
Activation of ERAD Pathway by Human Hepatitis B Virus
Modulates Viral and Subviral Particle Production
Catalin Lazar, Alina Macovei, Stefana Petrescu, Norica Branza-Nichita*

Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, Bucharest, Romania

Abstract

Hepatitis B virus (HBV) belongs to the Hepadnaviridae family of enveloped DNA viruses. It was previously shown that HBV
can induce endoplasmic reticulum (ER) stress and activate the IRE1-XBP1 pathway of the unfolded protein response (UPR),
through the expression of the viral regulatory protein X (HBx). However, it remained obscure whether or not this activation
had any functional consequences on the target genes of the UPR pathway. Of these targets, the ER degradation-enhancing,
mannosidase-like proteins (EDEMs) are thought to play an important role in relieving the ER stress during UPR, by
recognizing terminally misfolded glycoproteins and delivering them to the ER-associated degradation (ERAD). In this study,
we investigated the role of EDEMs in the HBV life-cycle. We found that synthesis of EDEMs (EDEM1 and its homologues,
EDEM2 and EDEM3) is significantly up-regulated in cells with persistent or transient HBV replication. Co-expression of the
wild-type HBV envelope proteins with EDEM1 resulted in their massive degradation, a process reversed by EDEM1 silencing.
Surprisingly, the autophagy/lysosomes, rather than the proteasome were involved in disposal of the HBV envelope proteins.
Importantly, inhibition of the endogenous EDEM1 expression in HBV replicating cells significantly increased secretion of
both, enveloped virus and subviral particles. This is the first report showing that HBV activates the ERAD pathway, which, in
turn, reduces the amount of envelope proteins, possibly as a mechanism to control the level of virus particles in infected
cells and facilitate the establishment of chronic infections.
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Introduction

Hepatitis B virus (HBV) is a noncytopathic, hepatotropic virus

which belongs to the Hepadnaviridae family. HBV infection is a

serious health problem, resulting in acute and chronic hepatitis,

cirrhosis and often hepatocellular carcinoma and death [1,2].

Despite the existence of an efficient vaccine, more than 400

million people are known to carry the virus worldwide.

The viral DNA genome is packaged inside the nucleocapsid,

surrounded by a lipid bilayer derived from the host cell, which

contains three transmembrane proteins translated from alternative

start codons of the same open reading frame (ORF). These surface

proteins are designated as large (L), middle (M) and small (S) and

share a 226 amino acid- long S domain, at the C-terminal region

[3]. In addition to the S domain, the M protein contains a 55

amino acids pre-S2 region, also present in L. The L protein is

further extended by an N-terminal pre-S1 domain comprising 109

amino acids. The envelope proteins are translocated into the

endoplasmic reticulum (ER) where N-glycosylation, folding and

oligomerization occur [4]. This compartment is also responsible

for the quality control of the newly synthesized proteins, which

ensures the disposal of polypeptides failing to fold through the

calnexin/calreticulin cycle [5]. Terminally misfolded proteins are

retro-translocation into the cytosol, followed by polyubiquitylation

and proteasomal degradation [6]. This tightly regulated ER-

associated degradation (ERAD) pathway is initiated by the

oligomerization and autophosphorylation of the ER stress-sensor

IRE1, which, once activated, removes an intron from the X-box

binding protein 1 (XBP1) mRNA [7].

The spliced mRNA is translated into an efficient transcription

factor which triggers the expression of proteins and enzymes of the

ER degradation-enhancing, mannosidase-like proteins (EDEM)

family [8].

EDEMs are believed to function as lectins that recognize

terminally misfolded glycoproteins and deliver them to the ERAD

pathway, thus relieving the ER stress resulted from their

accumulation [9,10,11].

It was previously suggested that HBV may induce ER stress and

activate the IRE1-XBP1 pathway of the unfolded protein response

(UPR), through the expression of the viral regulatory protein X

(HBx) [12]. However, it was not clear, whether the target genes of

this pathway were correspondingly activated. A more recent study

has shown that over-expression of the S protein activates the

cellular autophagy, a process which is beneficial for HBV

replication, but also triggers the UPR, suggesting a potential

implication of the latter pathway in the viral life cycle [13].

However, the consequences of the UPR activation on either the

infected-host cell or the virus remained largely obscure.

In this study we investigated the role of the ERAD pathway in

modulating the HBV life cycle and production of viral and

subviral particles (SVPs). We found that synthesis of the EDEM

family of proteins (EDEM1 and its homologues, EDEM2 and
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EDEM3) is significantly up-regulated in cells with persistent or

transient HBV replication. Interestingly, co-expression of the wild-

type S, M and L proteins with EDEM1 resulted in massive

degradation of the envelope proteins, which was reversed by

EDEM1 silencing. Degradation occurs before protein oligomer-

ization in native complexes, by autophagy/lysosome. Inhibition of

endogenous EDEM1 expression in HBV replicating cells increased

secretion of enveloped virus as well as SVPs.

This is the first report showing that HBV activates the ERAD

pathway, which, in turn, reduces the amount of envelope proteins,

possibly as a mechanism of controlling the level of virus particles in

infected cells and facilitate the establishment of chronic infections.

Results

HBV activates expression of EDEM proteins
To investigate the relationship between HBV replication and

EDEM proteins expression, the level of EDEM1-3 transcripts was

quantified in HepG2.2.2.15 cells, which support active HBV

replication, assembly and secretion of infectious virions, and the

parental HepG2 cell line. Interestingly, an important increase in

the amount of EDEM1 and EDEM2 mRNA (approximately 4

fold) was observed in HepG2.2.2.15 compared to HepG2 cells,

while EDEM3 mRNA increased only moderately (by 2 fold)

(Fig. 1A). To further determine whether the increased level of

mRNA was accompanied by an accumulation of the correspond-

ing proteins, EDEM1-3 biosynthesis was analysed by Western

blotting of both cell lines lysates, following digestion with PNGase

F. Expression of endogenous EDEM2 and EDEM3 was not

detectable on Western blots in either cell line, although both,

commercial as well as home-made Abs were used (data not

shown). In contrast, endogenous EDEM1 was readily detectable in

HepG2.2.2.15, while only a faint band was observed in HepG2

cells, confirming the results obtained at mRNA level (Fig. 1B).

EDEM1 identity was further confirmed by PNGase F treatment

which decreased the apparent molecular size of the 78 kDa

glycosylated protein (gp) to that of the fully deglycosylated, 69 kDa

polypeptide (p), as expected [11].

Since endogenous EDEM1 was expressed as sufficiently high

levels to be detectable in HepG2.2.2.15 cells, the next experiments

were focused on the role of this protein, as a representative of the

EDEM family, in the HBV life-cycle.

Over-expression of the envelope S protein was previously shown

to induce UPR [13]. To determine whether accumulation of

nucleocapsids contributes to the significant up-regulation of the

EDEM proteins expression in HepG2.2.2.15 cells, the amount of

EDEM1 mRNA was quantified in the presence of the HBV

replication inhibitor, lamivudine (3TC). Tunicamycin (Tu), an N-

glycosylation inhibitor known to induce UPR [14] was also

included as positive control for the ER stress. As shown in Fig. 1C,

3TC treatment had no impact on the level of EDEM1 transcripts.

The efficiency of the viral replication inhibition was demonstrated

by Southern blotting, which revealed a dramatic decrease of the

amount of HBV nucleocapsids in 3TC-treated cells, by more than

95% (Fig. 1D, left panel). The drug had, however, no significant

effect on the HBV envelope proteins, as shown by Western

blotting of the same cell lysates (Fig. 1D, right panel). This is

expected, since viral protein synthesis occurs also independently of

replication in HepG2.2.2.15 cells, from the transcripts generated

by the nuclear copies of the HBV genome. Together, the results

show that accumulation of viral nucleocapsids is not responsible

for the up-regulation of EDEM1 transcripts.

Interestingly, Tu increased the EDEM1 mRNA amount in

HepG2 cells to a level similar to that found in HepG2.2.2.15 cells,

in the absence of any treatment, while having no consequences on

the steady-state level of EDEM1 mRNA in HepG2.2.2.15 cells.

This suggests that unlike HepG2, the HepG2.2.2.15 cells are

already exposed to a significant amount of chronic ER stress, due

to the high rate of HBV replication, to which they have adapted

by eliciting a sufficient level of UPR [12].

To determine the relationship between HBV and EDEM1

expression in cells hosting a progressive HBV replication, the

EDEM1 transcripts were quantified in Huh7 cells transfected with

pTriex HBV 1.1. The plasmid contains 1.1 units of the whole

HBV genome and is able to support viral replication, assembly

and secretion of fully infectious virions [15]. As shown in Fig. 1E,

the amount of EDEM1 mRNA correlated well with that of HBV

protein synthesis, with a maximum level at day 9 post-transfection

(up to 3 fold increase).

EDEM1 enhances degradation of HBV envelope proteins
It is generally accepted that EDEM1 function is to relieve the

ER stress by removing the burden of misfolded proteins from this

compartment. However, wild-type proteins may also be ERAD

substrates, as very recently shown for the Human Hepatitis C virus

(HCV) E2 envelope protein [16]. To determine whether EDEM1

up-regulation has any consequences on the stability of the HBV

envelope proteins, HEK293T cells were co-transfected with

plasmids coding for either EDEM1 or the wild-type S, M and L

envelope proteins. The steady state level of the viral proteins

(Fig. 2A), as well as the expression of EDEM1 in the same cells

lysates (Fig. 2B), were assessed by Western blotting using specific

Abs. Interestingly, the amount of either envelope protein

dramatically decreased in cells co-expressing EDEM1, regardless

of their glycosylation status, while the level of the ER chaperone,

calnexin, remained unperturbed. This degradation could reflect a

function of EDEM1 in the turn-over of the viral proteins or be a

consequence of a high, non-physiological level of EDEM1

expression in these cells (Fig. 2B). To investigate either possibility,

the stability of the S proteins was analysed in the presence of

various amounts of co-expressed EDEM1 (Fig. 3A), followed by

quantification using the ‘‘Quantity One’’ software (Fig. 3B). As

shown in Fig. 3B, the level of the envelope protein decreased by up

to 85% in the presence of EDEM1, in a dose-dependent manner.

As little as 0.3 mg of expression plasmid yielding hardly detectable

amounts of EDEM1 on Western blots (Fig. 3A) was sufficient to

lower the quantity of S proteins by 40%. This dependency strongly

suggests a role of EDEM1 in stability of the HBV envelope

proteins.

The inverse relationship between EDEM1 expression and HBV

may appear to contrast the results in Fig. 1E showing increased

expression of both EDEM1 and HBV antigens during transient

viral replication in Huh7 cells. In this experimental setting, the

amount of viral proteins detected at any time point is the

consequence of both, accumulation as a result of genome

replication and degradation, as a result of EDEM1 activity. A

higher rate of viral replication than of protein degradation may

thus explain the apparent discrepancy.

Knockdown of endogenous EDEM1 increases stability of
the HBV envelope proteins

To further explore the role of EDEM1 in the life cycle of the

HBV envelope proteins, expression plasmids coding for S, M and

L proteins were co-expressed with EDEM1 siRNA in HEK293T

cells. The efficiency of EDEM1 knock down was measured by

quantitative RT-PCR in transfected cells, compared to controls.

As shown in Fig. 4A, EDEM1 mRNA was significantly down-

regulated in cells expressing either S, M or L proteins (by 3 fold),

Role of EDEM1 in the HBV Life-Cycle
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while no cytotoxic effects were observed (data not shown). Analysis

of the steady-state levels of the envelope proteins, by Western

blotting using the common anti-S Abs, revealed a considerable

increase for S and L and more moderate for M, in EDEM1

siRNA-transfected cells (Fig. 4B). It is important to note that in

addition to the M protein, the M plasmid also allows for expression

of S, due to the presence of the internal ATG start codon.

Similarly, S and M are also translated from the L plasmid and are

better evidenced in EDEM1 silenced cells (Fig. 4B).

To validate these results, the effect of the over-expressed

EDEM1 silencing was also investigated using the S protein as a

model substrate. EDEM1 down-regulation and the stability of the

S protein were determined by Western blotting, using the

corresponding Abs. As shown in Fig. 4C, expression of exogenous

EDEM1 was efficiently inhibited, which was accompanied by a

clear increase of the envelope protein stability (Fig. 4D).

EDEM1 interacts with wild-type HBV envelope proteins in
HepG2.2.2.15 cells

EDEMs function in UPR relays on the ability to directly bind

ERAD substrates and target them to degradation, thus a potential

interaction between EDEM1 and the HBV envelope proteins was

further investigated. Conventional co-immunoprecipitation assays

using over-expressed proteins, followed by identification of the

binding partner by Western blotting did not provide any

conclusive results, most probably because of the massive

Figure 1. EDEMs are up-regulated in HBV-replicating cells. (A) The levels of EDEM1-3 mRNA were quantified by RT-real-time PCR, in HepG2
and HepG2.2.2.15 cells. (B) EDEM1 expression was investigated in HepG2 and HepG2.2.2.15 cells, by Western blotting, following PNGase F digestion.
Glycosylated (gp) and non-glycosylated (p) EDEM1 are shown. Actin expression was used as total protein gel-loading control. (C) The level of EDEM1
mRNA was quantified by RT-real-time PCR, in HepG2 and HepG2.2.2.15 cells, in the absence or presence of lamivudine (3TC) or tunicamycin (Tu). (D)
Quantification of HBV replication and envelope protein biosynthesis by Southern blotting (left panel) and Western blotting under non-reducing
conditions (right panel). The replication forms (RF) and the envelope protein oligomers are shown. (E) The amount of SVPs and EDEM1 mRNA were
quantified pTriexHBV1.1-transfected Huh7 cells, by ELISA and RT-real-time PCR, respectively. Data represent the mean and standard deviation (SD) of
duplicates from three independent experiments. The cut-off values in ELISA varied between 0.082–0.095. Statistical analysis showing ‘‘p’’ values was
performed using the Student’s unpaired t-test (A, C).
doi:10.1371/journal.pone.0034169.g001
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degradation of the viral proteins in the presence of EDEM1 (data

not shown). Therefore, an approach whereby the endogenously

expressed proteins were radioactively labelled for a short period

of time and immunoprecipitation with specific Abs was employed

instead. Proteins from HepG2.2.2.15 cells were extracted in mild

detergent (CHAPS) and equal amounts were immunoprecipitated

with either anti-EDEM1 or anti-S Abs. HepG2 cells and

incubation with protein A-Sepharose beads only, were also used

as controls. As shown in Fig. 5, no HBV proteins were

immunoprecipitated by the anti-S Abs in HepG2 cells, while a

very faint band with the apparent molecular size of that expected

for EDEM1 (marked with an asterisk) was pulled down in HepG2

cells by the corresponding Abs, but no in the beads only sample

(Ø). In contrast, the envelope proteins were co-immunoprecip-

itated with EDEM1 by both, the anti-S and anti-EDEM1 Abs in

HepG2.2.2.15 (Fig. 5, right panel). The ability of EDEM1 to pull

down the S, M and L proteins may be the consequence of a direct

interaction with each of the three polypeptides, through the

common S-domain, or with one of them as part of a homo- or

hetero-dimmer. Given the incomplete maturation of the S

protein during the short period of pulse-labelling, as measured

by the ratio between the glycosylated (g) and nonglycosylated (p)

chains, 1:2 compared to 2:1 in steady state, the first scenario is

more likely to occur. It appears that gpS is not co-precipitated by

EDEM1 (Fig. 5, right panel); whether this reflects a lack of

interaction between the two proteins, or is simply a consequence

of the lower abundance of this glycoform within the cells, is a

matter of future investigation.

HBV envelope proteins are degraded by autophagy
Generally, misfolded proteins are disposed of by the ubiquitin/

proteasome ERAD. Interestingly, a mutant variant of the HBV M

protein is degraded by an ubiquitin-independent, proteasome-

dependent pathway [17]. To investigate the mechanism of the

wild-type proteins degradation, the HEK-293T cells expressing

the S protein, in the presence or the absence of EDEM1, were

treated with a series of proteasome, lysosome and autophagy

inhibitors. Soluble tyrosinase (TyrST), a well-studied proteasome-

dependent ERAD substrate [18] was included as control for the

efficiency of the proteasome inhibition.

Interestingly, neither lactacyistin, nor MG132, two classical

proteasome inhibitors had any effect in preventing degradation of

the S protein (Fig. 6 A, left panel) while efficiently acting on TyrST

(Fig. 6A, right panel). In contrast, 3-methyladenine (3MA), an

inhibitor of phosphatidylinositol 3-kinase class III (PI3KC3),

which is critical for autophagy initiation [19], as well as the

cathepsin L inhibitor III, significantly inhibited the S protein

degradation, in cells with either endogenous or recombinant

EDEM1 expression (Fig. 6B). A similar result was obtained

following treatment with the lysosomotropic weak base, chloro-

quine (Clq).

During autophagy, the Light Chain 3 (LC3)-I protein is

lipidated and converted to LC3-II, which is recruited by

autophagosome and further degraded within this compartment

[20]. This conversion was investigated in the presence and

absence of 3MA and Clq, as a control for autophagy. As

expected, formation of the faster migrating form LC3-II was

inhibited by 3MA, while Clq treatment stabilized this form, when

added alone (Fig. 6C). The distribution of LC3 in control and

drug-treated cells was also investigated by fluorescence micros-

copy. As shown in Figure S1, the 3MA treatment was efficient in

dispersing the EGFP-LC3 marker from a punctuate pattern

characteristic to autophagosome-like vesicles, throughout the

entire cytoplasm.

Figure 2. EDEM1 over-expression results in degradation of the HBV envelope proteins. HEK293T were transfected with pCiS, pCiM or
pCiL, in the presence or absence of pCMVEDEM1. Controls (mock-transfected) cells were also included. Cell lysates were split in two and equal
amounts of proteins were subjected to SDS-PAGE under reducing conditions, followed by Western blotting with anti-S (A) or anti-EDEM1 (B) Abs.
Calnexin (Cnx) expression was used a total protein, gel loading control.
doi:10.1371/journal.pone.0034169.g002

Role of EDEM1 in the HBV Life-Cycle
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These results strongly indicate that autophagy/lysosomal, rather

than proteasomal degradation is involved in disposal of the wild-

type HBV envelope proteins.

EDEM 1 regulates production of HBV virions and subviral
particles

EDEM1 is clearly involved in the turnover of the wild-type

HBV envelope proteins; therefore, it was of interest to determine

whether the fraction of proteins that accumulates in EDEM1

knock down cells, or is degraded when EDEM1 is over expressed

represents terminally misfolded or folding-competent polypeptides.

To investigate these possibilities, the oligomerization status of the S

protein was analysed by SDS-PAGE under non-reducing (NR)

conditions in cells with either increased or silenced expression of

EDEM1. As shown in Fig. 7A, EDEM1 over expression had the

same consequence on the amount of both, S monomers and

dimmers. Similarly, silencing of endogenous EDEM1 resulted in

accumulation of S monomers as well as dimmers, with the same

rate (Fig. 7B). It is important to note that the protocol employed in

these experiments for cell lysis and protein extraction is not

designed to solubilize aggregated complexes. Thus, diffuse bands

of higher molecular size are often observed in the upper part of the

gels run under NR conditions, most probably as a consequence of

protein aggregation (data not shown).

The S protein is the major constituent of SVPs, which are able

to assemble and secrete through the normal secretory pathway,

even in the absence of M and L co-expression [21]. Thus,

secretion of S-containing SVPs was quantified in the presence or

absence of EDEM1 expression, as an additional marker of correct

protein folding. The amount of S-SVPs considerably decreased (by

50%) when S was co-expressed with EDEM1 in HEK-273T cells

(Fig. 7C). More importantly, rescuing the S protein from

degradation, by silencing endogenous EDEM1, resulted in a

Figure 3. HBV envelope proteins are degraded in the presence
of EDEM1, in a dose dependent manner. (A) HEK293T cells were
transfected with pCiS in the presence or absence of pCMVEDEM1. Cell
lysates were split in two and equal amounts of proteins were subjected
to SDS-PAGE under reducing conditions, followed by Western blotting
with anti-EDEM (upper panel) or anti-S (lower panel) Abs. Controls,
mock-transfected cells were also included. Calnexin (Cnx) expression
was used a total protein, gel loading control. (B) The relative band
intensities were quantified and compared to control (considered 100%),
using the ‘‘Quantity One’’ software from BioRad.
doi:10.1371/journal.pone.0034169.g003 Figure 4. EDEM1 silencing results in inhibition of the HBV

envelope protein degradation. HEK293T were transfected with pCiS
in the presence or absence of either EDEM1 siRNA (siEDEM1) or
scrambled siRNA (siCtrl). Transfected cells were split in equal amounts
and analysed for the efficiency of EDEM1 silencing by RT-real-time PCR
(A) or the biosynthesis of the S, M and L proteins, by Western blotting
using the anti-S Abs. When silencing of the over-expressed EDEM1 was
investigated, the pCMVEDEM1 was added in the transfection mixture
containing either pCiS or pCiS and EDEM1siRNA, as indicated (D, C). The
expression level of EDEM1 (C) and S (D) was determined by Western
blotting using the corresponding Abs. Calnexin (Cnx) level was used as
total protein-gel loading control.
doi:10.1371/journal.pone.0034169.g004

Role of EDEM1 in the HBV Life-Cycle
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significant increase of S-SVPs in cell supernatant (by 2 fold)

(Fig. 6D).

The effect of EDEM1 over-expression was also investigated on

SVPs, in the context of full viral replication, assembly and

secretion. EDEM1-transfected HepG2.2.15 cells were subjected to

a long radioactive pulse-labelling (4 hr) and secreted SVPs were

immunoprecipitated form cell supernatants and digested with

PNGase F to better reveal the identity of the constituent

polypeptides (Fig. 8A). The intracellular level of endogenous as

well as over-expressed EDEM1 was also determined by immuno-

precipitation with the corresponding Abs followed by PNGase F

treatment, showing an inverse correlation between EDEM1 levels

and the amount of secreted SVPs. (Fig. 8B).

Altogether, these results strongly suggest that EDEM1 induces a

premature extraction of the wild-type viral envelope proteins from

the folding cycle, promoting degradation of otherwise folding-

competent polypeptide chains.

Under physiological conditions SVPs greatly outnumber the

viral particles; it was thus possible that, despite significantly

contributing to the degradation of the envelope proteins, EDEM1

may have no effect on HBV envelopment. To investigate this

hypothesis, endogenous EDEM1 was silenced in HepG2.2.2.15

cells and the amount of fully enveloped virions was immunopre-

cipitated from cell supernatant using a mixture of anti-S and anti-

PreS1 Abs, followed by quantification by real time PCR. Secreted

SVPs were also measured by ELISA, in the same supernatants. As

shown in Fig. 9, the number of enveloped virions secreted from

EDEM1-silenced cells was by almost 2 fold greater than in cells

treated with scrambled siRNA. Similarly, the amount of SVPs

increased by about 35%, as compared to controls, suggesting a

rather direct effect of EDEM1 silencing on production of both

viral proteins and virions. However, as the stability of other

intracellular substrates, with potential role in HBV assembly and

secretion, may also depend on the EDEM1 level, an indirect effect

of the siRNA treatment on HBV cannot be totally excluded.

Together, the results imply that EDEM1 up-regulation during

HBV infection has an important function in controlling the level of

virions secreted from cells.

Discussion

Whilst many studies have implied a function of ERAD in

various pathologies, known as ‘‘conformational diseases’’, includ-

ing inflammation, diabetes, and neurodegenerative disorders

[22,23], the relationship between ERAD and viral infection and

pathogenesis was very little investigated. Several viral infection

were shown to induce UPR [24,25] and very recently, an

important role of the ERAD pathway in modulating production

of infectious HCV, but not of other viruses from the same family,

was clearly demonstrated, suggesting a high specificity, with

physiological consequences for certain viruses [16].

Here we show that HBV life cycle and the ERAD component

EDEM1 are strongly interconnected. EDEM1 expression was

significantly up-regulated in cells replicating HBV either stably or

transiently, as a result of viral protein expression and independent

of replication and nucleocapsid accumulation. Interestingly,

expression of each of the envelope proteins was on its own

sufficient to induce synthesis of EDEM1 mRNA in HEK cells,

however, at a more moderate level compared to HepG2.2.2.15

cells. Most likely this is due to the presence of the HBV X protein

in HepG2.2.2.15 cells, a regulatory protein recently linked to

activation of the IRE1 branch of the UPR in these cells [12].

Manipulating the EDEM1 level by either over-expression or

silencing experiments clearly demonstrated a role in the stability of

the wild-type HBV envelope proteins and thus, in controlling the

amount of native polypeptides available for SVPs assembly and

virion envelopment. Analysis of the steady-state level of the

envelope proteins, under non-reducing conditions, showed that

EDEM1 acts during, or immediately post-translation, likely before

polypeptide assembly into oligomers. It is important to note that

degradation of S, M and L proteins occurred regardless of their

glycosylation status, implying no role for the N-linked glycans in

this process. Also, endogenous EDEM1 was able to co-precipitate

the glycosylated as well as non-glycosylated viral polypeptides,

suggesting a direct interaction, possibly through the common S-

domain. These results are in agreement with the more recent

model describing the molecular details of substrate recognition by

EDEM1, whereby specific binding of the ERAD targets occurs in

a glycan-independent manner [26]. However, the model also

implies that EDEM1 is able to discriminate between aberrantly

folded and native proteins during polypeptide maturation and

quality control. In contrast, here we provide clear evidence that

EDEM1 acts on and promote degradation of the wild-type

envelope proteins encoded by HBV, with important implications

for the viral life cycle. This effect was not due to the over-

expression of the viral proteins in a heterologous system, as similar

degradation rates were observed in cells allowing for both, high

and moderate level of viral protein synthesis (HEK293T and

HepG2.2.2.15, respectively). The envelope proteins rescued from

degradation in endogenous EDEM1-knock down cells were able to

assemble in functional, secretion-competent subviral particles,

implying that they do not originate from a pool of terminally

misfolded polypeptides. Moreover, these proteins are actively

recruited for nucleocapsid envelopment, which suggest that virion

and SVPs assembly may be competing processes, despite the

envelope proteins being synthesised in vast excess.

Interestingly, it was recently found that up-regulation of

EDEM1, a condition occurring during UPR, bypasses the

requirement for mannose trimming of glycoprotein ERAD

substrates. Consequently, the folding quality control ‘‘check-point’’

regulated by EDEM1 is canceled and nascent glycoproteins are

delivered directly to late ERAD stages, regardless of their

conformation status [27]. It is tempting to speculate that the

Figure 5. Endogenous EDEM1 interacts with the HBV envelope
proteins in HEpG2.2.2.15 cells. HepG2 (control) and HepG2.2.2.15
cells were pulse-labelled for 30 min as described. Cell lysates were split
in equal volumes and immunoprecipitated with either anti-EDEM1 or
anti-S Abs. Additional control using incubation with Protein A-
Sepharose only (Ø) was also included. The protein complexes were
resolved by SDS-PAGE followed by autoradiography. The band with the
apparent molecular size expected for EDEM1 is marked with an asterisk.
The representative autoradiograph of three independent experiments is
shown.
doi:10.1371/journal.pone.0034169.g005
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significant activation of EDEM1 expression in HBV-replicating

cells may cause a similar effect, promoting premature extraction of

folding competent viral glycoprotein intermediates from the

‘‘calnexin cycle’’ and their subsequent degradation. As a direct

consequence, SVP and more importantly, virion production is

lowered, thus contributing to HBV persistence in chronic

infections.

Strong evidence in support of this hypothesis come form the

recent HCV studies showing that EDEM1 is involved in the post-

translational control of wild-type envelope glycoproteins, by

which viral production is down-regulated. EDEM1 silencing, as

well as cell treatment with proteasome inhibitors, resulted in

increased stability of the E2 protein and enhanced secretion of

infectious virions, while the viral replication rate remained

unchanged [16].

Unlike HCV, the wild-type envelope proteins encoded by HBV

appear to be degraded by autophagy/lysosmes. Autophagy usually

plays a role in the degradation of long-lived proteins and damaged

cellular organelles under critical conditions, such as nutrient stress.

However, constitutive autophagy has been recently involved in

maintaining the homeostasis of non-dividing cells, including

hepatocytes and neural cells [28,29]. In yeast, autophagy can

function along with the ubiquitin/proteasome system, as mecha-

nistically distinct degradation pathways used to remove proteins

from the ER, as shown for two variants of an a-1 proteinase

inhibitor [30]. Two ERAD models were also recently proposed for

disposal of dysferlin, a type-II transmembrane protein involved in

muscular dystrophy type 2B and Miyoshi myopathy [31]. Usually,

wild-type and mutant dysferlin are degraded by the ubiquitin/

proteasome system - ERAD (I); however, when this degradation is

not sufficient, the proteins aggregate on the ER membrane and

stimulate autophagy formation. Thus, the autophagy/lysosome

degradation - ERAD (II) may function as an alternative pathway

when the retrotranslocon/ERAD (I) system is impaired by the

accumulation of protein aggregates within the ER.

In the case of HBV, correctly folded envelope polypeptides

become highly cross-linked by disulfide-bonds within the ER,

before assembly into virions and SVPs. Therefore, it is possible

that the unstable polypeptides, prematurely extracted from the

quality control cycle when EDEM1 is up-regulated, are forced into

aberrant intra- and inter-molecular disulfide bond pairing and

further aggregation.

Figure 6. HBV envelope proteins are disposed by autophagy/lysosomal degradation. HEK293T were transfected with pCiS, pTriexTyrST
expressing the ERAD substrate soluble tyrosinase (TyrST), or pEGFPC1-LC3 expressing the autophagy marker LC3, in the presence or absence of
pCMVEDEM1. The cells were treated with proteasomal (A) or autophagy/lysosome (B, C) inhibitors. Untreated (no drug) cells were also used as
control. S, TyrST and EDEM1 synthesis was monitored by Western blotting using the corresponding Abs (A, B). Conversion of EGFP-LC3-I to EGFP-LC3-
II was determined by Western blotting using anti-LC3 Abs, in the presence or absence of autophagy inhibitors (C). Calnexin (Cnx) expression was used
as total protein-gel loading control.
doi:10.1371/journal.pone.0034169.g006
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Although the exact mechanism of the HBV wild-type envelope

protein degradation is not clear at the moment, it is important to

note that HBV infection is able to induce autophagic response,

which in turn, enhances viral DNA replication and supports

nucleocapsid envelopment [13,32]. In this context, degradation of

the envelope proteins using the same pathway may appear as a

compensatory mechanism to regulate the level of virions, reduce

cellular stress and establish persistent infections.

Materials and Methods

Cell lines, inhibitors and enzymes
Huh7, HepG2 and HEK 239T cells (European Collection of

Animal Cell Culture, Porton Down, UK) were grown in RPMI

1640 medium (Euroclone) containing 10% fetal bovine serum

(FBS), 50 units/ml penicillin, 50 mg/ml streptomycin and 2 mM

Glutamax (Invitrogen). HepG2 2.2.15 cells (kind gift from Dr.

Durantel D., INSERM U871, Lyon, France), stably transfected

with two copies of the HBV genome, were grown as above, except

that the RPMI medium was supplemented with 200 mg/ml of

G418 (Gibco). Lactacystine (Lac) was from Toronto Chemicals,

MG132 was from Santa Cruz, Tunicamicin (Tu) was from MP

Biomedicals, 3-methyladenine (3MA) and chloroquine (Clq) were

from Sigma-Aldrich and the cathepsin L inhibitor III (Cat L Inhib)

was from Calbiochem. The peptide N-glycanase F (PNGase F) was

from New England Biolabs (UK).

Plasmids and siRNA
Plasmids pCiS, pCiM or pCiL coding for S, M and L proteins,

containing the CMV enhancer/promoter and the late SV40

polyadenylation sequences were a kind gift from Dr. Durantel D.,

INSERM U871, Lyon, France. pTriExHBV 1.1 containing 1.1

units of the whole HBV genome, supporting viral replication,

assembly and secretion of fully infectious virions was described

previously [15]. The plasmid pCMVEDEM1 expressing the

mouse EDEM1 under the control of the CMV promoter was a

kind gift from Dr. Nagata K., Kyoto Sangyo University, Kyoto,

Japan. The plasmid pTriExTyrST expressing the human

tyrosinase without the transmembrane domain was previously

described [18]. The plasmid pEGFPC1-LC3 expressing the the

autophagy marker LC3, N-terminally fused with the Enhanced

Green Fluorescence protein (EGFP), under the control of the

Figure 7. Folding-competent HBV envelope polypeptides are degraded by EDEM1. HEK293T were transfected with pCiS, in the presence
or absence of pCMVEDEM1 (A) or EDEM1siRNA (B). Controls, including mock- or scrambled siRNA-transfected (siCtrl) cells were also employed. Both,
cell lysates and supernatants were collected at 48 h pt and analysed for the expression S monomers and dimers, by Western blotting under reducing
(R) and non-reducing (NR) conditions (A, B) and SVPs secretion, by ELISA (C, D). Note that only the proteins extracted in the soluble phase were
loaded on gels (A, B). The cut-off values in ELISA varied between 0.082–0.094. Statistical analysis showing ‘‘p’’ values was performed using the
Student’s unpaired t-test (C, D).
doi:10.1371/journal.pone.0034169.g007
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CMV promoter, was a kind gift from Dr. Tamotsu Yoshimori,

National Institute of Genetics, Mishima, Japan. The siRNA

designated to silence EDEM1 expression and control siRNA

(siCtrl) were purchased from Santa Cruz and contain a pool of 3

target-specific 20–25 oligonucleotides (sc-43745) or a scrambled

sequence (sc-37007), respectively.

Cell tranfection and gene silencing
Monolayers of HEK293T or HepG2.2.2.15 cells (80%

confluence) were transfected with 3 mg of plasmid and/or

50 nM siRNA using Lipofectamine 2000 (Invitrogen). At 24 h

post-transfection (pt) the HEK cells were treated with Lac

(20 mM), MG132 (25 mM), 3MA (5 mM), Cat L Inhib (25 mg/

ml), Clq (100 mM) or were left untreated. After another 24 h, the

cells and supernatants were harvested. The HepG2.2.2.15 cells

were transfected twice, at 24 h interval. The cells and supernatants

were harvested 3 days pt.

SDS-PAGE and Western blotting
Transfected or mock transfected (control) cells were lysed in a

buffer containing 10 mM Tris-HCl (pH 7.5), 150 mM NaCl,

2 mM EDTA, 0.5% TritonX-100 and a mixture of protease

inhibitors (Sigma-Aldrich) for 1 h, on ice. Lysates were clarified by

centrifugation for 10 min at 10,0006 g and the protein content

was determined in supernatant using the BCA method (Pierce).

Equal amounts of total proteins in the supernatant were either

boiled under non-reducing conditions (NR) or boiled in the

presence of 5 mM DTT (reducing conditions-R) before SDS-

PAGE and Western blotting. Where indicated in the figures,

samples were digested with PNGase F, following the protocol

supplied by the manufacturer. The proteins were transferred to

nitrocellulose membranes using a semi-dry blotter (Millipore). The

blots were incubated with mouse anti-preS1 (Santa Cruz, dilution

1/1000), rabbit anti-S (Europa Bioproducts, dilution 1/1000), goat

anti-calnexin (Santa Cruz, dilution 1/1000), mouse anti-b actin

(Abcam, dilution 1:500), mouse anti-LC3 (NanoTools, dilution

1:1000), or rabbit anti-EDEM1 (home-made, dilution 1/1000)

antibodies (Abs) followed by anti-mouse (Santa Cruz, dilution, 1/

10,000), anti-rabbit (Santa Cruz, dilution 1/10,000) or anti-goat

(dilution 1/10,000) Abs conjugated to horseradish peroxidase. The

proteins were detected using an enhanced chemiluminiscence

(ECL) detection system (Amersham, UK) according to the

manufacturer’s instructions.

Quantification of HBV secretion by immunoprecipitation
and real-time PCR

Transfected HepG2.2.2.15 cells were grown for 3 days and

500 ml of medium was used for immunoprecipitation with a

mixture of mouse anti-preS1 (dilution 1:500) and rabbit anti-S

(dilution 1:500) Abs. The immune complexes were isolated by

incubation of samples with protein A- Sepharose beads (Sigma),

over-night, at 4uC. In control samples, cell lysates were incubated

with beads only. The slurry was washed five times with PBS and

the bound virions were eluted by boiling the samples for 10 min,

in 50 mM Tris-HCl buffer (pH 8) supplemented with 1 mM

EDTA and 1% NP40, with strong shaking. Encapsidated viral

DNA was purified form supernatants by phenol-chloroform

extraction, as described elsewhere [33]. The DNA was quantified

using the Corbett Rotor Gene 6000 real-time PCR system and the

Maxima SYBR Green qPCR Master Mix (Fermentas). Primers

were designed to amplify a 279 bp (see Table S1). The number of

viral genome equivalents was determined using a calibration curve

containing known amounts of HBV DNA.

Figure 8. HBV SVPs secretion from HepG2.2.2.15 cells is
inhibited in the presence of EDEM1. HepG2 (control) and
HepG2.2.2.15 were grown in 6-well plates and transfected or not with
pCMVEDEM1. Cells were further pulse-labelled for 4 h, as described. (A)
The cell medium was collected and immunoprecipitated with anti-S Abs
and the bound proteins were split in two and subjected or not to
PNGase F digestion. The arrows mark the shift of the L, M and S
glycoforms towards the corresponding deglycosylated polypeptides, in
the presence of PNGase F. (B) The HepG2.2.2.15 cells were lysed and
immunoprecipitated with anti-EDEM1 Abs. The bound proteins were
split in two and subjected or not to PNGase F digestion. Glycosylated
(gp) and non-glycosylated (p) EDEM1 are shown.
doi:10.1371/journal.pone.0034169.g008

Figure 9. EDEM1 silencing results in increased secretion of
enveloped HBV. HepG2.2.2.15 cells were transfected twice with either
EDEM1 siRNA (siEDEM1) or scrambled (siCtrl) siRNA. At 3 days pt, cell
medium was collected and either immunoprecipitated with a mixture
of anti-S/preS1Abs (white bars) or analysed for secretion of SVPs by
ELISA (grey bars). The enveloped viral particles were further quantified
following DNA purification and real-time PCR. The cut-off values in
ELISA varied between 0.085–0.096. Statistical analysis showing ‘‘p’’
values was performed using the Student’s unpaired t-test.
doi:10.1371/journal.pone.0034169.g009
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Quantification of HBV replication by Southern blotting
HepG2 or HepG2.2.2.15 cells were used to purify the

encapsidated viral DNA by phenol-chloroform extraction, as for

the real-time PCR. The resulting DNA pellet was resuspended in

nuclease-free water, analyzed in a 1.2% agarose gel and

transferred to a Hybond-N+ membrane (GE Healthcare), using

a vacuum transfer blotter (BioRad). The blot was further

hybridized with a fluorescein-labelled probe obtained by random

priming using the HBV DNA genome as template. The HBV-

specific DNA bands were detected using anti-fluorescein alkaline

phosphatase (AP)-conjugated monoclonal antibodies (MAbs) and

the Gene Images CDP-Star detection kit (GE Healthcare).

Quantification of HBV SVPs secretion by ELISA
Supernatants from Huh7, HEK293T or HepG2.2.2.15 trans-

fected cells were analysed for the amount of secreted HBsAg, using

the Monolisa HBsAg Ultra Kit (Bio-Rad). The results were

obtained as ratios of signal to cut-off value and were converted to

percentages of HBsAg secretion.

Quantification of gene expression by reverse
transcription (RT)-real-time PCR

Total RNA from HepG2, HepG2.2.2.15 or Huh7 transfected

cells was isolated using RNeasy mini kit (Qiagen). The RNA was

quantified using a Corbett Rotor Gene 6000 real-time PCR

system and the SensiMix One-Step Kit (Quantance). Primers were

designed to amplify either HBV- or EDEM1-3- specific fragments

(Table S1). For viral quantification, a calibration curve containing

known amounts of HBV was used. The values obtained were

standardized against an internal b-actin control. Where indicated

in the figure legends cells were also treated with either 10 mM 3TC

or 5 mg/ml tunicamycin.

Pulse-labeling and immunoprecipitation
Subconfluent HepG2 and HepG2.2.2.15 cells grown in six-well

plates were were labelled as described before (as described [34].

Briefly, the monolayers were washed once with PBS and incubated

in methionine- and cysteine-free RPMI 1640 medium (ICN Flow).

After 1 h, the cells were pulse-labeled with 100 mCi of 35Smethio-

nine-35Scysteine (Tran 35S-label, 1,100 Ci/mmol; ICN Flow) per

ml at 37uC for the times indicated. The cells were lysed under mild

conditions using a CHAPS-HSE buffer (2% CHAPS in 50 mM

HEPES, pH 7.5, 200 mM NaCl, 2 mM EDTA). Labelled cell

lysates were clarified by centrifugation as described before. The

supernatants were incubated with either anti-EDEM1 or anti-S

Abs (diluted 1:50 and 1:100, respectively), overnight at 4uC.

Protein A-Sepharose (30 ml) was then added, and the incubation

continued for 1 h at 4uC. The slurry was washed 5 times with

0.5% CHAPS-HSE buffer and the bound complexes were eluted

by boiling the samples for 10 min in SDS-PAGE sample buffer.

SVPs were immunoprecipitated in the cell medium using the anti-

S Abs and the same protocol as above. When PNGase F digestion

was employed, the bound proteins were eluted by boiling the

samples for 10 min in 1% SDS, followed by addition of the

enzyme reaction buffer and over-night incubation at 37uC.

Labelled proteins were visualised by SDS-PAGE and analyzed

by autoradiography.

Supporting Information

Figure S1 3MA treatment of EGFP-LC3-transfected
HEK293T cells results in LC3 dispersion from punctuate
autophagosome-like vesicles throughout the cytoplasm.
HEK293T cells were transfected with pEGFPC1-LC3. At 24 h

post-transfection cells were treated with 5 mM 3MA for 12 h, then

either nutrient starved in the presence of Earl’s buffer (140 mM

NaCl, 5 mM KCl, 1.8 mM CaCl2, 0.9 mM MgCl2, 25 mM

HEPES, pH 7.4) or incubated with 100 mM chloroquine (Clq),

for 4 h. EGFP-LC3 expression and DAPI-stained nuclei were

evidenced by fluorescence microscopy with a Nikon E600

fluorescence microscope (606magnification).

(TIF)

Table S1 Sequences of primers used for quantification
by RT-real-time PCR or real-time PCR.

(DOC)
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