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Abstract

Accurate associative learning is often hindered by confirmation bias and success-chasing, which together can conspire to
produce or solidify false beliefs in the decision-maker. We performed functional magnetic resonance imaging in 35
experienced physicians, while they learned to choose between two treatments in a series of virtual patient encounters. We
estimated a learning model for each subject based on their observed behavior and this model divided clearly into high
performers and low performers. The high performers showed small, but equal learning rates for both successes (positive
outcomes) and failures (no response to the drug). In contrast, low performers showed very large and asymmetric learning
rates, learning significantly more from successes than failures; a tendency that led to sub-optimal treatment choices.
Consistently with these behavioral findings, high performers showed larger, more sustained BOLD responses to failed vs.
successful outcomes in the dorsolateral prefrontal cortex and inferior parietal lobule while low performers displayed the
opposite response profile. Furthermore, participants’ learning asymmetry correlated with anticipatory activation in the
nucleus accumbens at trial onset, well before outcome presentation. Subjects with anticipatory activation in the nucleus
accumbens showed more success-chasing during learning. These results suggest that high performers’ brains achieve better
outcomes by attending to informative failures during training, rather than chasing the reward value of successes. The
differential brain activations between high and low performers could potentially be developed into biomarkers to identify
efficient learners on novel decision tasks, in medical or other contexts.
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Introduction

Learning effectively from experience is a daunting task for any

organism. For every good or bad outcome, there are an immense

number of potential causes and associations to be considered. For

many decisions, it can be nearly impossible to pick out the few

relevant factors from the many irrelevant factors, even with

extensive experience. A major stumbling block for learning in

these multi-dimensional environments is the tendency to form

spurious beliefs: i.e., to attribute a causal role to factors that have

no actual bearing on the outcome.

The formation of spurious beliefs is universal, from Skinner’s

observations of superstitious pigeons [1] to an athlete’s belief in a

lucky hat. In some situations, these beliefs are essentially harmless;

by-products of learning mechanisms, but in other settings their

impact can be severe. For example, spurious associations can have

literal life-or-death consequences when they affect the complex

decisions made by physicians. These expert decision-makers must

extract and distill relevant features from a myriad of tests,

symptoms, and personal histories, and employ these features to

make critical medical decisions. Consequently, it is important to

understand how spurious associations form and how they can bias

subsequent decisions.

Previous studies have examined the neural basis of associative

learning (and in particular, prediction-error models of learning) in

non-physicians performing pseudo-medical decision-making tasks.

These studies have identified the dorsolateral prefrontal cortex

(DLPFC) as a key region whose activity correlates with the

learning of causal relationships by coding for the unsigned

prediction error at an outcome, and adjusting existing beliefs

based on this new information [2], [3]. These findings suggest the

hypothesis that when this region fails to distinguish correctly

between important and unimportant associations, spurious

learning and false belief formation ensue [4]. In the extreme case

of psychosis, disordered functioning of the DLPFC and its striatal

counterpart regions may underlie the inability to reverse

previously held beliefs in the face of contradictory information,

thus contributing to the delusions of schizophrenia and other

psychotic disorders [5], [6]. A similar process could also operate

during spurious belief formation among medical experts. Howev-

er, so far, the neural correlates of medical decision-making in

physicians have yet to be explored.
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Aside from the DLPFC, other brain regions also appear to have

important roles in learning and decision-making. Where the

DLPFC codes unsigned prediction error, the striatum appears to

code for the signed prediction error between expected and actual

reward outcomes [7], [8], [9], [10], [11], [12], [13]. The nucleus

accumbens (NAC) in particular appears to code specifically for

reward and often shows anticipatory activations in expectation of

rewards [14]. This anticipatory activation has been linked to the

placebo effect, where this anticipation is able to produce

subsequent physiological effects [15]. The association between

NAC activity and both the anticipation and experience of reward

suggests that the increased activity in advance of expected

successes could contribute to confirmation bias and success-

chasing. Finally, the inferior parietal cortex plays an important

role in associative learning, by identifying salient events in the

sensory environment, whether the salience is driven by top-down

factors such as behavioral relevance, or bottom-up factors such as

novelty [16], [17]. Hence, biases in individual physicians’ learning

behavior might also be reflected in the activity of these areas, in

addition to the DLPFC.

Based on these previous findings, we aimed to test three

hypotheses in the present study. First, among medical experts,

individuals who develop spurious associations during learning

should show disproportionately large adjustments of beliefs after

rewarding or salient events, as observed in their decision-making

behavior. Second, the individuals who develop spurious associa-

tions during learning should show a distinct pattern of activation in

the DLPFC and inferior parietal lobe in response to outcomes,

compared to those who do not. Third, the individuals who develop

spurious associations should show greater activity in the NAC in

anticipation of rewarding outcomes, compared to those who do

not.

To test these hypotheses, we used functional magnetic

resonance imaging (fMRI) to study neural activation in a

population of 35 experienced physicians while they learned to

decide between two fictional treatments in a series of virtual

patient encounters. Next, we collected behavioral data on the

physicians’ choices between the two treatments in a second series

of virtual encounters, to identify high- and low- performers based

on their ability to select the optimal treatment for each encounter.

We then used both behavioral and neuroimaging measures to

characterize the differences between high- and low-performers

during learning. To our knowledge, this is the first study to

examine brain activation in physicians, during learning and

decision-making within their domain of expertise.

Materials and Methods

Ethics Statement
All procedures were conducted with the approval of the

Institutional Review Board of Baylor College of Medicine. Written

consents were obtained from all subjects.

Overview
Subjects were instructed that they would select treatments for a

series of simulated patients with acute myocardial infarction (MI)

in an emergency room setting. For each patient, they viewed a

simplified, 6-factor clinical history before selecting one of two

fictional treatments (‘Levocyte’ and ‘Novotrin’). They were instructed

that both agents had some efficacy, but that they would need to

learn by experience whether one medication was more effective

than the other overall, or for certain types of patients. Unknown to

subjects, both medications had equal success rates of 50% overall.

However, one medication, Drug A, (Levocyte for 18 subjects,

Novotrin for the rest) had a 75% success rate in patients with

diabetes, but only a 25% success rate in patients without diabetes.

For Drug B, the opposite was true. 5 other plausibly relevant

factors were also presented for each case: age, gender, symptom

duration, history of smoking, or history of previous MI. However,

aside from diabetes status, none of the other factors was actually

relevant to treatment efficacy. Diabetes status is plausibly powerful

predictor of outcome in this study population, as physicians are

aware that a history of diabetes confers roughly the same risk as a

history of previous MI in predicting future MI and associated

mortality [18].

While the learning problem was presented in this familiar frame

to enable learning in the multi-dimensional space, the use of

fictional treatments ensured that subjects had neutral prior beliefs

about their efficacy. Patient history factors were chosen so that

they conferred similar risk for MI, but did so through distinct

mechanisms, in order to avoid excessive variation in subjects’ prior

assumptions on how patient history might affect treatment

efficacy.

Participants
The study included 35 physicians from a variety of non-surgical

specialties (full demographic information is presented in Table S1).

All participants were affiliated with Baylor College of Medicine.

Participants with a history of active neurological or psychiatric

illness, including substance dependence, head injury with loss of

consciousness .10 min, or current use of psychotropic medica-

tions were excluded from the study.

Decision-Making Task
Subjects first proceeded through 64 patient encounters in a

Training Phase (Figure 1a). In each encounter, they saw six items

of information about the patient: age, sex, hours from symptom

onset, presence or absence of smoking history, previous MI, and

diabetes. Subjects had 10 seconds to select a treatment. After

selecting a treatment, they were presented with a binary outcome:

‘SUCCESS: MI aborted’ or ‘FAILURE: No response’ (for

illustration, see Figure S1). The outcome screen appeared for

6 seconds, followed by a randomly determined 4–8 second inter-

trial interval drawn from a uniform distribution. Next, they

proceeded through a permutation of these 64 patients in a Testing

Phase. To avoid further learning effects, in the Testing Phase, the

outcome was the neutral phrase ‘Selection recorded’ (Figure 1a).

Both sequences used a counterbalanced design with respect to

all patient features. The outcomes for each of the two choices on

each trial were predetermined, although subjects were not

informed of this.

Neuroimaging
We acquired anatomical and functional images using 3.0T

Siemens Trio MRI scanners. Padding and head restraints

minimized head movement during image acquisition. Anatomical

imaging used an MPRage sequence to obtain high-resolution, T1-

weighted images of the whole head. Functional imaging used an

EPI sequence with a repetition time (TR) of 2000 ms, echo time

(TE) of 30 ms, 90u flip angle, 220 mm field of view, 64664 pixel

image matrix, and 3464 mm slices for measurement of the blood

oxygenation level-dependent (BOLD) effect [19], [20], [21].

Functional image slices were oriented 30u superior-caudal to the

plane through the anterior and posterior commissures, to

minimize signal dropout due to magnetic field inhomogeneities

at air/tissue interfaces. The resulting functional image voxels had

dimensions of 3.463.464.0 mm. Subjects viewed visual stimuli on

a rear-projection screen using an angled mirror attached to the
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head coil and made responses using a two-key, fiber-optic button

box.

We performed functional data preprocessing and analysis using

SPM8. Preprocessing included within-subject motion correction,

coregistration of anatomical and functional images, spatial

normalization to the standard MNI template brain, spatial

smoothing using a Gaussian kernel of 6 mm full-width at half-

maximum, and high-pass filtering in the temporal domain at 1/

128 Hz. Preprocessed voxels were 46464 mm.

Analysis of Behavioral Data
We used a logistic regression model of drug choice in the

Testing Phase, using the 6 patient history factors as predictors to

obtain an objective measure of subject treatment algorithms.

Predictors were normalized to mean = 0 and standard devia-

tion = 1 before analysis, to enable effect size comparisons.

In addition, subjects completed an exit questionnaire in which

they explicitly described their own treatment algorithms in written

form. Authors JD and MB independently reviewed the question-

naires to assess subjects’ self-reported treatment algorithms. Inter-

rater agreement was strong (r = 0.90); discrepancies were resolved

by consensus.

Analysis of Functional Data
For the Training Phase, responses to each task component were

identified using general linear models with four conditions:

scenario presentation, decision period, treatment selection key-

press, and outcome presentation. These models included condi-

tions for the interaction of decision period6time, and the

parametric modulation of outcome presentation. In the first model

we parameterized the outcome regressor with the simple binary

success/failure variable, in the second we parameterized outcome

by the implied signed prediction error and in the final model with

parameterized the outcome with the unsigned prediction error.

Regressors were all constructed by convolving stick functions at

the relevant times with a canonical hemodynamic response

function and its time and dispersion derivatives. Second level

analyses were then performed in SPM8.

Results

Behavioral Performance
The optimal treatment strategy would be to select Drug A for all

patients with diabetes and Drug B for all other patients. However,

the average performance was substantially worse than optimal

(mean rate of optimal choices, 64% +/2 18% SD). 17 of 35

subjects chose the optimal drug at, or at worse than, chance levels

(optimal choices #38 of 64; p.0.05, binomial distribution).

Performance had a bimodal distribution, with the majority of

subjects performing at, or slightly better than random and a

minority performing significantly better than random. Using a k-

means algorithm, we divided subjects into two clusters. 9 of 35

subjects fell into the high performing group, choosing the optimal

drug in between 77% and 98% percent of Testing trials (Figure 2a;

Table S2). The other 26 fell into the low performing group,

choosing the optimal drug in between 38% and 70% of the trials.

Figure 1. Task Design and Learning Model. A: The task consisted of a training phase followed by a testing phase. During the training phase,
subjects proceeded through a fixed sequence of 64 patient encounters. They had 10 s to select one of two fictional medications. A red frame
appeared around the selected medication at the time of the key press. At the end of the 10 s, they saw the outcome of their selection: either
‘SUCCESS: MI aborted’ or ‘FAILURE: No response’. The outcome remained on the screen for 6 s. A fixation cross then appeared during an intertrial
interval of 4–8 s before the next encounter. The testing phase used a different permutation of encounters, and the presented outcome was always
the neutral statement ‘Selection recorded’. B: In the modified Rescorla-Wagner learning model, subjects predict the efficacy of the two treatments
using association rules, modeled as weighting vectors for each of the 6 patient features (plus a constant term). Following treatment choice and
outcome presentation, the weighting vector for the selected treatment is adjusted according to Dbdrug =aoutcome?PE?X, where PE is the prediction
error. One can therefore derive separate learning weight constants for successes and failures, using each individual’s choices during testing, in
combination with each individual’s choices and associated outcomes during training.
doi:10.1371/journal.pone.0027768.g001
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Using 3 instead of 2 clusters did not significantly change the

characterization of the high performing group – which went from

being the best 9 subjects to the best 8 subjects. It did, however,

subdivide the low performing group into 2 groups: the 17 subjects

who performed at or worse than random and 10 subjects who

were better than random but not part of the high performing

cluster.

Despite the poor performance of many of the subjects, the

performance distribution is largely above chance levels, with half

the subjects performing significantly better than random and only

1 subject performing significantly worse than random. This

indicates that the group as a whole exhibited some learning on

the task, and high performance was not an artifact of simply

stumbling upon the correct rule. Notably, there was a significant

negative correlation between subjects’ number of optimal choices

and years of clinical experience (r = 20.4, p,0.05; Tables S2 and

S5).

Spurious Rule Learning
Every subject reported using at least one of the 5 irrelevant

factors in their treatment algorithm (mean irrelevant factors, 3.3

+/2 SD 1.3). As an illustrative example, subject 30 described an

algorithm of using Levocyte for females .55 or males ,55 years

old, but Novotrin for males .55 or females ,55 years old. Subject

22 described using Levocyte in females, but Novotrin in patients

presenting late after symptom onset, or in patients ,60 or .75

years old, and ‘‘?’’ in smokers. Neither made any reference to

diabetes status. Not one of the 35 subjects reported that the

treatments appeared to have equal efficacy regardless of patient

presentation. Not one of the 35 subjects reported guessing or

choosing randomly during the Testing Phase.

We compared these subjective reports to the subjects’ actual

choices in the Testing Phase using a logistic regression model

(Table S2). On this objective measure, diabetes status significantly

predicted choice (p,0.05) in 14 of 35 subjects (including 7 of the 9

high performers), with 1 subject showing a significant predictive

effect in the wrong direction. At the same time, one or more

irrelevant factors significantly predicted choice (p,0.05) in 25 of

35 subjects. Diabetes status was the largest factor influencing choice

in 11 of the 35 subjects (including all high-performers), all in the

correct direction. This number is significantly higher than would

be predicted if the dominant rule were chosen at random in each

subject (p,0.01). No other factor dominated choice in a consistent

direction in a significantly sized subset of subjects. Presence of a

previous MI did dominate choice in 9 subjects, which was

significant at p,0.05. However, the direction was inconsistent,

with an association to Drug A in 5 subject and to Drug B in 4

subjects.

We also computed the optimal treatment strategy given each

individual’s set of outcomes during training, to test whether

spurious rules were formed as a rational consequence of the

particular outcomes each subject happened to see as a result of

their choices during training. Only in subjects 1 and 3 did a single

treatment-irrelevant factor inadvertently achieve predictive signif-

icance during training. Subject 1 still did not develop a significant

treatment rule around this factor. Subject 3 did develop a rule

Figure 2. Behavioral Performance and Learning Model Estimation. A: Histogram illustrating bimodal distribution of task performance
among subjects. A high-performing group exceeded 75% correct responses during testing, while a low-performing group fell below 75% correct
responses. The threshold for above-chance performance (p,0.05) was .60% correct binary choices over 64 trials (dotted red line). B: Bar chart
comparing the impact of treatment successes vs. failures on learning in low-performers and high-performers. Chart shows parameter means and
standard errors for each group. Learning parameter estimates were calculated using a modified Rescorla-Wagner learning model. High performers
made small but non-zero rule adjustments following both successes and failures, while low performers made large rule adjustments, and made
significantly larger adjustments following successes than failures. In low performers, the median learning parameter estimate for failures was zero.
Paired t-tests showed that low performers had significantly higher success learning rates than failure learning rates (p,0.001), while high performers
showed no significant difference. In addition, a two-sample t-test showed that low performers had overall higher learning rates than low performers
(p,.01).
doi:10.1371/journal.pone.0027768.g002
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around the factor, as well as 3 other confirmed irrelevant factors.

Thus, the rules they formed from their experiences were indeed

spurious, rather than bona fide reflections of the training outcome

series (Tables S3 and S4).

Learning Model Estimates
We used a modified Rescorla-Wagner [22] learning model to

quantify subjects’ learning rates separately for successes and

failures. In this model, each drug’s efficacy was approximated by a

linear function of the patient features (bounded by 0 and 1

from above and below): vdrug(X )~min(max(bdrug
:X ,0),1), where

X is the normalized vector of patient features plus a constant

term. In each training trial where the subject chose a par-

ticular drug, its coefficients bdrug are adjusted according to

Dbdrug~aoutcome
:PE:X . Here PE is the prediction error from that

trial and aoutcome is the learning rate for the outcome type (either

success or failure).

Each subject’s final treatment rule is expressed as the 7-

dimensional vector encompassing the relative influence of each

factor on treatment choice, with values drawn from the logistic

regression of choices on features during the Testing phase.

Specifically, the logistic regression on drug choice during testing

gives us a linearly scaled estimate of the difference between the two

drugs values: l?(vdrug A(X)2vdrug B(X)). We used this measurement to

estimate the implied impact of successes and failures on subjects’

final decision rules by finding the values for asuccess and afailure that

minimized the angle between (vdrug A(X)2vdrug B(X)) and the

objectively determined treatment algorithm (Figure 1b, Table

S5). This method of estimation allowed us to avoid making the

assumptions about how the subjects may have explored the state

space during the training phase required by a standard maximum

likelihood estimation. This was particularly important for this

population since some subjects explicitly tried to sample the state

space evenly (one subject actually chose drug A for the first half of

the training phase and drug B for the second half), so their

decisions during the training phase were not necessarily informa-

tive of their valuations. Results of this estimation along with

goodness of fit measures are reported in table S5.

High performers showed relatively small learning rates, but

learned relatively equally from successes and failures (t = 1.16,

p = 0.28 in a paired t-test); all but 1 had strictly positive (i.e., non-

zero) learning rates on both failures and successes. In contrast, low

performers showed very large and asymmetric learning rates,

learning significantly more from successes than failures (t = 4.12,

p = 0.0004 in a paired t-test); 11 out of 26 low performers showed a

learning coefficient of zero for failures (Figure 2b; Table S5). The

size of the learning rates for low-performers was significantly

higher than those for high performers (t = 2.92, p = .007 in a 2

sample t-test assuming unequal variances). Hence, our model

identified a distinct learning profile for high performers as

compared to low performers. Small but relatively symmetrical

rule adjustments on each learning trial led to high performance,

while large and asymmetrical adjustments led to poor perfor-

mance.

As an additional confirmation of the validity of the model, we

sought to determine whether we could predict the idiosyncratic,

spurious algorithms formed by each low-performing subject using

the computed learning rates for successes and failures, as applied

to the subject’s series of training encounters and outcomes. Using

this approach, we were indeed able to predict each subject’s final

set of spurious treatment rules with good accuracy (Table S5). The

error between the model-predicted and actual treatment algo-

rithms is expressed as the angle between the vectors for the model-

predicted and actual treatment algorithms. The mean error angle

was 36.7 degrees in the 7-dimensional space. The probability of

two random 7-dimensional vectors aligning as or more closely

than 36.7 degrees is less than 0.05 (Table S5). In addition, we

compared the fit of our modified model with the standard

Rescorla-Wagner model, where learning rates are equal on

successes and failures, on behavior during the Testing phase using

the Akaike Information Criterion (AIC). Our model showed

significantly improved fit as evidenced by lower AIC’s in a paired

t-test (Table S5, t = 4.47, p,0.0001).

Neuroimaging Results
We hypothesized that activity in striatum and DLPFC should

correlate with the learning asymmetries and performance

differences described by our behavioral analysis, since both

regions have been previously identified as coding for the signed

and unsigned prediction error during formal associative learning.

We also hypothesized that areas implicated in salience judgments,

such as the inferior parietal cortex, should reflect subjects’ learning

biases.

As expected, bilateral ventral striatum activity was highly

correlated with the signed prediction error (Figure 3a, p,0.01

corrected for false-discovery rate (FDR) across the whole brain,

Table 1). However, contrary to expectations, the DLPFC did not

show a significant correlation with unsigned prediction error in

this study across all subjects. However, the activity of this area

showed considerable heterogeneity across subjects. Specifically,

the right DLPFC showed significant effects of the interaction of

group (low vs. high performers) with reaction to success vs. failure

(p,.05, whole-brain FDR-corrected). While high performers

showed significantly greater activation in the area after failures,

low performers showed the reverse pattern of slightly greater

activation in the area after successes (Figure 4a, Table 2).

The interaction of group by response to success vs. failure was

also significant in the inferior parietal lobule bilaterally (p,0.05

corrected for FDR over the whole brain). Time courses in the

inferior parietal lobule followed the same pattern as the right

DLPFC, with low performers showing increased activation after

successes and high performers showing increased activations after

failures (Figure 4b). The complete set of regions showing a

significant interaction of group by outcome type is given in

Table 1b.

As hypothesized, activity in NAC correlated with ‘success-

chasing’ in a between-subjects analysis. To identify success-

chasers, we defined each subject’s learning asymmetry as
asuccess{afailure

asuccesszafailure
. Subjects with positive learning asymmetries

over-weighted positive outcomes relative to failures during their

learning process, consistent with success-chasing. Subjects with

learning asymmetries of 1 ignored failures entirely. Subjects with

negative learning asymmetries, conversely, adjusted their beliefs

more after negative outcomes, consistent with failure-avoidance.

We found that increased activity in the left NAC at trial onset,

before the outcome revealed, correlated significantly with learning

asymmetry in this task (Figure 3b, peak voxel at (214, 20, 22),

z = 3.69, p,0.05 corrected for multiple comparisons in the small

volume around the ventral striatum – a sphere of radius of 20 mm

around (0, 8, 210)). Examination of the time-courses of activation

from this area yielded two notable findings (Figure 3c). First,

subjects showing the most success-chasing (with learning asym-

metries of 1) showed significant anticipatory activation in the area

for all trials, well before the outcome of the trial was revealed.

Furthermore, this anticipatory activation was significantly larger prior

to successful outcomes. Secondly, compared to the other subjects, the

success-chasing subjects showed a significantly larger activation

Neural Correlates of Effective Learning
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differential for successes versus failures after the outcome was revealed.

In contrast, subjects with lower positive learning asymmetries showed

less anticipatory activation, with no significant differential before the

outcome was revealed and a much smaller differential between

successes and failures after the outcome was revealed. Subjects with

negative learning asymmetry showed no significant differential

activation in the NAC during either phase of the encounter.

Discussion

In this study we identified behavioral and neural characteristics

of physicians who were adept at learning from experience. High

performers learned from both successes and failures, and made

smaller rule adjustments after feedback. Conversely, low perform-

ers learned disproportionately from successes, and made larger

rule adjustments. Nearly half of the physicians performed at

chance levels or worse, even after 64 training encounters. This

result is particularly striking given that the difference in efficacy

between the two treatments was intentionally made very large, at

75% versus 25% when diabetes status was taken into account. For

comparison, the difference in real-world mortality between

placebo and combined aspirin/streptokinase treatment for acute

MI is only 13.2% versus 7.2% [23]. The suggestion from these

results is that for most physicians, clinical experience alone may be

inadequate for forming reliable heuristics about most real-world

treatments, even when the differences in efficacy are large.

Spurious learning was also widespread in this study. On

behavioral measures, more than two-thirds of physicians robustly

Figure 3. Ventral striatum correlates with prediction error at outcome in all subjects. Nucleus Accumbens correlates with learning
asymmetry at trial onset. A: Activation from the analysis of correlates to prediction error across all subjects shown at p,0.001 uncorrected, Y = +8. B:
Left nucleus accumbens correlates with learning asymmetry at trial onset, activation shown at p,0.001 uncorrected, Y = +20 (peak activation at (214,
20, 22)). C: Timeseries of activation in left ventral striatum/nucleus accumbens separated by learning asymmetry and trial outcome: Success-chasers
who completely ignore failure (left) show large anticipatory activation in the nucleus accumbens before both failures and successes, with even
greater anticipation in advance of successes. They show even more significant differential activation to success vs. failure after the outcome reveal.
People who over-weighted success but had positive learning rates on failures (middle) show some anticipatory activation in the nucleus accumbens
before outcome reveal, but the area does not seem to significantly differentiate between successes and failures until after outcome is revealed.
Finally, people who weighted failures more than success (right) show no anticipatory activation or significant differentiation between successes and
failures after outcome is revealed. Significant differences in the timeseries are marked for p,0.05 (*), p,0.01 (**), and p,0.001 (***) in a 2 sample
t-test. Note that timeseries are time-locked to scenario presentation time.
doi:10.1371/journal.pone.0027768.g003
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Figure 4. Significant interactions between response to success vs. failure and performance. A: Coronal slice shows dorsolateral prefrontal
region with different responses to treatment success vs. failure in high vs. low performing subjects (left). Region-of-interest plots show timeseries of
relative activation in the area on successful (blue) and unsuccessful (red) trials for high and low performing subjects (right). B: Coronal slice shows
differential responses to success and failure in the in the inferior parietal lobule (IPL). Region-of-interest plots show timeseries of activation in the
right IPL on successful (blue) and unsuccessful (red) trials for high- and low-performing subjects. Timeseries error bars indicate standard error.
Significant differences at each timepoint are marked for p,0.05 (*), p,0.01 (**), and p,0.001 (***) in a 2-sample t-test. Note that timeseries are time-
locked to scenario presentation time.
doi:10.1371/journal.pone.0027768.g004

Table 1. Brain regions showing correlation with signed prediction error during the outcome phase of the learning trials across all
subjects.

Brain Brodmann Number of MNI Coordinates Peak

Region Area Voxels X Y Z Z-Score

Bilateral Ventral Striatum – 27 214 8 210 5.27

L Middle Temporal Gyrus 37 36 258 252 22 4.71

R Cerebellum – 19 22 264 226 4.63

R Superior Parietal Lobule 7 11 18 256 58 4.39

Right Lateral Prefrontal Cortex 44 9 54 8 10 4.38

L Angular Gyrus 39 46 246 268 22 4.27

Left Lateral Prefrontal Cortex 44 11 250 4 14 4.23

Identified regions are based on voxelwise p,0.01 (corrected for the false discovery rate) with a minimum cluster size of k = 5 (320 mm2).
(p,0.0001 uncorrected, p,0.01 corrected for FDR, k.5).
doi:10.1371/journal.pone.0027768.t001
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incorporated spurious associations into their treatment algorithms.

Overall, subjects were nearly twice as likely to invent a spurious

rule as to detect the correct one. The high rate of spurious rule

formation, in conjunction with the tendency to ignore failures,

suggests how different experts might come to disagree vehemently

about which factors are most relevant to decision-making, based

on their personal experiences. The implication is that experiential

learning alone is likely to capture irrelevant as well as relevant

factors for guiding decisions, even among experts working within

their domain of expertise.

Notably, years-of-experience was as strong a predictor of poor

performance as were the number of spurious rules (r = 0.4 for

each). Years-of-experience was also moderately (but not signifi-

cantly) correlated with aggregate speed of learning (r = .24). The

poorer performance of more experienced physicians on this task

could conceivably reflect differences in training, temperament, or

cognitive style. Although the present study was not designed to

explore these possibilities in detail, understanding the basis of the

experience-dependent decline in performance would be an

important area for future investigation.

On neuroimaging, high- and low-performing subjects showed

different patterns of activity in the inferior parietal cortex, and

right DLPFC: brain areas with well-established roles in salience

representation, associative learning, and the coding of prediction

error [4,16]. Low performers, who included irrelevant factors in

their algorithms, showed stronger prefrontal and parietal activa-

tion for successes than for failures. Conversely, high performers

showed stronger prefrontal and parietal activation after treatment

failures than successes. The profile of activation in inferior parietal

areas related to attention and salience [24] similarly suggest that

while low-performers pay special attention to successes, high

performers attend more to failures during learning.

The right DLPFC has a well-established role in learning causal

relationships [2], [3]. The present study extends these previous

findings to medical learning and decision-making in expert

physicians, participating in a medically-framed decision-making

task. While the present study did not detect significant correlations

between unsigned prediction error and DLPFC our findings are

consistent with the underlying hypothesis that the right DLPFC

drives rule readjustment [2], [5]. Specifically, the differential

activation of the area after successes in low performers, and after

failures in high performers, does reflect the learning biases that

characterize the two groups (Figure 4). The present study suggests

that engaging these mechanisms following only successful

predictions leads to inaccurate rule formation, and poorer

predictions in the future, as spurious rules progressively accumu-

late.

Notably, the profile of DLPFC activation in low performers on

this task bears a striking similarity to that seen during false-belief

formation in pathological settings, such as in individuals with

psychotic illness [6] or ketamine-induced psychosis in healthy

subjects [5]. Thus, the existing literature on the role of the DLPFC

in associative learning may have important implications not only

for psychiatric patients, but also for the medical decision-makers

who treat them.

If learning preferentially from successes is such an ineffective

strategy, then why is it so pervasive even among experts operating

in their domain of expertise? Here, the reward value of successes

offers one possible explanation. Success-chasing, as measured by

learning asymmetry, correlated significantly with anticipatory

activity in the left NAC at trial onset (Figure 3). Notably, both this

anticipatory activation and activation subsequent to outcome

revelation showed significant differences between successful and

unsuccessful trials in complete success-chasers (those with learning

asymmetries of 1). In contrast, those who learned more from

failures (with learning asymmetries less than 0) showed no

anticipatory activation at all (Figure 3) and no significant

differences in activation between successes and failures either

before or after outcome was revealed.

These results support an interpretation of confirmation-bias

among success-chasers: the confirmation of an expected reward

leads to increased signal in the NAC in these subjects. This profile

of activation is particularly interesting in light of evidence showing

that activation in the NAC correlates with susceptibility to the

placebo-effect [15], another example of confirmation bias in a

completely different context. Whereas in the placebo effect the

expectation of and effective treatment can lead to the alleviation of

symptoms, here the expectation of reward appears to be

amplifying each decision-makers response to reward both

physiologically in the NAC itself, and behaviorally in there

adjustments of their underlying beliefs.

Why would success-chasing be so prevalent despite its

drawbacks? The ventral striatum and nucleus accumbens is

known to play a key role in motivation and the prediction of a

wide variety of rewards: juice, consumer goods, monetary gains,

and gains in social reputation [8], [14], [25], [26]. The

Table 2. Brain regions showing differential activity for treatment success vs. failure among high (.75% optimal choices) and low
(,75% optimal choices) performing subjects.

Brain Brodmann Number of MNI Coordinates Peak

Region Area Voxels X Y Z Z-Score

R Temporoparietal Junction 39 26 42 264 18 4.52

R Inferior Parietal Lobule 40 49 50 260 46 4.44

Cerebellum – 51 10 272 226 4.08

L Inferior Parietal Lobule 40 29 242 256 46 3.96

R Dorsolateral Prefrontal Cortex 9 11 42 32 30 3.80

R Middle Frontal Gyrus 6 5 34 8 54 3.72

Identified regions are based on voxelwise p,0.001 (uncorrected) with a minimum cluster size of k = 5. All regions shown survive correction for FDR at p,0.05 at peak
voxel.
Coordinates indicate the location of each region’s statistical peak, with respect to the anterior commissure, in millimeters, in the standard space of the Montreal
Neurological Institute MNI152 anatomical template.
(p,0.001 uncorrected).
doi:10.1371/journal.pone.0027768.t002
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anticipatory activation of this region among asymmetric learners

in the present study suggests that success-chasers may be

excessively motivated by the reward value of a successful outcome.

In their efforts to maximize successful outcomes during training,

success-chasers may be paradoxically sabotaging their ability to

learn effectively from past experience.

Taken together, the behavioral and neuroimaging results

suggest that success-chasing and confirmation bias may underlie

the relative pervasiveness of premature, asymmetric learning and

the resultant poor performance of the majority of physician

subjects in the present study. The general human bias towards

confirmation over disconfirmation in hypothesis-testing has been

extensively documented in a variety of non-medical contexts, such

as the Wason Card Task [27]. Conversely, the necessity for

disconfirmation learning in empirical investigations is a key

principle identified by the philosopher of science, Karl Popper

[28]. Conceivably, providing medical professionals with formal

training in disconfirmation learning could improve their ability to

learn effectively from clinical experience in real-world settings.

Exploring this possibility would be an important area for future

research.

In conclusion, the results of this study show distinct patterns of

learning, both behaviorally and neurally, between effective and

ineffective learners among physicians making decisions in a

medically framed learning task. The tendency to chase successes

and ignore failures provides a simple computational model of how

spurious beliefs might be formed, and how different individuals

seeing similar data might learn very different sets of associations.

The neural differences observed could conceivably be developed

into useful biomarkers for essential differences in individual

learning styles. These may in turn prove useful in identifying

those individuals who can resist the impulse to chase successes, and

hence learn most effectively from experience. Finally, we note that

although this study focused upon the specific case of medical

decision-making, the findings may be also be relevant to many

other fields in which experts must make high-stakes decisions by

drawing upon personal experience.
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