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Abstract

Androgen receptor (AR) signaling pathway remains the foremost target of novel therapeutics for castration-resistant
prostate cancer (CRPC). However, the expression of constitutively active AR variants lacking the carboxy-terminal region in
CRPC may lead to therapy inefficacy. These AR variants are supposed to support PCa cell growth in an androgen-depleted
environment, but their mode of action still remains unresolved. Moreover, recent studies indicate that constitutively active
AR variants are expressed in primary prostate tumors and may contribute to tumor progression. The aim of this study was to
investigate the impact of constitutively active AR variants on the expression of tumor progression markers. N-cadherin
expression was analyzed in LNCaP cells overexpressing the wild type AR or a constitutively active AR variant by qRT-PCR,
Western blot and immunofluorescence. We showed here for the first time that N-cadherin expression was increased in the
presence of constitutively active AR variants. These results were confirmed in C4-2B cells overexpressing these AR variants.
Although N-cadherin expression is often associated with a downregulation of E-cadherin, this phenomenon was not
observed in our model. Nevertheless, in addition to the increased expression of N-cadherin, an upregulation of other
mesenchymal markers expression such as VIMENTIN, SNAIL and ZEB1 was observed in the presence of constitutively active
variants. In conclusion, our findings highlight novel consequences of constitutively active AR variants on the regulation of
mesenchymal markers in prostate cancer.
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Introduction

Prostate cancer (PCa) is the most common cancer in men over

50 years of age and the second cause of male mortality due to

cancer in Europe. Androgens signaling plays a key role in PCa

cells proliferation or survival [1], and androgen withdrawal

remains the main treatment for local recurrence and androgen-

dependent metastatic PCa. However, the benefit of this therapy is

transient and all tumors ultimately recur as castration-resistant

PCa (CRPC).

Genetic and splicing events affecting the androgen receptor

(AR) gene have been linked to CRPC. Constitutively active AR

variants, lacking the carboxy-terminal region that encompasses the

ligand binding domain and the activation function 2, might

contribute to the progression of PCa into castration resistance.

These constitutively active AR variants result from premature stop

codons due to nonsense mutations as reported for the ARQ640X

[2,3,4,5] or from alternative splicing with the retention of a cryptic

exonic sequence as described for AR-V7 [4,6,7,8,9,10].

The role of constitutively active AR variants in CRPC has been

shown in many studies [7,8,11,12]. The expression of these

truncated AR variants is increased by a 20-fold in CRPC

compared with localized PCa [9], and is correlated with the

capacity of PCa cells to grow in vitro and in vivo in the absence of

androgen [7]. However, the exact molecular mechanisms leading

to their activation and their mode of action in PCa and CRPC

remain unclear.

Recent studies suggest that constitutively active AR variants

could play a role in tumor progression. Indeed, although these

constitutively active AR variants are already expressed in primary

prostate tumors, their expression is all the more expressed in bone

metastasis [8]. Furthermore, their expression is associated with an

increase of NFAT (Nuclear factor of activated T-cell) and AP-1

(Activator Protein-1) activity, two transcription factors involved in

cell proliferation, migration and survival [13].

N-cadherin, which belongs to cadherin superfamily, is located at

adherens junctions in nervous, endothelial or mesenchymal cells

and is involved in tumor progression [14,15]. Indeed, N-cadherin

expression is increased in most cancers and promotes tumor cells

migration, invasion and survival [14]. Increased N-cadherin

expression is also associated with epithelial-mesenchymal transi-

tion (EMT), a phenomenon characterized by a decrease of

epithelial markers such as E-cadherin and an increase of
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mesenchymal markers such as Vimentin or N-cadherin

[16,17,18,19]. These molecular and cellular modifications play

an important role in tumor cells dissemination at secondary sites

[20,21].

More recently, studies have shown that castration-resistant PCa

is associated with an upregulation of N-cadherin expression in

cellular models as well as PCa xenografts and clinical samples of

CRPC [22,23,24]. Moreover, monoclonal antibodies against N-

cadherin have been shown to delay the emergence of castration

resistance and to reduce the growth of CRPC xenografts [23].

Taken together, these data show that there is a correlation

between N-cadherin expression and resistance to castration.

Nevertheless, molecular mechanisms whereby N-cadherin expres-

sion is increased in CRPC remain unknown.

The aim of this work was to show a possible link between the

presence of constitutively active AR variants and the expression of

tumor progression markers. More particularly, we focused on the

impact of constitutively active AR variants on the expression of N-

cadherin and other mesenchymal markers. In the present study,

we have shown that N-CADHERIN as well as VIMENTIN, SNAIL

and ZEB1 are upregulated in the presence of constitutively active

AR variants in PCa.

Materials and Methods

Cell culture
The human prostate carcinoma LNCaP cell line, clone FGC

and the 22Rv1 cell line (ECACC, Salisbury, United Kingdom) was

maintained in RPMI-1640 complete medium containing 10%

fetal calf serum (FCS), 10 mM HEPES, 2 mM L-glutamine,

100 U/mL penicillin, 100 mg/mL streptomycin (Sigma-Aldrich,

France) and 1mM sodium pyruvate (Invitrogen, Fisher Scientific,

France).

C4-2B cell line (ViroMed Laboratories, Minnetonka, MN,

USA) was maintained in DMEM medium supplemented with

20% Ham’s F12, 10% FCS, 100 U/mL penicillin, 100 mg/mL

streptomycin, 5 mg/mL insulin, 13.65 pg/mL triiodo-thyronine,

4.4 mg/mL apo-transferrin human, 0.244 mg/mL d-biotin and

12.5 mg/mL adenine (Sigma-Aldrich, France).

Plasmids and transfection
For immunofluorescence experiments, the wild type androgen

receptor (AR) (AR-WT) and the constitutively active AR Q640X

and AR Q670X [25] variants were linked to EGFP as previously

described [2,3]. For gene expression analysis and Western-blot,

pE-ARWT, pE-ARQ640X and pE-AR-V7 plasmids were con-

structed by inserting the corresponding AR cDNA between the

NheI and BamHI sites in pEGFP-C3.

For transfections, the JetPEITM transfection reagent (Polyplus

Transfection, Ozyme, France) was used according to the

manufacturer’s protocol. LNCaP cells were seeded in 10 cm

dishes at 16106 cells/dish or in 6-wells plate at 26105/well. Three

days later, the medium was changed and cells were transfected

with 10 mg of the indicated plasmid using 20 ml of JetPEI

transfection reagent for 10 cm dishes or with 3 mg of plasmid

using 6 ml of JetPEI for 6-wells plate. Medium was changed 48 h

after and cells were incubated up to 9 days according to the

experiments. The medium was changed every two days and for

incubations beyond 4 post-transfection days, cells were incubated

in the presence of 400 mg/mL geneticin (Invitrogen, France).

Impact of androgens on N-cadherin expression
LNCaP cells were seeded in 6-wells plate in complete medium

and transfected as previously described. Twenty four hours later,

medium was changed to phenol red free RPMI-1640 supplement-

ed with 5% dextran-coated charcoal-stripped FCS (DCC-FCS)

and with the indicated concentration of dihydrotestosterone

(DHT) (Sigma-Aldrich, France) or vehicle (ethanol).

For experiment with MDV3100, transfected LNCaP cells were

incubated in RPMI-1640 supplemented with 5% DCC-FCS

containing the indicated DHT dose and 100 nM MDV3100

(Enzalutamide, Selleck Chemicals, Euromedex, France) or vehicle

(dimethyl sulfoxide, DMSO). To confirm the effects of androgens

on N-cadherin expression, 22Rv1 cells were grown in RPMI-1640

with 100 nM or 1 mM MDV3100, or DMSO.

Cell Sorting
LNCaP cells were seeded in 10cm dishes at 16106 cells/dish

and were transfected with pEGFP-ARWT or pEGFP-ARQ640X.

Four days after transfection, cells were trypsinized and sorted

thanks to the green fluorescence (EGFP) with a BD FACSAria-II

cell sorter (BD Biosciences, Le Pont de Claix, France). Total RNA

was extracted from EGFP negative (non-transfected) and EGFP

positive (transfected) cells and was used to analyze gene expression

by qRT-PCR.

Quantitative real-time PCR
Total cellular RNA was extracted from cell lines using

NucleoSpinH RNA II assay (Macherey-Nagel, France) according

to the manufacturer’s procedure. RNA concentrations and purity

were quantified measuring the absorbance at 260 nm and 280 nm

(GeneQuant pro, GE Healthcare, France). The reverse transcrip-

tion was performed from 400 ng or 1 mg RNA using RT

Omniscript assay (Qiagen, Courtaboeuf, France). RNA were

diluted into 13 mL and denatured at 65uC during 5 minutes. A

7 mL reaction mix containing 16RT template, 0.5 mM of each

dNTP, 1 mM oligo dT, 10U RNase inhibitor and 4U Omniscript

Reverse Transcriptase was added and the reaction was incubated

1 h at 37uC. The reaction was stopped by heating to 93uC for

5 minutes. N-CADHERIN, E-CADHERIN, VIMENTIN, SNAIL,

TWIST1, and ZEB1 mRNA levels were quantified using real-time

PCR with LightCycler 480 (Roche Applied Science, Meylan,

France). For PCR reactions, 5 mL LightCyclerH 480 SYBR Green

I Master (Roche, Molecular Diagnostics, Mannheim, Germany)

and 1 mL specific primers (Table 1) (Qiagen, QuantiTect Primers,

Courtaboeuf, France) were mixed with 4 mL of 1:5 cDNA dilution.

Results were normalized using housekeeping gene b-ACTIN or

PBGD (Porphobilinogen deaminase) (Qiagen, QuantiTect Primer).

Amplification specificity was verified by analyzing melting curve

and by electrophoresis migration. All experiments were realized in

triplicate and repeated 3 times. Relative quantification was used to

determinate fold change in expression level by the DDCt method.

Each value is expressed as the mean DDCt 6 SEM. Results were

analyzed with Student t test and p-value ,0.05 was considered

significant.

Western Blot
Cells were lysed in buffer containing 10 mM Tris-HCl pH7,

140 mM NaCl, 3 mM MgCl2, 0.56Igepal, 5 mM DTT, 16
phosphatase inhibitor, and 16 protease inhibitor. Protein

concentration for each sample was quantified using BCA Protein

Assay (Pierce Biotechnology, Inc., Rockford, IL, USA) according

to the manufacturer’s procedure. A quantity of 15 mg to 100 mg of
total proteins was loaded on 7,5% SDS-PAGE. After migration

and transfer to nitrocellulose membrane, membranes were

saturated with PBS/0.1%Tween/2%ECL and incubated at 4uC
overnight with 0.1 mg/mL mouse monoclonal anti N-cadherin

(catalog no. 610920, BD Biosciences, France) or 1 mg/mL mouse
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monoclonal anti AR (catalog no. 554225, BD Biosciences, France)

antibody. b-actin (0.2 mg/mL) (catalog no. sc-47778, Tebu-bio,

France) was used as internal control. After washes, immunocom-

plexes were detected with 0.2 mg/mL HRP-conjugated goat anti

mouse (catalog no. sc-2005, Tebu-bio, France), or 0.5 mg/mL rat

anti mouse IgG2a secondary antibodies (catalog no. 553391, BD

Biosciences, France), and finally revealed by chemiluminescence

(ImmobilonTM Western, Millipore, Molsheim, France).

Immunofluorescence Staining
Lab-Tek II chamber slides (2 wells) were coated with LNCaP

medium for two hours and 16105 LNCaP cells/well were seeded.

LNCaP cells were transfected with 2 mg of pEGFP-WT, pEGFP-

ARQ640X or pEGFP-ARQ670X 3 days later and incubated for

4 days. LNCaP cells were rinsed in PBS and fixed with 2%

paraformaldehyde. Cells were blocked and permeabilized by 0.1%

Triton/1% Bovine Serum Albumin (BSA)/PBS for 30 min at

room temperature. Cultures were incubated with 2.5 mg/mL anti

N-cadherin mouse monoclonal antibody (catalog no. 610920, BD

Biosciences, France) or isotypic antibody (Sigma-Aldrich, Saint-

Quentin Fallavier, France) at 4uC overnight. After washing in

PBS, LNCaP cells were incubated with 2 mg/mL Alexa Fluor 568-

conjugated goat anti mouse (Invitrogen, Fisher Scientific, France)

for 1 h and nuclei were stained with 0.1 mg/mL DAPI solution for

20 min at 30uC. Images were captured with the Leica LAS

AF6000 fluorescence microscope using LAS AF software (Leica).

Results

Constitutively active androgen receptor variants
upregulate N-cadherin expression in prostate cancer cells
Constitutively active AR variants have been associated with

CRPC. Moreover, some studies showed that CRPC is also

associated with an upregulation of N-cadherin expression [22,23].

We investigated whether constitutively active AR variants

upregulate N-cadherin expression in PCa cells. N-CADHERIN

mRNA level was determined by qRT-PCR in LNCaP cells

overexpressing the constitutively active AR Q640X or AR-V7, or

the AR-WT as control (Figure 1). N-CADHERIN expression

remained unchanged in LNCaP cells overexpressing AR-WT

compared with controls. Interestingly, N-CADHERIN expression

was increased by a 8,000-fold in the presence of ARQ640X and

AR-V7 (Figure 1A-B). These data were confirmed in C4-2B cells

(Figure S1) and at the protein level in LNCaP cells (Figure 1C). In

addition, a time course experiment revealed that N-cadherin

protein levels were consistently increased from day-3 after LNCaP

cells transfection with ARQ640X (Figure 1D).

To confirm these data from transient transfection, a cell-sorting

analysis was performed after LNCaP transfection to demonstrate

that N-cadherin expression was restricted to cells expressing a

constitutively active AR. N-CADHERIN expression was analyzed

in EGFP negative (non-transfected cells) or EGFP positive

(transfected cells) fractions by qRT-PCR. Consistent with above

results, N-CADHERIN expression was undetectable in both EGFP-

negative and positive fractions following LNCaP transfection with

pEGFP-ARWT. However, upon transfection with pEGFP-

ARQ640X, N-CADHERIN expression was increased in EGFP

positive cells overexpressing the constitutively active AR, but not

in the EGFP negative fraction (Figures 2A–B). These results were

further confirmed by immunofluorescence analysis showing an N-

cadherin labeling exclusively in EGFP positive cells expressing a

constitutively active AR variant (Figure 2C).

Taken together, these data strongly suggest that constitutively

active AR variants upregulate N-cadherin expression in PCa cells.

Androgens negatively regulate N-cadherin expression
induced by constitutively active androgen receptor
variants
A recent study reported that constitutively active AR variants

might require a full-length AR (AR-FL) to activate endogenous

target genes. To explore the effect of the endogenous AR-FL

present in LNCaP cells on the ability of constitutively active AR

variants to induce N-cadherin expression, LNCaP cells overex-

pressing AR-WT or a constitutively androgen variant were

incubated in the presence of 100 nM DHT or vehicle, and N-

cadherin expression was analyzed by qRT-PCR. In accordance

with our previous results, no N-cadherin expression was observed

in cells overexpressing AR-WT. Interestingly, a 1.4-fold decrease

in N-cadherin expression level was observed when cells overex-

pressing AR Q640X or AR-V7 were cultured in the presence of

100 nM DHT compared to vehicle (Figure 3A). In addition, this

androgen-mediated N-cadherin repression was dose-dependent

(Figure 3B). These results suggest that constitutively active

androgen receptor variants do not require AR-FL to up-regulate

N-cadherin expression. However, DHT-activated AR-FL seems to

antagonize effects of constitutively active androgen receptor

variants on N-cadherin expression (Figure 3C). To verify this

hypothesis, the novel anti-androgen MDV3100 was used to inhibit

DHT-activated AR-FL in transfected LNCaP cells. As expected, a

further significant increase of N-cadherin expression was observed

in LNCaP cells overexpressing AR variants in the presence of

Table 1. List of primers used in qRT-PCR experiments.

Genbank QuantiTect reference
Hybridization temperature
(uC) Amplicon length (bp) Amplified exons

b-ACTIN (ACTB) QT01680476 55/60 104 NA

E-CADHERIN (CDH1) QT00080143 55 84 5/6

N-CADHERIN (CDH2) QT00063196 60 102 14/15

PBGD (HMBS) QT00014462 55 107 7/8/9

TWIST1 QT00011956 55 127 1/2

SNAIL (SNAI1) QT00010010 60 131 2/3

VIMENTIN QT00095795 60 94 2/3

ZEB1 QT01888446 58 105 2/3/4

doi:10.1371/journal.pone.0063466.t001
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100 nM MDV3100 (Figure 3D). These results were also

confirmed in castration-resistant 22Rv1 cells, known to express

both AR-FL and constitutively active AR variants. A 2-fold

increase in N-cadherin mRNA level was observed when 22Rv1

cells were cultured for 4 days in the presence 100 nM and 1 mM
of the anti-androgen MDV3100 (Figure S2).

All together, these data suggest that DHT-activated AR-FL

could compete with constitutively active androgen receptor for

regulating N-cadherin expression.

Constitutively active androgen receptor variants are
associated with the expression of mesenchymal markers
It is widely known that in tumor cells, the expression of

mesenchymal markers is associated with a down-regulation of

epithelial markers. We hypothesized that the upregulation of N-

cadherin expression observed in the presence of constitutively

active AR variants is accompanied by a decreased expression of E-

cadherin. To test this hypothesis, we analyzed E-cadherin

expression in LNCaP transfected with ARQ640X, AR-V7 or

the wild type AR expression plasmid, or the empty plasmid as

control. E-CADHERIN mRNA levels in LNCaP cells upon

transfection with ARQ640X or AR-V7 expression plasmid did

not show any significant difference compared with controls

(Figure 4A). These results were further confirmed by Western

blot analysis (data not shown), suggesting that the expression of

constitutively active AR variants in PCa is associated with a

marked increase in N-cadherin expression, but is not correlated

with a down-regulation of E-cadherin.

We also investigated whether constitutively active AR expres-

sion in PCa cells is associated with other mesenchymal markers.

Expression levels of VIMENTIN and transcription factors

TWIST1, ZEB1 and SNAIL were determined by qRT-PCR at

day-9 after LNCaP cells transfection with ARQ640X or AR-V7

expression plasmid, the wild type AR plasmid or the empty vector

as controls (Figure 4B–E). VIMENTIN expression was increased by

a 2.5 and 1.5-fold in LNCaP cells overexpressing ARQ640X and

AR-V7 when compared with controls respectively (Figure 4B).

Although Twist1 is known to induce N-CADHERIN expression

in PCa, no significant difference in the mRNA levels of TWIST1

was observed (Figure 4C). However, constitutively active AR

variants led to a statistically significant increase of SNAIL and

ZEB1 mRNA levels (Figure 4D, E). ZEB1 upregulation was also

confirmed at the protein level (Figure 4F).

Discussion

The AR signaling is very important for proliferation and

survival of prostate cancer cells. The AR pathway remains

activated during the progression of PCa towards a castration-

Figure 1. N-cadherin expression is upregulated in the presence of constitutively active androgen receptor variants. A). N-cadherin
expression was assessed by qRT-PCR in LNCaP cells overexpressing the constitutively active AR Q640X or AR-V7, or the AR-WT and in cells transfected
with the empty plasmid (C3). Cells were grown in complete medium for 9 days after transfection. Parental LNCaP cells were used as control. y-Axis
represents the relative fold change compared with control (parental LNCaP cells). b-ACTIN was used as the endogenous normalization control.
Relative expression is presented as the mean6 SEM from three independent experiments. Each sample is compared one by one by two tail unpaired
t test. NS: Not significant * P,0.05, **P,0.01 and ***P,0.001. B). Western Blot showing AR expression in transfected and non transfected LNCaP cells.
C). Immunoblot analysis of N-cadherin expression in transfected LNCaP cells 4 and 9 days after transfection. D). Kinetic analysis of N-cadherin
expression by Western Blot in LNCaP cells overexpressing AR Q640X from 2 to 9 days after transfection. b-actin was used as loading control.
doi:10.1371/journal.pone.0063466.g001
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resistant disease and the emergence of constitutively active AR

variants lacking the ligand-binding domain is now considered as a

major event in CRPC. In spite of some studies suggest that

constitutively active AR variants have an impact on tumor

progression, their function remains so far unresolved.

Figure 2. N-cadherin upregulation was restricted to LNCaP cells expressing constitutively active androgen receptor variants. LNCaP
cells were transiently transfected with pEGFP-ARWT or pEGFP-ARQ640X plasmid and were sorted 4 days after. A). N-CADHERIN expression was
analyzed by qRT-PCR in EGFP positive (transfected) and EGFP negative (non-transfected) fractions. B). Androgen receptor (AR) level was analyzed by
Western Blot to verify the purity of each fraction after cell sorting. C). Immunofluorescence analysis of N-cadherin (red fluorescence) expression in
LNCaP cells transfected with EGFP-tagged (green fluorescence) AR-WT, AR Q640X or AR Q670X expression plasmid. Magnification: 620.
doi:10.1371/journal.pone.0063466.g002

Androgen Receptor and Mesenchymal Genes Expression
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In this study, we have shown that N-cadherin is upregulated in

LNCaP cells expressing constitutively active AR variants, but not

in LNCaP cells overexpressing a full-length AR. These data

suggest for the first time that constitutively active AR variants can

induce N-cadherin expression. This finding should be connected

to recent studies reporting a correlation between CRPC and N-

cadherin upregulation [22,23,24]. Consistent with these studies,

our data suggest that constitutively active AR variants signaling

could be a mechanism leading to N-cadherin expression in CRPC.

These findings again highlight the link between AR signaling

pathway and N-cadherin expression. Recent studies suggest that

AR negatively regulates N-cadherin expression [22,23]. Indeed,

N-cadherin upregulation is associated with a decreased expression

of AR in castration-resistant PCa xenografts [23]. Furthermore,

the upregulation of N-cadherin observed in the castration-resistant

LNCaP-19 cells can be reversed in the presence of androgens

[22,26,27]. In accordance with these data, we have shown that

androgens were associated with a decreased N-cadherin expres-

sion in our model overexpressing a constitutively active androgen

receptor variant. These results suggest that AR-FL and constitu-

tively active AR variants could act differently (Figure 3C). For

example, DHT-stimulated AR-FL might recruit co-repressors and,

in turn, represses N-CADHERIN expression. Besides, constitutively

active AR variants lacking of carboxy-terminal region might

behave differently and induce N-CADHERIN expression. Further-

more, AR-FL and constitutively active AR variants could compete

with each other for regulating N-cadherin expression. Consistent

with this hypothesis, N-CADHERIN gene contains a cluster of

androgen response elements (ARE) repeats in intron 1 [28].

However, constitutively active AR variants could also indirectly

control N-CADHERIN expression. For example, in prostate

cancer, N-CADHERIN expression was associated with a nuclear

translocation of Twist1 [29]. Although our data showed no

significant difference in TWIST1 mRNA levels, constitutively

active AR variants might enhance nuclear translocation of Twist1,

which could in turn induce N-CADHERIN expression after binding

to the E-box within the first intron of N-CADHERIN.

Figure 3. Androgens abrogate N-cadherin upregulation induced by constitutively active androgen receptor variants in LNCaP cells.
A). LNCaP cells were grown in RPMI-1640 containing 5% DCC-FCS and 100 nM of DHT or vehicle (EtOH). N-cadherin expression was analyzed by qRT-
PCR in LNCaP cells 4 days after transfection with AR-WT or the constitutively active AR Q640X or AR-V7 expression plasmid. B). N-cadherin expression
level in LNCaP cells was investigated by qRT-PCR 4 days after transfection with AR Q640X expression plasmid in the presence of different DHT
concentrations (10 nM, 25 nM and 50 nM) or vehicle. C). N-cadherin expression induced by constitutively active AR variants (AR variants) was
negatively regulated when LNCaP cells were grown in the presence of DHT. We hypothesize that endogenous AR-FL present in LNCaP cells and AR
variants could act differently. In this model, DHT-stimulated endogenous AR-FL represses N-cadherin expression whereas AR variants upregulate its
expression. D). LNCaP cells overexpressing AR-WT, AR Q640X and AR-V7 were cultured in DCC-FCS medium supplemented with 100 nM of DHT and
in the presence of 100 nM of MDV3100 or DMSO as control during 3 days. N-cadherin expression was analyzed by qRT-PCR 4 days after transfection,
and was normalized to b-ACTIN. The DDCt method was used to calculate relative expression and each value was reported as the mean of DDCt 6
SEM. NS: Not Significant * P,0.05, **P,0.01 and ***P,0.001.
doi:10.1371/journal.pone.0063466.g003
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These hypotheses deserve to be studied in further studies to

understand how constitutively active AR variants regulate N-

CADHERIN expression.

In this study, we have also shown that constitutively active AR

variants were associated with an increased expression of mesen-

chymal markers as VIMENTIN, SNAIL and ZEB1. These results

are consistent with a recent study, which showed an increase of

mesenchymal markers in tumors from patients treated with

androgen deprivation therapy [24]. Taken together, our findings

suggest that constitutively active AR variants could be associated

with EMT process. However, these markers are not consistently

associated with EMT. For example, SNAIL confers resistance to

apoptosis to tumor cells exposed to ionizing radiations and

genotoxic drugs, and enables breast cells to become tumor-

initiating cells [30,31,32,33,34].

The expression of mesenchymal markers reported here in the

presence of constitutively active AR variants was not associated

with a downregulation of E-cadherin in our model. The inverse

correlation between N-cadherin upregulation and E-cadherin

downregulation is still debated. Indeed, McKeithen and col-

leagues, and more recently Tiwari and colleagues report a co-

expression of both E- and N-cadherins in tumor cells [35,36]. In

these studies E-cadherin protein displays a different subcellular

localization. Moreover, the reported N-cadherin upregulation

after castration in LNCaP-19 cells is not accompanied by a

decrease of E-cadherin expression in in vitro cell culture [22].

Nevertheless, the expected E-cadherin downregulation in this

model is only observed in orthotopic tumors after castration, but

not in subcutaneous LNCaP-19 tumors, suggesting an important

role of the surrounding prostatic environment for E-cadherin

downregulation [22]. Besides, an inverse correlation between

castration-induced N-cadherin expression and E-cadherin down-

regulation has been documented in LAPC9 and LuCaP35

subcutaneous xenografts models [23,24]. However, this cadherins

switch has not been reported in two studies focusing on human

clinical prostate tumors, from patients with or without androgen

deprivation therapy [22,24].

Further studies are warranted to understand functional conse-

quences of N-cadherin and other mesenchymal markers upregula-

tion in the presence of constitutively active AR variants. N-

cadherin expression is widely associated with tumor progression

notably owing to its role in migration and invasion. Indeed, N-

cadherin favors the migration of cancer cells via cytoskeleton

reorganization and lamellipodia formation [14]. It also promotes

the migration of cancer cells establishing homophilic interactions

with neighboring tissues such as the stromal tissue or endothelium

[37,38]. N-cadherin expression is also associated with survival in

prostate cancer cells and melanoma cells. Indeed, N-cadherin

expression can activate the phosphatidylinositol 3-kinase (PI3K)/

AKT pathway to inactivate pro-apoptotic proteins and to induce

an increase of anti-apoptotic proteins as Bcl-2 [39,40]. Finally, a

recent study showed that N-cadherin could mediate angiogenesis

by inducing monocyte chemoattractant protein-1 (MCP-1)

expression via the PI3K/AKT pathway [41].

There is presently great interest in the mode of action of

constitutively active AR variants in CRPC. In this study, we have

shown for the first time that constitutively active AR variants

induce N-cadherin expression and other mesenchymal markers in

PCa. These findings support the hypothesis that these constitu-

tively active AR variants could contribute to systemic dissemina-

tion of PCa cells, and reinforce the importance to target these AR

variants in PCa.

Figure 4. Upregulation of mesenchymal markers by constitutively active androgen variants in prostate cancer cells. LNCaP cells were
transfected with the ARWT, ARQ640X or AR-V7 expression plasmid or the empty plasmid (C3). A). E-CADHERIN, B). VIMENTIN, C). TWIST1, D). SNAIL and
E). ZEB1 expression levels were analyzed by qRT-PCR at day-9 after transfection. For each sample, expression levels were normalized to PBGD or b-
ACTIN and reported as relative value to LNCaP parental cell line. Values are presented as the mean of DDCt 6 SEM. NS: Not Significant * P,0.05,
**P,0.01 and ***P,0.001. F). Western Blot showing evolution of ZEB1 expression in LNCaP cells overexpressing constitutively active AR variants.
Immunoblot from 100 mg of total protein extracts. b-actin was used as loading control.
doi:10.1371/journal.pone.0063466.g004
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Supporting Information

Figure S1 N-cadherin expression was upregulated in
C4-2B cells in the presence of constitutively active AR
variants. N-cadherin expression was assessed by qRT-PCR in

C4-2B cells overexpressing AR Q640X variant or transfected with

empty plasmid (C3) 4 days after transfection. Parental C4-2B cells

were used as control. N-CADHERIN expression was normalized to

b-ACTIN and calculated using the DDCt method. Results are

presented as the mean of DDCt 6 SEM from three independent

experiments. NS: Not Significant * P,0.05, **P,0.01 and

***P,0.001.

(TIF)

Figure S2 DHT activated AR-FL repressed N-cadherin
expression induced by constitutively active AR variants.
22Rv1 cells were cultured in complete medium supplemented with

100 nM and 1 mM of MDV3100 or DMSO. N-cadherin

expression was analyzed by qRT-PCR four days after and was

normalized to PBGD. The fold change was expressed as relative

values to parental cell line 22Rv1 under normal condition. NS: Not

Significant * P,0.05, **P,0.01 and ***P,0.001.

(TIF)
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