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Abstract

Background: The extracellular matrix plays an important role in tissue regeneration. We investigated whether extracellular
matrix protein fragments could be targeted with antibodies to ischemically injured myocardium to promote angiogenesis
and myocardial repair.

Methodology/Principal Findings: Four peptides, 2 derived from fibronectin and 2 derived from Type IV Collagen, were
assessed for in vitro and in vivo tendencies for angiogenesis. Three of the four peptides—Hep I, Hep III, RGD—were
identified and shown to increase endothelial cell attachment, proliferation, migration and cell activation in vitro. By
chemically conjugating these peptides to an anti-myosin heavy chain antibody, the peptides could be administered
intravenously and specifically targeted to the site of the myocardial infarction. When administered into Sprague-Dawley rats
that underwent ischemia-reperfusion myocardial infarction, these peptides produced statistically significantly higher levels
of angiogenesis and arteriogenesis 6 weeks post treatment.

Conclusions/Significance: We demonstrated that antibody-targeted ECM-derived peptides alone can be used to sufficiently
alter the extracellular matrix microenvironment to induce a dramatic angiogenic response in the myocardial infarct area.
Our results indicate a potentially new non-invasive strategy for repairing damaged tissue, as well as a novel tool for
investigating in vivo cell biology.
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Introduction

Recent advances in the field of stem cell therapy have renewed

enthusiasm for the prospects of myocardial regeneration and

repair. Much research has been dedicated into fully assessing the

potential of cell therapy in promoting tissue regeneration.

However, certain hurdles need to be resolved in order to optimize

cell therapy for myocardial regeneration. One of these challenges

involves providing the cells a sufficient environment for proper

engraftment, sustainability and induction of differentiation [1,2].

The extracellular matrix (ECM) plays an important role in cell

engraftment and tissue regeneration. The development of

biocompatible scaffolds acting as an extracellular matrix to serve

as a substrate for sustaining cell growth, survival, differentiation,

and other biologically relevant functions has become an integral

aspect of tissue engineering. In this study, we hypothesized that an

in vivo matrix could be formed by targeting ECM fragments to an

area of myocardial injury and facilitate myocardial repair. To test

this hypothesis, we determined whether the composition of the

ECM in the region of a myocardial infarct could be altered to

promote neovascularization.

Even in the presence of angiogenic cytokines such as vascular

endothelial growth factor (VEGF), endothelial cells (ECs) require

adhesion to the ECM to facilitate migration. Migration of ECs

plays an important role in angiogenesis via sprouting of new blood

vessels from the existing vasculature [3]. The maturation of vessels

is dependent on the establishment of a continuous basement

membrane [4]. The ECM, which consists of structural proteins

(e.g. collagen), adhesive proteins (e.g. fibronectin, FN), anti-

adhesive proteins (e.g. tenascin), and proteoglycans [5], plays a

pivotal role in the activation of various intracellular signaling

pathways that are involved in cell migration, survival, prolifera-

tion, differentiation, and angiogenesis [6]. The composition of the

ECM is constantly changing in order to direct the growth,
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migration, and differentiation of the ECs into blood vessels. For

instance, in the early stages of angiogenesis, type IV collagen (Col

IV) appears in patchy subendothelial deposits, which correlates

with lumen formation and maintenance, but in the later stages Col

IV appears as a continuous mesh, which may act to prevent

vascular regression and promote maintenance of the newly formed

vessel [7,8,9]. Additionally, it has been suggested that degradation

of the basement membrane facilitates exposure to collagen and

fibrinogen to encourage sprouting and initiation of capillary

morphogenesis with the maturation of the vessel lumen occurring

with the re-establishment of the intact basement membrane [3].

Here, we investigated whether functional groups derived from

Col IV [10,11,12] and FN [13,14,15,16] (Table 1) could

sufficiently alter the microenvironment to favor neovasculariza-

tion. Col IV is a major component of the basement membrane and

has been shown to promote and regulate the formation,

elongation, and stabilization of microvessels during angiogenesis

[7]. FN is a major component of the ECM and is known to be

involved in promoting wound healing by recruiting endothelial or

epithelial cells to the site of injury [17]. The ECM-derived

functional groups were chemically conjugated to a monoclonal

antibody targeting an injury-specific antigen within the MI,

thereby allowing us to non-invasively deliver the ECM to the site

of injury.

Results

In vitro cell attachment, proliferation, and migration
To investigate the biological activity of the ECM peptides, the

peptides were compared to their full length protein in cell adhesion

and cell proliferation assays. The RGD and HepIII peptides

showed initial cell adhesion significantly better relative to wells

treated with only phosphate buffered saline (PBS) (Figure 1a–b).

Cell proliferation (Figure 1c–d) was observed for HepI, HepIII,

and RGD, but not for FC/HV.

Gradients of immobilized ECM components have been shown

to drive haptotactic migration in vitro, which is not dependent on

cytokines [18,19]. Although the importance of this ability has not

been fully assessed, it stands to reason that, in vivo, higher

concentrations of certain ECM components encountered by

endothelial cells during new vessel formation may direct their

recruitment and outward migration partly via haptotaxis [3].

Hence, we sought to assess the peptides’ ability to recruit cells by

looking at their ability to induce haptotactic migration (Figures 1e–

f). Peptides HepI, HepIII, and RGD promoted haptotactic

migration, but to a lesser extent compared to their protein

counterparts. Migration was better with HepIII than with HepI.

Both HepIII and RGD were able to promote statistically

significant migration, as determined by the area cell density,

when compared to the membrane coated with only PBS even at

concentrations as low as 0.5 mg/mL. For HepI, the migration was

statistically significantly higher at concentrations $1 mg/mL. No

migration was observed with FC/HV.

Cell morphology on the various peptide coatings were

compared to their source protein counterparts (Figure S1). Only

cells with round morphology were observed on the PBS-treated

dishes, indicating that they had not properly adhered to the dish

surface. Cell morphology on dishes coated with RGD, HepI, or

HepIII was similar to the cell morphology on the Col IV- or FN-

coated dishes, i.e. spread out cells, indicating adherence to the dish

surface. There were some adherent cells after 24 hours of

incubation in the FC/HV-coated dishes, but these adherent cells

were no longer observed in subsequent days.

Activation of Erk1/2 by ECM peptides
All ECM peptides induced, although to varying degrees,

activation(Figure 1g) —i.e. phosphorylation—of extracellular

signal-regulated kinase 1/2 (Erk1/2), which is involved in the

signaling pathway leading to angiogenesis and arteriogenesis [20].

We saw no activation of Erk1/2 for cells cultured on the PBS-

treated dishes.

Antibody targeting of ECM peptides to MI
To test whether we could direct the ECM-derived peptides to

the injured myocardium, HepIII was conjugated to anti-rat

cardiac a-myosin heavy chain (anti-MHC) using carbodiimide

chemistry. Two days post-MI, either HepIII conjugated to the

antibody (Ab-HepIII) or PBS (control) were injected via the

external jugular vein into Sprague-Dawley rats, who were

sacrificed 24 hours later. We stained for the presence of the

antibody (Ab) using Mouse-on-rat HRP-polymer (Biocare Medi-

cal, Concord, CA). We observed positive staining (dark brown)

within the MI for the Ab-HepIII-treated heart (Figure 2b). In

addition, we had used FITC-labeled peptides. Under fluorescent

microscopy, we were able to confirm that the peptides were also

present within the MI (Figure 2c), verifying that conjugating the

peptide to the Ab allowed us to successfully target the peptide to

the MI.

A series of in vitro control studies to assess the functional

behavior of the peptides conjugated to the Ab (Ab-peptides) also

were performed (data not shown). Ab-RGD and Ab-HepIII

promoted significantly more initial cell attachment compared to

PBS control. Ab-HepI, Ab-HepIII, and Ab-RGD also demon-

strated significantly increased proliferation and migration com-

pared to PBS and Ab only controls. Hence, in the case of initial

cell attachment and cell migration, there did not appear to be any

significant difference between Ab-HepI, Ab-HepIII, Ab-RGD and

their unconjugated counterparts. These results are in agreement

with previously published reports, suggesting that conjugation of

an ECM peptide to ovalbumin or a polymer matrix did not

negatively affect its ability to promote cell attachment, prolifera-

tion, and migration [10,11,14,15,16]. Also, endotoxin analysis of

the Ab-peptides showed that their endotoxin levels were

,0.06 EU/mL, below the FDA limits of 0.5 EU/mL [21].

Targeted ECM peptides induce angiogenesis
Assessment of capillary formation in the infarct region

(Figure 3a), showed that rats treated with Ab-HepI (373693

capillaries/mm2), Ab-HepIII (359661 capillaries/mm2), or Ab-

RGD (373670 capillaries/mm2) had statistically significantly

higher capillary density compared either to the PBS treatment

group (196654 capillaries/mm2) or to Ab-FC/HV (255636

capillaries/mm2). There was no statistical difference in capillary

density among rats treated with Ab-HepI, Ab-HepIII, or Ab-

RGD. Rats treated with Ab only (185634 arterioles/mm2) did not

Table 1. Sequence of the peptides along with their source
protein.

Peptide Name Sequence Protein of Origin

HepI [10,12] TAGSCLRKFSTMY-OH Collagen IV

HepIII [10,11] GEFYFDLRLKGDKY-OH Collagen IV

FC/HV [13,16] WQPPRARI-OH Fibronectin

RGD [14,15] GRGDSPASSPISC-OH Fibronectin

doi:10.1371/journal.pone.0010384.t001

Peptides Promote Angiogenesis
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induce any differences in capillary formation compared to PBS

treatment group. Both the Ab only and the PBS treatment groups

served as negative controls.

Arteriogenesis (Figure 3b) in rats treated with Ab-HepI (1062

arterioles/mm2), Ab-HepIII (961 arterioles/mm2), or Ab-RGD

(1062 arterioles/mm2) showed statistically significantly higher

arteriole density when compared to the PBS treatment group (562

arterioles/mm2) or to Ab-FC/HV (761). There also was no

statistical difference in the arteriole density among rats treated

with Ab-HepI, Ab-HepIII, or Ab-RGD. We observed no

Figure 1. In vitro assays. (a) and (b) Cell adhesion was assessed after 30 minutes of incubation in wells coated with peptides at 20 mg/mL, 50 mg/
mL, and 100 mg/mL. The absorbance readings were normalized to either 100 mg/mL FN or 100 mg/mL Col IV, depending on the peptide’s source
protein, to allow for comparison. * P,0.05. (c) and (d) Cell proliferation was also assessed with peptides at 20 mg/mL, 50 mg/mL, and 100 mg/mL at
Day 1 (white), Day 2 (gray), and Day 3 (black). The absorbance readings again were normalized to either 100 mg/mL FN or 100 mg/mL Col IV,
depending on the peptide’s source protein. (e) and (f) Haptotactic migration at various peptide or protein concentrations. The area cell densities
have been normalized to allow for comparison. (g) Western blot analysis showed phosphorylation of Erk1/2 in cells grown on HepI, HepIII, Col IV,
RGD, FC/HV, and FN (Wells 1–6, respectively). No phosphorylated Erk1/2 band was seen for cells grown on PBS-treated dishes (Well 7). Total Erk1/2
was present in the cells grown under all the conditions. b-tubulin was used as an internal control.
doi:10.1371/journal.pone.0010384.g001

Peptides Promote Angiogenesis
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difference in arteriole density between PBS-treated rats and rats

treated with Ab only (561 arterioles/mm2).

To determine if the newly formed vessels were contiguous with

the existing vasculature, we used previously established protocols

whereby we perfused the hearts with fluorescently labeled

microbeads [22,23]. In Figure 4 we show overlaid high

magnification images of regions within the myocardial infarct

showing the fluorescent microbeads, indicated in green, within the

lumen of the arterioles stained immunofluorescently using anti-a-

smooth muscle actin. The presence of the microbeads indicated

that the observed arterioles in the infarct region were functionally

connected to pre-existing vessels.

Both Masson’s trichrome- and hemotoxylin-and-eosin- (H&E)

stained slides were used to assess infarct size. We did not find a

statistically significant difference in the mean infarct size when

compared to the PBS treatment group (Figure 3c).

Affects of Targeted ECM peptides on LV function
The functional effects of treatment with Ab-peptide were

investigated by echocardiography at baseline (1–2 days post MI

and before treatment) and 6 weeks after treatment (Table 2). LV

ejection fraction and wall thickness significantly decreased in the

control groups, while LV dilation significantly increased in the

control groups, all of which were indicators of worsening LV

function. Only HepIII treatment prevented the negative LV

remodeling affects following the MI.

Discussion

Our results demonstrate that antibody targeting of ECM-

derived peptides to ischemically injured myocardium can

effectively help to produce an ECM favorable for angiogenesis.

A critical barrier to tissue regeneration is the lack of an adequate

vascular network. The creation of a vascular bed in the infracted

myocardium should allow for greater cell engraftment and survival

[24,25]. Therefore, this strategy of specifically targeting ECM-

derived peptides to the ischemic myocardium may provide a more

favorable microenvironment for cell transplantation and myocar-

dial regeneration. The use of the ECM-derived peptides alone,

without growth factors or cells, was sufficient to promote an

angiogenic response in infarcted rat hearts. The induction of new

vessel formation suggests that targeting active components of the

Figure 2. Immunostaining for Ab-HepIII in the infarct region.
Hearts from rats sacrificed on 1 day after injection. The rats were
injected intravenously with either (a) PBS or (b) the Ab-HepIII 1 day
post-MI. The presence of the Ab is indicated by the brown stain. For the
sake of clarity, we have outlined the infarct region. At high
magnification, we were also able to see fluorescence within the infarct
region(c), as indicated by the arrow, of the FITC-labeled peptides
(indicated in black).
doi:10.1371/journal.pone.0010384.g002

Figure 3. Increased neovascularization within the MI region. (a)
Capillary staining showed significantly higher capillary density for rats
treated with Ab-HepI, Ab-HepIII, or Ab-RGD. { P,0.05 vs. PBS, { P,0.05
vs. Ab-FC/HV. (b) Arteriole staining also showed significantly higher
arteriole density for rats treated with Ab-HepI, Ab-HepIII, or Ab-RGD. {
P,0.05 vs. PBS, { P,0.05 vs. Ab-FC/HV. (c) Infarct size measurements
showed no statistically significant differences between the treatment
groups and the PBS treatment group.
doi:10.1371/journal.pone.0010384.g003

Peptides Promote Angiogenesis
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ECM can influence the microenvironment and allow the body to

act as its own bioreactor to regenerate vital structures of the

myocardium.

The MHC antibody specifically targets the ECM peptides to the

MI region in the heart (Figure S2). Nuclear imaging studies using

I125-radiolabeled MHC-Ab showed that the majority of the MHC-

Ab was concentrated within the MI of the heart and was still

detectable within the MI 1 week post-injection. Unconjugated

I125-radiolabeled peptides injected into the rats 1 day post-MI

were detectable within the heart 3 hours post-injection, but only at

trace levels 24 hours post-injection. Additionally, biodistribution

analysis showed that the unconjugated peptides were predomi-

nantly in other organs—e.g. liver, intestines—instead of the heart

(Figure S3). Not only did the MHC-Ab concentrate the peptides

within the MI, but it also allowed the peptides to remain within the

MI for longer periods of time. Hence, in order to expect any

benefit from peptide treatment after acute MI, it was necessary for

us to target them with an antibody. However, even though most of

the antibody was targeted to the infarct region of the heart, there

were still trace levels in other organs, which could result in

neoplastic angiogenesis within these organs. Future studies will

need to be conducted to fully assess the effect of these trace levels

in other organ systems in producing angiogenesis.

Our in vitro data found three peptides—HepI, HepIII, RGD—

that exhibited similar properties, although to a lesser extent, as

their source proteins, particularly in terms of promoting

Figure 4. Microbead perfusion. High magnification (406) images
within the MI region showing the perfusion of 0.2 mm fluorescent
microbeads (green) into arterioles that have been stained using anti-a
smooth muscle actin (orange) in hearts treated with (a) Ab-FC/HV, (b)
Ab-RGD, (c) Ab-HepI, or (d) Ab-HepIII. Scale bar: 15 mm.
doi:10.1371/journal.pone.0010384.g004

Table 2. Echocardiography data showing the internal comparisons between measurements taken before injection (baseline) and
6 weeks after injection.

Measured Parameters Treatment Baseline 6 weeks post P

Ejection fraction, % Ab-HepI 38.662.81 34.162.83 0.0068

Ab-HepIII 38.866.00 35.563.41 0.184

Ab-RGD 41.264.16 33.864.57 0.000186

Ab-FC/HV 39.463.47 32.561.61 0.000000629

Ab only 40.861.73 31.065.53 0.0023

PBS 39.662.91 31.664.00 0.000425

LV diastolic volume, mL Ab-HepI 0.560.1 0.760.1 0.00008

Ab-HepIII 0.560.1 0.760.1 0.004

Ab-RGD 0.460.1 0.760.1 0.000001

Ab-FC/HV 0.560.1 0.860.1 0.00006

Ab only 0.560.04 0.860.1 0.00005

PBS 0.560.1 0.760.1 0.002

LV systolic volume, mL Ab-HepI 0.360.1 0.560.1 0.00007

Ab-HepIII 0.360.1 0.560.1 0.002

Ab-RGD 0.360.1 0.560.1 0.000001

Ab-FC/HV 0.360.1 0.560.1 0.000003

Ab only 0.360.0 0.660.1 0.00002

PBS 0.360.1 0.560.1 0.003

Infarct wall thickness, cm Ab-HepI 0.2260.016 0.1960.018 0.0083

Ab-HepIII 0.2160.014 0.1760.023 0.00018

Ab-RGD 0.2160.014 0.1760.013 0.021

Ab-FC/HV 0.2160.017 0.1660.029 0.0044

Ab only 0.2260.024 0.1460.015 0.000001

PBS 0.2160.013 0.1560.016 0.000000056

doi:10.1371/journal.pone.0010384.t002
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endothelial cell adhesion, proliferation and haptotactic migration.

Nanogram amounts of either HepIII or RGD were sufficient to

promote significant movement of endothelial cells. This is the

same order of magnitude of peptides that we injected into our rats.

Using fluorescently labeled peptides, we had determined that our

conjugation resulted in crosslinking ,3 moles of peptide per mole

of antibody. The presence of the ECM-derived peptides could

promote the migration of endothelial cells to the infarct site.

Cells interact with the ECM via receptors, including integrins.

Yet, these receptors only interact with certain regions of an ECM

protein. Our Western blot analysis showed activation of Erk1/2 by

HepI, HepIII, and RGD. Activation of the Erk1/2 signal

transduction pathway in ECs is critical for EC proliferation and

angiogenesis [26,27,28,29]. HepIII has been shown to interact

with a2b1 and a3b1 integrins, thereby promoting cell adhesion to

the peptide [11,30]. There is some evidence that a2, a3, and b1

integrin subunits can also interact with HepI [11]. RGD has been

shown to interact with the integrin avb3 [31,32,33]. Endothelial

cells migrate via avb3 integrins. The interaction of the cells via

these integrins can trigger a cascade of signal transduction

pathways, some of which could be involved in initiating

angiogenesis and/or arteriogenesis. For instance, avb3 is involved

in the signaling of fibroblast growth factor 2 (FGF2), which is

involved in various signaling pathways, including the activation of

Erk1/2, which in turn activates the signaling pathways for

angiogenesis and/or arteriogenesis [20]. Integrin a2b1 has been

shown to support VEGF-stimulated signal transduction [19],

which also includes Erk1/2 activation. Integrin a3b1-mediated

adhesion has been shown to activate focal adhesion kinase (FAK)

as well as Erk in keratinocytes [34]. Even though HepI, HepIII,

and RGD did not promote activation of Erk1/2 to the same

extent, their induced angiogenic responses in terms of capillary

and arteriole formation were similar. This suggests that in addition

to Erk1/2 activation, the ability to induce cell migration and cell

proliferation are characteristics that are important if not more so

in the promotion of the observed arteriogenesis and angiogenesis.

Furthermore, the ECM peptides may be influencing new vessel

formation by interacting with other ECM proteins. Interestingly,

HepIII peptides can interact with one another to form a polymer-

like matrix (Figure S4). It is possible that a comparable situation is

occurring in rats treated with HepIII and may explain why HepIII

was the only peptide that was able to prevent further negative

remodeling as indicated by the echocardiography data. The

peptides do not necessarily have to be interacting with each other.

They may be able to interact with surrounding ECM proteins in a

similar manner to form a matrix, thus altering the material

properties of the LV and preventing the negative remodeling

associated with a MI [35,36]. Also, earlier studies have shown that

HepI can interact with whole Col IV [12]. The low dissociation

equilibrium constant Kd = 1.66 nM, indicates that the binding

affinity of HepI for Col IV is remarkably high. HepI’s ability to

interact strongly with Col IV may in some way help to contribute

to the formation of neovessels in HepI-treated rats, as Col IV is

known to be a major factor in the induction of new vessel

formation and in the stabilization of these new vessels [17].

Despite previous reports [13,16] showing that FC/HV could

promote cell adhesion and migration, we did not observe such

behavior in our studies with FC/HV. Based on our results, the

peptide might promote transient adhesion, as evidenced by our

observation of spread cells 1 day after incubation on FC/HV-

treated plates. Although FC/HV did induce Erk1/2 activation, we

observed no statistically significant increase in angiogenesis or

arteriogenesis in the FC/HV-treated rats. It is possible that FC/

HV is inducing Erk1/2 activation in the cells already present

within the MI region, but the inability of the peptide to promote

significant endothelial cell migration and cell proliferation as

compared to the other 3 peptides studied may limit its ability to

induce any dramatic neovascular formation.

In conclusion, Ab-targeted ECM-derived peptides can be used

to alter the myocardial microenvironment and promote the

induction of angiogenesis in the injury site after a MI. The exact

mechanisms by which the ECM peptides induced the observed in

vivo angiogenic response, however, warrant further study. Fur-

thermore, from our echocardiography data only Hep III

prevented negative remodeling of the LV following a MI,

indicating that neovascularization alone is insufficient to get full

recovery of LV function. Perhaps by combining this ECM peptide

therapy with cell therapy, we may be able to get full restoration of

cardiac function and tissue. Nevertheless, our results present a new

non-invasive strategy for regenerative therapies and a tool for

investigating tissue repair and regeneration.

Materials and Methods

Peptides
The peptides were synthesized by Commonwealth Biotechnol-

ogies Inc. (Richmond, Virginia). Amino acid analysis was

performed on the peptides to verify the amino acid sequence.

The reagents used to crosslink the peptide to the antibody were

purchased from Pierce (Rockford, IL).

Initial cell attachment and proliferation assays
For the adhesion studies, 96-well Immulon 1B plates (Fisher,

Pittsburg, PA) were used. The whole ECM protein from which the

peptide was derived was used as a positive control. PBS-treated

wells were used as a negative control. Since previous studies had

shown that negative versions—e.g. different amino acid sequence

but with the same hydropathy value, truncated, and/or scram-

bled— of the peptides used here abrogated or lessened their ability

to promote cell adhesion and proliferation, we decided not to

include scrambled or truncated versions of the peptides in this

study [12,15,16,37]. 50 mL of the peptide or protein in PBS at

various concentrations was added to each well and allowed to

incubate at 37uC overnight, after which the wells were blocked for

2 hours at 37uC with 2 mg/mL bovine serum albumin (BSA)

solution and later washed twice with PBS before addition of

human umbilical vein endothelial cells (HUVECs; Lonza, Basel,

Switzerland). HUVECs were used because they were readily

available, easily cultured, and frequently used as an in vitro model

for testing angiogenic potential [38,39]. Cell adhesion were

assessed after 30 minutes of incubation at 37uC, 5.0% CO2

followed by treatment with a MTS (3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, in-

ner salt) tetrazolium/formazan assay (Promega, Madison, WI).

For the proliferation assays, untreated Co-Star 96-well plates

(Fisher, Pittsburg, PA) were used. The coating protocol was the

same as above. Proliferation was measured using a MTS

tetrazolium/formazan assay after 1, 2, and 3 days of incubation

at 37uC, 5.0% CO2.

Haptotactic cell migration
Haptotactic migration was performed in triplicate and was

assessed via a modified Boyden chamber (8 mm pore size, Corning,

Acton, MA) using previously established protocols [40]. In brief,

the lower chamber first was blocked with 10% BSA for at least

30 minutes at 37uC followed by several washings with PBS. The

underside part of the membrane on the upper chamber was coated

with increasing concentrations (0.5–300 mg/mL) of either the

Peptides Promote Angiogenesis
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peptide or ECM protein and allowed to incubate for up to

30 minutes at 37uC and then allowed to air dry at room

temperature under aseptic conditions. Basal cell media (Lonza,

Basel, Switzerland) supplemented with 0.5% BSA was added to

the lower chamber. 100 mL of HUVECs in the same media was

added to the upper chamber. After incubating at 37uC, 5.0% CO2

for 6 hours, the cells on the membrane of the upper chamber were

fixed with 4% paraformaldehyde followed by removal of the cells

on the upper side of the membrane with a Q-tip. Finally, the

membrane was carefully removed from the chamber, dipped in a

solution of a 1:4000 dilution of Hoechst 33342 (Invitrogen,

Carlsbad, CA) and placed on a glass slide. 5 random pictures were

taken of each membrane at 106magnification using fluorescence

microscopy (Nikon Eclipse E800) to determine the area cell

density.

Western blot analysis
Untreated 35 mm CoStar dishes were coated with 100 mg/mL

of peptide or their source protein,blocked with 2 mg/mL BSA

followed by several PBS washes. HUVECs were cultured on these

plates for 3 days. Cells cultured on dishes treated with just PBS

were used as a control. To isolate the protein, the cells were

scraped off the plates using a cell scraper and washed twice with

cold PBS. The cells were incubated in 20–40 mL of NP40 lysis

buffer (Fisher, Pittsburg, PA) supplemented with protease inhibitor

(BD BaculoGold, BD Biosciences, San Diego, CA) for 30 minutes

at room temperature, vortexing every 10 minutes. The cell

membranes were spun the cells down and the supernatant

extracted.

The protein (10 mg/well) was run through a 12% Tris-glycine

SDS-PAGE gel (Invitrogen, Carlsbad, CA) at a constant voltage of

125 V and transferred to the transfer membrane (Hybond-P,

Amersham Biosciences, Piscataway, NJ) at a constant current of

400 mA. The membrane was blocked with 10% milk protein (Bio-

Rad, Hercules, CA) at room temperature, then incubated with the

primary antibody (1:2000 dilution for total Erk1/2, Chemicon,

Temecula, CA; 1:1000 dilution for phospho-Erk1/2, Chemicon;

or 1:400 dilution for b-tubulin, Santa Cruz Biotechnology, Santa

Cruz, CA) overnight at 4uC. After incubating with the secondary

antibody (1:5000 dilution of IgG-HRP, Chemicon, for Erk1/2 and

1:20,000 dilution for b-tubulin) for 1 hour at room temperature,

the membrane was treated with ECL Plus (Amersham Bioscienc-

es). The film was developed using a Konica SRX-101A developer.

To strip the proteins, the membrane was treated with stripping

buffer for 30 minutes at room temperature.

Antibody isolation and peptide conjugation
Anti-MHC was isolated from HB-276 hybridoma (ATCC,

Masassas, VA). The hybridomas were injected into Balb/c mice

for ascites production. The ascites was then run through a column

packed with Protein A beads (Pierce, Rockford, IL). After

dialyzing against sterile PBS, the purity of the antibody was

verified via SDS-PAGE electrophoresis, using 3–8% Tris-Acetate

gel (Invitrogen, Carlsbad, CA), and its concentration was

determined using a Bio-Rad protein assay kit (Bio-Rad, Hercules,

CA).

We conjugated the peptide to the targeting antibody using

carbodiimide chemistry using the 1-ethyl-3-[3-dimethylaminopro-

pyl]carbodiimide hydrochloride (EDC, Pierce, Rockford, IL)

crosslinker. EDC together with sulfo-NHS (Pierce, Rockford, IL)

were first incubated with 2 mg/mL peptide. After exchanging to

sterile PBS via a desalting column, the reacted peptide was

incubated with 1 mg of antibody. Solutions used for the reactions

were sterile filtered and autoclaved prior to use. Endotoxicity of

the Ab-peptide was determined using the limulus amebocyte lysate

(LAL) assay (Lonza, Basel, Switzerland). In vitro cell attachment,

cell proliferation, and haptotactic migration assays were also

performed on the Ab-peptides.

Acute myocardial infarction model
All surgical procedures were approved by the Committee for

Animal Research at the University of California San Francisco.

Female Sprague-Dawley rats (225–250 g) underwent occlusion of

the left anterior descending coronary artery for 25 minutes before

reperfusion as previously described [35,41,42]. The rats were

randomized 1–2 days after MI to either control or treatment

groups, and were given one intravenous injection via the external

jugular vein. 500 ml (,100 mg of total protein) of Ab-peptide, Ab

only (negative control), or PBS (control) was injected into the rats.

Each group consisted of 10 animals. Transthoracic echocardiog-

raphy was performed 1–2 days post-MI and 6 weeks post-

treatment as previously described [42,43]. Following echocardi-

ography at 6 weeks, the hearts were perfused with fluorescently

labeled microbeads (Molecular Probes, Eugene, OR) according to

previously described protocols [22,23].

Histology, immunohistochemistry, and
immunofluorescence

Immediately after the microbead perfusion, the hearts were

removed, rinsed in cold saline, blotted-dry and fresh frozen in

Tissue Tek O.C.T. freezing medium (Sakura Finetek, Torrance,

CA). The hearts were sectioned into 10 mm slices. Representative

sequential slides were stained with Masson’s trichrome stain and

H&E for determination of infarct size as previously described [35].

Angiogenesis in the infarct was examined by immunohistochem-

ical (IHC) staining with mouse monoclonal anti-CD31 (BD

Biosciences Pharmingen, San Diego, CA) to visualize capillaries

and with mouse monoclonal anti-a-smooth muscle actin (Sigma,

St. Louis, MO) to detect arterioles [44]. The staining assay was

performed using Mouse-on-rat HRP-polymer (Biocare Medical,

Concord, CA) using slides that were sequential to the slides stained

with trichrome and H&E. Capillaries in the infarct region were

identified as a single layer of CD31-positive cells with flattened

morphology. Vessel density was calculated on the basis of 5 high

magnification fields per section that spanned the infarct and

averaged among 5 sections for each sample. Arterioles within or

bordering the infarct were identified as staining positive for a-

smooth muscle actin and as having a visible lumen with a diameter

between 10 and 100 mm [35,45]. Arteriole density was calculated

as the average number of arterioles in the total infarct area, out of

5 representative slides per sample.

Statistical Analysis
Data are presented as mean 6 standard deviation. Cell

adhesion, proliferation, and migration measurements were

compared using the student’s t test. Differences between

echocardiography measurements before and after injection were

compared, using the paired t test. Differences in the echocardi-

ography measurements, infarct size, and vessel counts across

treatment groups were compared, using one-way analysis of

variance ANOVA with Holm’s adjustment. Significance was

accepted as P,0.05.

Supporting Information

Figure S1

Found at: doi:10.1371/journal.pone.0010384.s001 (0.09 MB

PDF)
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Figure S2

Found at: doi:10.1371/journal.pone.0010384.s002 (0.10 MB

PDF)

Figure S3

Found at: doi:10.1371/journal.pone.0010384.s003 (0.11 MB
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Figure S4
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