we made comparisons with other

existing predictors. Here we put our independent test set into

three previously developed methods with optimal parameters:

LysAcet [19], EnsemblePail [18] and Phosida [15]. The compar-

isons of predictive performance between our method and other

prediction methods are shown in Table 5 and Table S10. It was

obvious that PSKAcePred yielded the best performance. The

accuracy of PSKAcePred reached 78.79%, which was about

24.36%, 21.62% and 14.06% higher than those in LysAcet,

EnsemblePail and Phosida, respectively. Especially, the MCC in

PSKAcePred was increased by 48.74%, 42.12% and 23.7% in

comparison with the results in LysAcet, EnsemblePail and

Phosida, respectively (P#5.46e-10). The training data of these

three existing predictors were mainly only from the UniProtKB/

Swiss-Prot and our significant improvements can be attributed to

the adoption of complete acetylation data not only in UniProtKB/

Swiss-Prot but also in CPLA, PhosphoSitePlus, HPRD and

SysPTM databases. All of these existing methods are statistical

or machine learning based predictors, and they use different

Table 1. The sizes and positions of IG window.

IG window size Positions in original 21-mer acetylation sequence fragment

9 28, 27, 26, 25, 24, 23, 22, 21, +1

11 28, 27, 26, 25, 24, 23, 22, 21, +1, +4, +6

13 28, 27, 26, 25, 24, 23, 22, 21, +1, +3, +4, +6, +7

15 28, 27, 26, 25, 24, 23, 22, 21, +1, +3, +4, +5, +6, +7, +9

17 28, 27, 26, 25, 24, 23, 22, 21, +1, +2, +3, +4, +5, +6, +7, +8, +9

doi:10.1371/journal.pone.0049108.t001

Table 2. The predictive performance of the models trained
with various features with an IG window size of 13.

Training
features

Accuracy
(%)

Sensitivity
(%)

Specificity
(%) MCC (%)

BE 68.0060.17 63.9460.28 72.0660.26 36.1260.33

KNN 74.9860.39 72.6660.67 77.3160.30 50.0260.78

AASA 65.2860.13 62.6660.45 67.9060.41 30.6160.26

BE+KNN+AASA 79.8460.18 78.0260.20 81.6660.17 59.7260.35

Abbreviations: BE, binary encoding; KNN, K nearest neighbors; AASA, average
accessible surface area. The corresponding measurement was represented as
the average value 6 standard deviation.
doi:10.1371/journal.pone.0049108.t002

Table 3. Prediction performance of the models trained with
different IG window sizes.

Performance 9 11 13 15 17

Accuracy (%) 76.6960.14 77.5660.23 79.8460.18 76.9760.10 76.7660.21

Sensitivity (%) 75.0060.35 75.6060.14 78.0260.20 75.4760.19 74.1760.24

Specificity (%) 78.3860.35 79.5160.46 81.6660.17 78.4660.12 79.3660.35

MCC (%) 53.4260.29 55.1560.47 59.7260.35 53.9660.19 53.6060.42

The corresponding measurement was represented as the average value 6

standard deviation.
doi:10.1371/journal.pone.0049108.t003
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sequence features. Compared with these predictors, it is worth

mentioning that the formula of the PSKAcePred encoding is much

more concise. More importantly, the reasonably good perfor-

mance of PSKAcePred reflected that the PSKAcePred model can

effectively capture the information of critical neighboring residues

around lysine acetylation sites.

Discussion

Protein lysine acetylation has emerged as a key posttranslational

modification in cellular regulation [54]. To fully decipher the

molecular mechanisms of acetylation-related biological processes,

an initial but crucial step is the recognition of acetylated substrates

and the corresponding acetylation sites. However, even the

advanced laboratory techniques used to analyze and identify

acetylation sites, such as mass spectrometry (MS), cannot analyze

all types of proteins [14]. For example, the MS method has limited

detection and sensitivity capabilities and cannot recover peptides

that are acetylated at only low levels. Besides, lysine could be

modified only in distinct environment conditions, cell cycle stages,

and cell types, and are therefore undetectable in cell extracts we

used. Therefore, the prediction of acetylation sites with compu-

tational approaches is desirable and necessary. Our prediction

model, PSKAcePred, is a promising step toward finding novel

acetylation sites, although we did not achieve full prediction

capacity.

We performed an in-depth analysis of why this model can

obtain such good performance. First, the multiple features were

adapted to more comprehensively represent the protein sequences

(described in the Results section). Second, the IG was applied to

select conservative amino acid residues around the acetylation sites

to rebuild the peptides. In the case of protein acetylation,

Marmorstein et al. [21,22] have reviewed that KATs are the

catalytic subunits of multisubunit protein complexes that acetylate

specific lysine residues on the N-terminal regions of the histone

components of chromatin to promote gene activation. Functional

data demonstrate that KAT proteins and KAT complexes for a

given substrate can be determined by specificity residues

surrounding the site [55,56], and biochemists have focused on

identifying those critical neighboring residues that give rise to

specific enzyme-substrate interactions. For example, Kim et al.

[57] analyzed the differences in the preferences of amino acid

residues flanking acetyllysine residues and suggested that the

KATs binding motifs showed a positional specificity. The amino

acid residues at positions 22, 21, +2 and +4 in relative density

maps had obvious high relative abundances. Therefore, they

stated that it is highly likely that linear lysine acetylation motifs

exist among lysine-acetylated proteins. Additionally, Choudhary

et al. [10] used the experimental method to analyze the local

sequence context around the acetylation sites and found that

amino acids with a bulky side chain were enriched in the 22 and

+1 positions, and a propensity for lysine or acetylated lysine at the

24 or +4 position was observed. From the above description, it

can be speculated that each position of the individual amino acid

residues around acetylation sites have its own inherent character-

istics and they play different degree of influence for the happening

of acetylation. In this regard, it is reasonable and necessary to

extract key amino acid residues from long acetylation substrate for

prediction of acetylation sites.

Based on the existing data, we proposed the PSKAcePred for

the prediction of acetylation sites. Several issues must be solved in

the future researches. (i) We considered the non-annotated lysine

residues as non-acetylated sites from the same proteins as that of

acetylated sites. Although a large majority of them are non-

acetylated sites and we tired our best to reduce the false non-

acetylated sites by selecting five negative sets repetitively, some of

the non-acetylated sites might be determined to be acetylation sites

in the future. (ii) The specific KATs or KDACs of acetylation on a

Table 4. The predictive performance of the model trained with optimal feature with general window size.

General window size Accuracy (%) Sensitivity (%) Specificity (%) MCC (%)

9 (24,K,+4) 73.7260.25 71.9860.23 75.4760.43 47.4860.51

11 (25,K,+5) 75.4260.19 73.5360.31 77.3160.14 50.8760.38

13 (26,K,+6) 76.0160.30 73.5260.51 78.4960.46 52.0860.60

15 (27,K,+7) 76.8560.19 74.9060.28 78.8060.41 53.7460.39

17 (28,K,+8) 76.8260.20 74.9360.20 78.7060.56 53.6760.42

19 (29,K,+9) 76.8360.13 74.5560.31 79.1160.18 53.7160.25

21 (210,K,+10) 76.5260.09 74.0060.46 79.0460.31 53.1160.16

The corresponding measurement was represented as the average value 6 standard deviation.
doi:10.1371/journal.pone.0049108.t004

Table 5. The comparison of predictive performance between our method and other prediction methods on independent test data
sets.

Prediction method Accuracy (%) Sensitivity (%) Specificity (%) MCC (%)

LysAcet 54.4360.99 56.5560.00 52.3061.97 8.8761.97

EnsemblePail 57.1760.93 76.1260.00 38.2261.86 15.4961.88

Phosida 64.7360.44 39.9860.00 89.4760.88 33.9161.20

PSKAcePred 78.7960.33 77.3460.00 80.2460.66 57.6160.67

The corresponding measurement was represented as the average value 6 standard deviation.
doi:10.1371/journal.pone.0049108.t005
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proteome-wide level is largely unknown. The information of

validated KATs or KDACs that can be used in acetylation

conservation analysis should be applied to supply the support of IG

analysis. (iii) With the increase of protein structure data in PDB

dataset, the experimental structure information should be

contained in extracted feature for acetylation prediction. Many

researches have revealed the occurrence of acetylation is related to

the secondary structure of a protein [58,59,60]. However, when

applied the PSIPRED [61,62], an effective tool for secondary

structure prediction, we did not obtain promising result (the result

was not list). The main reason for this is probably that there are

some differences between the predicted and experimental struc-

ture information of acetylation proteins.

Overall, our method presented a new position-specific view to

analyze the characteristics of acetylation protein, and considered

not only protein sequence information but also evolution similarity

of lysine acetylation fragments and physicochemical properties of

amino acids. The prediction model achieved a promising

performance and outperformed other prediction tools. Feature

analyses demonstrate that acetyllysine sites and non-acetyllysine

have some significant differences in position specific properties of

residues, evolution similarity and average accessible surface area,

and the prediction model with multiple features can make full use

of the supplementary information from different features to

improve classification performance. The detailed feature analysis

in this work might help understand the lysine acetylation

mechanism and guide the related experimental validation.
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