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Abstract

Background: Facioscapulohumeral muscular dystrophy (FSHD) is linked to deletions in 4q35 within the D4Z4 repeat array in
which we identified the double homeobox 4 (DUX4) gene. We found stable DUX4 mRNAs only derived from the most distal
D4Z4 unit and unexpectedly extended to the flanking pLAM region that provided an intron and a polyadenylation signal.
DUX4 encodes a transcription factor expressed in FSHD but not control primary myoblasts or muscle biopsies. The DUX4
protein initiates a large transcription deregulation cascade leading to muscle atrophy and oxidative stress, which are FSHD
key features.

Methodology/Principal Findings: We now show that transfection of myoblasts with a DUX4 expression vector leads to
atrophic myotube formation associated with the induction of E3 ubiquitin ligases (MuRF1 and Atrogin1/MAFbx) typical of
muscle atrophy. DUX4 induces expression of downstream targets deregulated in FSHD such as mu-crystallin and TP53. We
developed specific siRNAs and antisense oligonucleotides (AOs) targeting the DUX4 mRNA. Addition of these antisense
agents to primary FSHD myoblast cultures suppressed DUX4 protein expression and affected expression of the above-
mentioned markers.

Conclusions/Significance: These results constitute a proof of concept for the development of therapeutic approaches for
FSHD targeting DUX4 expression.
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Introduction

Facioscapulohumeral muscular dystrophy (FSHD) is an auto-

somal dominant disorder affecting 1/17,000 births. It is char-

acterised by muscle weakness and atrophy progressing from the

face, the upper-arms and shoulder girdle to the lower limbs.

FSHD1A (OMIM #158900) is genetically linked to contractions

of the D4Z4 repeat array in 4q35. Non-affected individuals

typically present between 11–100 copies of the 3.3-kb D4Z4

element in this locus while patients with FSHD only have 1–10

copies left [1–3]. A similar DNA hypomethylation associated with

an open chromatin structure is observed both on contracted D4Z4

arrays in FSHD1A and on normal-size arrays in FSHD1B

(OMIM #158901) [4,5].

The D4Z4 unit contains a large open reading frame (ORF) with

a double homeobox sequence [2] in which we mapped a

functional promoter thus defining the DUX4 gene [6,7]. We could

detect stable mRNAs comprising the full DUX4 ORF in FSHD

but not control muscle cells. These DUX4 mRNAs derived from

the most distal unit, and unexpectedly extended within the

flanking pLAM region that provided an intron and a polyadenyl-

ation signal (Fig. 1A, [8]). Investigations of genetic polymorphisms

in a large cohort of patients and non-affected individuals

confirmed this polyadenylation signal is needed to develop FSHD

resulting in the production of stable DUX4 mRNAs [9]. Other

researchers could confirm the presence of DUX4 mRNAs in

FSHD muscle cells [9–11]. They further detected very low

amounts of a short DUX4 mRNA splice variant (s-DUX4) that

encodes a non-toxic protein lacking the carboxyl-terminal domain

in control muscles. A full lenght DUX4 mRNA (fl-DUX4) was also

characterized in induced pluripotent stem (iPS) cells and human

testis, where the gene contains 4 additional exons and a more

distal polyadenylation signal. Differentiation of iPS cells to

embryoid bodies caused repression of this mRNA in control but

not FSHD IPS cells [11].

The 52-kDa DUX4 protein is a potent transcription factor that

may target numerous genes and its overexpression is toxic in cell

cultures [12–14]. It directly activates the PITX1 gene, which is

specifically induced 10–15 fold in FSHD muscles as compared to

11 other neuromuscular disorders [8]. PITX1 is another

homeodomain transcription factor [15]; its overexpression in

skeletal muscles of a transgenic mouse caused reversible muscle
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atrophy [16]. DUX4 overexpression in mouse C2C12 cells

recapitulated key features of the FSHD molecular phenotype,

including repression of MyoD leading to differentiation defects,

and repression of glutathione oxydo-reduction pathway compo-

nents increasing sensitivity to oxidative stress [17]. Finally, DUX4

overexpression in mouse muscles in vivo caused a TP53-dependent

myopathy that required the DUX4 DNA binding domain [18].

TP53 is a direct PITX1 target gene and thus belongs to the DUX4

transcription deregulation cascade [19]. In summary, these studies

confirmed the major role played by DUX4 in the pathological

mechanism of FSHD.

In addition, we have characterized the DUX4c (for centromeric)

gene mapping 42 kb proximal of the D4Z4 array. The encoded

47-kDa protein is identical to DUX4 except for the carboxyl-

terminal region. DUX4c is expressed in control muscles, it is

induced in muscles of patients affected with Duchenne muscular

dystrophy and at similar or higher levels in FSHD muscles.

DUX4c induced human myoblast proliferation, suggesting a role

in muscle regeneration that might contribute to the FSHD

pathology [20]. Additional genes, mapped in 4q35, were proposed

to be activated in FSHD (ANT1, FRG1, FRG2) but several groups

were unable to confirm these observations (reviewed in [3,21]).

Transgenic mice overexpressing one of these genes (FRG1)

exhibited a form of muscular dystrophy [22].

In the present study, we identify FSHD markers associated with

muscle atrophy that are induced by DUX4 expression and

inhibited by its suppression either with short interfering RNAs

(siRNAs) or antisense oligonucleotides (AOs). We present data

establishing proof of concept in myoblast cultures that DUX4

inhibition can reverse the FSHD phenotype.

Results

DUX4 expression induces an atrophic myotube
phenotype

In order to investigate whether DUX4 might interfere with the

differentiation to myotubes, we transfected immortalized human

control myoblasts with pCIneo vectors expressing DUX4 (Fig. S1A)

or the shorter DUX1 protein, a non-4q35 homologue limited to

the homeodomains [8]. We induced differentiation a few hours

after transfection by a change in culture medium. In these

conditions DUX4 doesn’t exert its toxicity, and its expression can

be observed in myotubes for several days [17, Tassin et al, 2011 in

revision]. We detected troponin T, a cytoplasmic differentiation

Figure 1. DUX4 mRNA variants and positions of the siRNA and AOs target sequences. (A) (Top) Schematic representation of the last D4Z4
unit, the adjacent pLAM region and the distal exons. The DUX4 ORF is contained in the first exon. The 59UTR and a large part of the ORF identical to
the DUX4c sequence is indicated. Two poly-A signals were reported [8,11]. The pLAM region is only present on the 4qA allele and on the homologous
chromosome 10 that has lost the poly-A signal. (Bottom) DUX4 mRNA variants. All mRNAs reported to date in FSHD myoblasts containing the full ORF
(fl-DUX4) end in exon 3. (*) fl-DUX4 was also detected in control and FSHD fibroblast-derived iPS, in FSHD fibroblasts and in FSHD embryoid bodies.
The shorter s-DUX4 was detected in muscle and other somatic tissues [11]. These mRNAs derived exclusively from chromosome 4. The fl-DUX4 was
also detected in germ line tissue, some ending in exon 3 (4qA) and others in exon 7 derived from chromosome 4qA or the homologous 10qA.
(B) Positions of the siRNA target sequences. (C) Positions of the AO target sequences.
doi:10.1371/journal.pone.0026820.g001
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marker, by immunofluorescence 8 days after transfection. Most

myotubes expressing DUX4 appeared much thinner with very

limited amount of cytoplasm (Fig. 2A, right panels) than those

expressing DUX1 (86 versus 8% of atrophic myotubes, p,0.001,

Fig. 2A, left panels). This morphology was very similar to the

previously described phenotype of atrophic FSHD myotubes [23].

Two muscle specific E3 ubiquitin ligases, Muscle ring finger 1

(MuRF1) and Atrogin1 (also named MAFbx), are upregulated

prior to the onset of atrophy in multiple models of muscle wasting

[24,25]. Both proteins were induced in FSHD as compared to

healthy control myotubes and detected by Western blot (Fig. 2B
and 2D, right panel) and by immunofluorescence (Fig. 2C, upper

panels). Both Atrogin1 and MuRF1 expression were induced in

myotubes derived from control myoblasts transfected with pCIneo-

DUX4 as compared to the insertless pCIneo vector (Fig. 2B, lanes 1

and 3 Fig. 2D, left panel). MuRF1 co-localised with DUX4 in the

nuclei of DUX4-expressing myotubes as detected by immunoflu-

orescence (Fig. 2C, lower panel). These experiments show that

DUX4 induces the expression of genes involved in muscle

atrophy. The characteristic morphological changes induced by

DUX4 expression in myotubes were thus considered as markers

that would be useful in assessing inhibitory strategies against this

protein.

FSHD markers induced by DUX4 expression
We then analyzed the expression of different proteins known

either to be induced in FSHD such as mu-crystallin (CRYM [26]),

or to be induced by DUX4 such as TP53 [18]. A larger amount of

these two proteins was observed upon immunodetection with

specific antibodies on a Western blot prepared with total extracts of

FSHD primary myoblasts as compared to control myoblasts (both

cell types were transfected with the insert-less pCIneo vector; Fig. 3,

lanes 1–2). In addition, these proteins were induced in control

myoblasts upon transfection with the pCIneo-DUX4 expression

vector (Fig. 3, lane 3). DUX4 induced CRYM by direct promoter

activation as shown by co-transfection with the DUX4 expression

vector and a luciferase reporter gene fused to the CRYM promoter

(Fig. S1B). The TP53 protein was similarly induced when

Figure 2. DUX4 overexpression induces muscle fiber atrophy and MuRF1 and Atrogin1 expressions. (A) Immortalized control myoblasts
were transfected with pCIneo-DUX1 (negative control) or pCIneo-DUX4 expression vectors. Differentiation was induced 48 hours after transfection and
8 days later cells were fixed in 4% PAF and incubated with troponin T (myotube differentiation marker) antibody and a secondary antibody coupled
to Alexa Fluor (green) (left). Scale bar: 15 mm. Means and SD of the ratio of atrophic versus total myotubes plotted (right, ***p,0.001).
(B–C) Immortalised control myoblasts transfected with an expression vector for DUX4, and FSHD myoblasts were switched to differentiation medium.
After 19 days a Western blot (B) and an immunofluorescence (C) were performed with an antibody against Atrogin1 and MuRF1, respectively. Actin
was used as the loading control. Scale bar: 15 mm. (D) Immortalised control myoblasts transfected with the indicated expression vectors and FSHD
myoblasts were switched to differentiation medium. After 15 days, a Western blot was performed with an antibody against MuRF1, appropriate
secondary antibodies coupled to HRP and the Lumilight kit (Roche). 9A12 MAb staining confirmed DUX4 expression. The antibodies were then
stripped, and the same membrane revealed with an anti-actin antibody to provide a loading control. A densitometry of the immunoreactive bands
was performed. Data are normalized to actin levels in each sample.
doi:10.1371/journal.pone.0026820.g002
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myoblasts were transfected with a PITX1 expression vector (Fig.
S2A) as previously shown in another cell type (MCF7 cells, [19]),

indicating that TP53 was not directly induced by DUX4 but by

activation of the PITX1 gene.

In aggregate, these data suggested that Atrogin1, MuRF1,

CRYM and TP53 could be considered as FSHD markers induced

by DUX4 expression.

Development of RNA interference against DUX4
We selected 3 DUX4 mRNA sequences for siRNA targeting

(Custom siRNA, Ambion) in the region most divergent from the

highly similar DUX4c mRNA i.e. the 39 untranslated region

(39UTR) transcribed from pLAM (Fig. 1B). We first transfected

TE671 cells with these DUX4-siRNAs or a negative control siRNA

(nc-siRNA), and then again 4 hours later with the pCIneo-DUX4

expression vector that contains the full DUX4 ORF and the

flanking pLAM region (Fig. S1A). siRNA transfection conditions are

detailed in Fig. S3 and Table 1. Cell extracts were prepared 1, 2 or

3 days after the second transfection and the DUX4 protein was

immunodetected on Western blots (Fig. S4A and S4B). The

DUX4- but not the nc-siRNAs strongly decreased DUX4 protein

expression at 48 hours (Fig. S4B) and totally suppressed it at

72 hours (Fig. S4A and S4B). We selected siRNA3 for further

studies as it mapped in the most DUX4-specific region. Because the

DUX4 and DUX4c mRNAs are highly similar, it was necessary to

evaluate siRNA specificity. TE671 cells were transfected with a

siRNA directed against the DUX4 or DUX4c mRNA followed by

transfection with the pCIneo-DUX4 or -DUX4c expression vector.

The siRNA specificity was shown by the disappearance, in Western

blot, of the immunodetected bands corresponding to either the

DUX4 or DUX4c protein following the addition of their respective

siRNA but not the siRNA of their homologue (Fig. S4C).

RNA interference against DUX4 prevents development of
the atrophic myotube phenotype

We then investigated whether the DUX4-siRNA could prevent

formation of atrophic myotubes. We transfected immortalised

control myoblasts with both the pCIneo-DUX4 expression vector

and the DUX4-siRNA as above, induced differentiation and

examined the myotube morphology 8 days later. Immunofluores-

cent staining for troponin T (green) demonstrated that DUX4-

expressing myotubes treated with the nc-siRNA appeared much

Figure 3. DUX4 protein overexpression induces different FSHD
markers. 24 hours after seeding FSHD and control primary myoblasts
were transfected with the indicated expression vectors. Total protein
extracts were prepared 48 hours after transfection, 30 mg were
separated by electrophoresis (12% PAGE-SDS), transferred to a Western
blot and immunodetected with the indicated primary antibodies,
appropriate secondary antibodies coupled to HRP and the Lumilight kit
(Roche). Actin was stained by Ponceau red on the same membrane
before immunodetection and was used as the loading control. A
densitometry of the immunoreactive bands was performed. Data are
normalized to actin levels in each sample.
doi:10.1371/journal.pone.0026820.g003

Table 1. Transfection conditions.

Cell lines Transfection reagents Transfection efficiency
Differentiation
induction Figures

Human Immortalized
Myoblasts

NanoJuice (Novagen):
expression vectors

80% at 48 hours 48 hours after
transfection

S7A, B

Human Primary Myoblasts Fugene HD (Roche):
expression vectors
and AOs

80% at 48 hours 4 hours after
transfection

S7C, D

siPORTNeoFX (Ambion):
siRNA

DUX4 suppression
at 72 hours

4 hours after
transfection

5A

TE671 (Human Rhabdomyosarcoma
Alveolar cells)

Fugene 6 (Roche):
expression vectors

80–90% at 24 hours S4B

siPORTNeoFX (Ambion):
siRNA

DUX4 suppression
at 72 hours

S4B

C2C12
(Mouse myoblasts)

Lipofectamin 2000 (Invitrogen):
expression vectors

80–90% and
DUX4 suppression
at 24 hours

S5

doi:10.1371/journal.pone.0026820.t001
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thinner than those treated with the DUX4-siRNA (82 versus 9%

of atrophic myotubes, p,0.001, Fig. 4A, right panels). Immuno-

fluorescent staining for MuRF1 (red), an atrophy marker that

colocalized with DUX4 (green) in nuclei was also decreased in

control myotubes transfected with pCIneo-DUX4 and the DUX4-

siRNA (Fig. 4B, lower panels) as compared to the use of a nc-

siRNA (middle panels).

RNA interference against endogenous DUX4 in FSHD
primary myotubes

We determined the optimal transfection conditions of human

primary myoblasts with the siRNA against GAPDH as above

(Fig. S3B, Table 1). In these conditions, we transfected FSHD

primary myoblasts with 10 nM DUX4-siRNA and induced

differentiation 4 hours later, since the endogenous DUX4 protein

is more easily detectable in myotubes than in myoblasts (Tassin

et al, 2011 in revision). Three days later, nuclear extracts were

analysed by Western blot: a significant decrease of the

immunodetected DUX4 protein amount was observed (Fig. 5A,

upper panel) as compared to cells treated with the nc-siRNA. We

also investigated Atrogin1 expression (Fig. 5A): a band was

immunodetected in nuclear extracts of FSHD myotubes treated

with the nc-siRNA and disappeared upon treatment with DUX4-

siRNA. This was not caused by a general decrease in nuclear

protein expression since the amounts of TBP (TATA binding

protein) were unchanged (Fig. 5A, lower panel). A reverse

transcription (RT) and amplification by PCR with primers

previously shown to be specific of the DUX4 mRNA 39UTR

[8] were carried out on myotube total RNA. The expected

550 bp DNA fragment was detected in FSHD myotubes treated

with the nc-siRNA and at a 80% reduced intensity in cells treated

with the DUX4-siRNA (Fig. 5B). This amplicon was observed in

the positive control i.e. C2C12 cells transfected with the pGEM42

vector containing two D4Z4 units [7] but not in primary

myoblasts from a healthy donor, or upon omission of reverse

transcriptase. Products were cloned and sequenced to confirm

DUX4 mRNA amplification (data not shown). The RT-PCR

product of GAPDH mRNA amplification was used as an internal

control.

RNA interference against endogenous DUX4 suppresses
expression of FSHD markers

To test the efficacy of the DUX4-siRNA, we then investigated

the expression of two markers that are induced in FSHD as well

Figure 4. RNA interference against DUX4 reverts the atrophic myotube phenotype and decreases MuRF1 expression. (A) Control
immortalised myoblasts were transfected with a negative control siRNA (nc-siRNA) or DUX4-siRNA (10 nM) using reverse transfection and transfected
again 4 hours later with the pCIneo or pCIneo-DUX4 (DUX4) expression vector. The 3rd day after pCIneo vector transfection, cell differentiation was
induced. Eight days later cells were fixed in 4% PAF and incubated with troponin T antibody and a secondary antibody coupled to Alexa Fluor (green).
The nuclei were labeled with DAPI. Scale bar: 15 mm. Means and SD of the ratio of atrophic versus total myotubes was performed and plotted (right,
***p,0.001). (B) Control immortalised myoblasts were transfected and differentiated as described above. Eight days later cells were fixed in 4% PAF
and incubated with troponin T (green) or MuRF1 (red) primary antibodies and appropriate secondary antibody (Alexa Fluor). The nuclei were labeled
with DAPI. Scale bar: 15 mm.
doi:10.1371/journal.pone.0026820.g004
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as following the transcription deregulation cascade initiated by

DUX4. We selected TP53 that is activated by PITX1, itself

activated by DUX4 (Fig. 3B and S2A; [8,18]). We used the

same experimental protocol as in Fig. 5A. A strong decrease in

the amount of TP53 was observed by immunostaining on a

Western blot prepared with lysates of cells treated with DUX4-

siRNA as compared to cells treated with the nc-siRNA

(Fig. 5C).

Development of splice switching antisense
oligonucleotides to downregulate DUX4

RNA-like antisense oligonucleotides (AOs) are being used in a

therapeutic approach for Duchenne muscular dystrophy. The

antisense oligomer induces removal of an exon flanking a frame-

shifting exonic deletion from the dystrophin gene transcript and

restores the reading frame, allowing synthesis of a semi-functional

dystrophin isoform [27]. Inversely when an exon is targeted for

removal from a normal dystrophin gene transcript, the reading-

frame may be disrupted and this resulted in a transient

phenocopy of gene inactivation [28]. We thus wanted to similarly

develop specific AOs interfering with DUX4 mRNA processing

and/or stability. We designed 29-O-methyl modified bases on a

phosphorothioate backbone complementary to regions in the

DUX4 gene sequence we had characterized (GenBank #
AF117653), and targeted acceptor splice sites of pLAM exons 2

and 3 involved in pre-mRNA splicing (Fig. 1C). The splice-

switching efficacy of these 25–30 mer AOs was first evaluated by

co-transfection of C2C12 mouse myoblasts, as previously

described for Duchenne AOs [29]. The cells were lysed 24 hours

after transfection with the pCIneo-DUX4 expression vector and

analysed by Western blot as above: no DUX4 protein was

immunodetected following the addition of the 600 nM AOs

Figure 5. Evaluation of DUX4-siRNA efficiency on endogenous DUX4 and FSHD marker expression in FSHD primary myoblasts.
(A) 105 cells were seeded in 35 mm culture dish and directly transfected with negative control siRNA (nc-siRNA, 30 nM) or DUX4-siRNA3 (10 nM)
using the reverse transfection method with 4 ml of siPORTNeoFX reagent. Differentiation was induced 4 hours after transfection, and cells were
harvested 72 hours later. A nuclear extract was prepared and 20 mg of nuclear proteins were separated in parallel by two electrophoresis (12% PAGE-
SDS), and transferred onto a nitrocellulose membrane. The proteins transfer was confirmed by Ponceau red staining. After rinsing the membranes
were incubated either with 9A12 MAb or a polyclonal antibody against Atrogin1 (ECM Biosciences) followed by secondary antibodies coupled to
horseradish peroxidase and revealed with the Femto Super Signal kit (Pierce). The antibodies were then stripped, and the same membranes revealed
with an anti-TBP MAb (nuclear loading control). (B) Primary FSHD and control myoblasts transfected with the DUX4-siRNA (10 nM) or the negative
control siRNA (nc-siRNA, 30 nM) were differentiated for 3 days. Total RNA was extracted. Reverse transcription was performed on 500 ng of DNase-
treated total RNA with the 39adaptator of the RLM-RACE kit (Ambion). 5 ml of the resulting cDNA were amplified by nested PCR (for details, see
methods). The RT-PCR products were analysed by electrophoresis on an 1% agarose gel. A densitometry of the bands was performed for
quantification. Data are normalized to GAPDH levels in each sample. pGEM42: expression vector containing 2 D4Z4 units (7); RT (+): with reverse
transcriptase; (2): without reverse transcriptase. H2O: RT-PCR was performed with H2O. GAPDH: internal control. (C) Immunodetection of either DUX4
or TP53 with specific primary antibodies and appropriate secondary antibodies as described in the legend to Fig. 3 on two Western blots prepared
with nuclear extracts of myotubes as described in Fig. 5A. A densitometry of the immunoreactive bands was performed. Data are normalized to TBP
levels in each sample.
doi:10.1371/journal.pone.0026820.g005
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directed against the DUX4 pre-mRNA (data not shown). In

contrast DUX4 was clearly expressed in cells treated with AO

mGMCSF3A(25+20), an unrelated negative control AO (nc-AO)

targeting the murine GMCSF pre-mRNA or in the absence of

AO (data not shown). However, a specificity problem was

observed: when cells were co-transfected with the pCIneo-DUX4c

expression vector and AOs directed against DUX4, expression of

the homologous DUX4c protein was also decreased (data not

shown). The high AO concentration used (600 nM) in these

experiments most probably explain this result, as we have

previously observed mismatched AOs can induce some exon

skipping when applied at high concentrations [30].

Determination of specific concentrations for AOs against
DUX4

We then defined the minimal AO concentrations allowing

DUX4 inhibition without affecting DUX4c protein levels using

the same transient expression approach as above. We then

evaluated different AO concentrations in C2C12 cells co-

transfected with pCIneo-DUX4 and -DUX4c, so that both mRNAs

were present simultaneously in the same cells. In these

conditions, a 150 nM concentration appeared best since it

nearly suppressed the DUX4 protein but only had a minimal

influence on DUX4c (data not shown). We tested several other

AOs directed against DUX4 at this concentration in co-

transfected C2C12 cells. In these conditions, AOs

pLAM3A(22+23), pLAM3A(212+13) and pLAM3A(27+18)

could strongly reduce DUX4 protein levels as compared to the

nc-AO, while DUX4c was still expressed (Fig. S5A). The

optimal AO concentration was respectively 50 nM for

pLAM2A(27+18) (Fig. S5B) and 10 nM for pLAM3A(212+18)

and pLAM3A(217+13) (Fig. S5C).

Antisense oligonucleotides suppress endogenous DUX4
expression in FSHD primary myotubes

To test the efficacy of AOs pLAM2A(27+18) and

pLAM3A(212+13) on endogenous DUX4 expression, we transfect-

ed primary FSHD myoblasts with the optimal concentrations

defined above. Differentiation was induced 4 hours after transfection

and three days later myotubes were lysed for either protein analysis

or total RNA extraction. The DUX4 protein was immunodetected

on Western blot in lysates of cells treated with the nc-AO but not

anymore in those treated with AOs pLAM2A(27+18) and

pLAM3A(212+13) (Fig. 6A). An RT-PCR was carried out on

myotube total RNA as described in Fig. 5B. The expected 550 bp

DNA fragment was detected in FSHD myotubes treated with nc-AO

and at a 30% and 50% reduced intensity in cells treated with AOs

pLAM2A(27+18) (Fig. 7A) or pLAM3A(212+13) (Fig. 7B),

respectively. This amplicon was observed in the positive control

i.e. C2C12 cells transfected with the pGEM42 but not in the negative

controls i.e. either C2C12 cells transfected with the empty pGEM

vector, or primary myoblasts from a healthy donor, or upon

omission of reverse transcriptase. Products were cloned and

sequenced to confirm DUX4 mRNA amplification (data not shown).

The RT-PCR product of GAPDH mRNA amplification was used as

an internal control.

Antisense oligonucleotides against endogenous DUX4
suppress FSHD markers expression

To test the efficacy of AOs against DUX4, we investigated as

previously the expression of TP53. We used the same protein

extract as in Fig. 6A, and a decrease in the amount of TP53 was

observed on Western blot in lysates of cells treated with AOs

pLAM2A(27+18) and pLAM3A(212+13) as compared to cells

treated with the nc-AO (Fig. 6B). The lower decrease with the

first AO targeting the alternative by spliced intron I is in

concordance with the low reduction in DUX4 mRNA evidenced

by RT-PCR (Fig. 7). In contrast the AO targeting intron II that is

always spliced out leads to an undetectable TP53 level [8,10]. This

experiment confirmed that DUX4 suppression affected a gene

downstream in the gene deregulation cascade it induced.

Figure 6. Efficiency of AOs pLAM2A (27+18) and pLAM3A
(212+13) in suppressing endogenous DUX4 and TP53 expres-
sion in primary FSHD myotubes. (A) 105 primary FSHD myoblasts
were seeded in 35 mm culture dishes. The next day, cells were
transfected with either the negative control AO mGMCSF3A(25+20)
(nc-AO, 600 nM) or AOs pLAM2A (27+18) (50 nM) or pLAM3A (212+13)
(150 nM). Differentiation was induced 4 hours after transfection and
cells were harvested 72 hours later. Nuclear extracts were prepared and
20 mg of proteins were separated by electrophoresis (12% PAGE-SDS),
transferred to a Western blot and DUX4 was immunodetected with
9A12 MAb. The antibodies were then stripped, and the same
membrane used for immunodetection of TBP. The methodology for
the Western blot is shown in the legend to Fig. 5. TE-DUX4: positive
control, 5 mg protein extract of TE671 cells transfected with a pCIneo-
DUX4 expression vector (B) Immunodetection of TP53 with specific
primary antibody and appropriate secondary antibody as described in
the legend to Fig. 3 on Western blot prepared with protein extracts of
cells used in the above experiment (6A). A densitometry of the
immunoreactive bands was performed. Data are normalized to TBP
levels in each sample.
doi:10.1371/journal.pone.0026820.g006
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Discussion

DUX4 activates the muscle atrophy pathway in myoblast
cultures

In the present study, we have shown that DUX4 overexpression

in human primary myotubes induced Atrogin1 (MAFbx) and

MuRF1 activation, two genes specific of the muscle atrophy

pathway. They encode E3 ubiquitin ligases that bind to myofibril

proteins, cause their ubiquitination and subsequent degradation

via the proteasome [25]. Accordingly, myotubes expressing pCIneo-

DUX4 were much thinner than myotubes containing an insertless

control vector and similar to the phenotype of atrophied FSHD

myotubes described in [23]. This atrophic phenotype as well as

Atrogin1 and MuRF1 activation could be reverted by RNA

interference against DUX4, further demonstrating its role in the

FSHD pathological process. We thus propose Atrogin1 and

MuRF1 as FSHD markers, although it is not clear whether the

Atrogin1 and MuRF1 genes are direct DUX4 transcriptional

targets or are further down in the activation cascade. Indeed a

putative PITX1 binding site has been found in the Atrogin1/

MAFbx promoter, and it was shown that PITX1 overexpression in

skeletal muscles induced atrophy in a mouse transgenic model

[16].

Additional FSHD markers
We have shown that DUX4 overexpression could activate other

markers induced in FSHD such as mu-crystallin (CRYM) or

TP53. Reed et al. have reported that mu-crystallin (CRYM)

protein levels were up-regulated in FSHD deltoid muscles but not

in several other myopathies [26]. Klooster et al. could not confirm

this FSHD-specific up-regulation in quadriceps biopsies, and also

found high CRYM mRNA and protein expression levels in some

normal control samples [31]. This might reflect a muscle type

specificity in CRYM induction. CRYM is a thyroid-hormone

binding protein with a NADPH-dependent activity and so

influences differentiation and oxidative stress responses [32]

reported to be altered in FSHD [33–35]. A recent study has

shown that overexpression of p43, a T3 thyroid-hormone

mitochondrial receptor, could induce skeletal muscle atrophy with

an increase of oxidative stress. This muscle atrophy was caused by

induction of the ubiquitin proteasome pathway involving Atrogin1

and MuRF1 [36]. CRYM is also linked to retinal and inner ear

Figure 7. Efficiency of AOs pLAM2A (27+18) and pLAM3A (212+13) in suppressing endogenous DUX4. Primary FSHD myoblasts
transfected with AOs pLAM2A (27+18) (50 nM) (A) or pLAM3A (212+13) (150 nM) (B) or the negative control AO mGMCSF3A(25+20) (nc-AO,
600 nM) were differentiated for 3 days. Total RNA was extracted. RT-PCR was performed as described in Fig. 5B. The RT-PCR products were analysed
by electrophoresis on 1% agarose gel. A densitometry of the bands was performed for quantification. Data are normalized to GAPDH levels in each
sample. pGEM42: expression vector containing 2 D4Z4 units [7]; pGEM: empty expression vector; RT (+): with reverse transcriptase; (2): without
reverse transcriptase. H2O: RT-PCR was performed with H2O. GAPDH: internal control.
doi:10.1371/journal.pone.0026820.g007
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defects, common in FSHD, suggesting that its up-regulation might

play a role in the disease pathogenesis [37–40].

The tumor suppressor TP53 is a transcription factor that

negatively regulates cell proliferation and survival. Its expression is

maintained at a very low level during normal cell growth through

regulation by proteosomal degradation [41]. However, the TP53

protein is both stabilized and activated in response to DNA

damage, oncogene activation, hypoxia, nutrient deprivation and

other stress-related signals. TP53 is also an important regulator of

metabolic pathways. By transcriptional activation and other

means, TP53 can contribute a.o. to the regulation of glycolysis,

oxidative phosphorylation, fatty acid oxidation, oxidative stress

and antioxidant response, mitochondrial integrity, autophagy and

mTOR signaling [42]. A link between TP53 and the DUX4-

mediated myopathy was established by Wallace et al, as TP53

inhibition mitigated DUX4 toxicity in vitro, and muscles from TP53

null mice were resistant to DUX4-induced damage [18]. The

PITX1 transcription factor directly activated transcription of the

TP53 gene in MCF-7 mammary carcinoma cells resulting in cell-

cycle arrest and TP53-dependent apoptosis [19]. We showed here

that PITX1 could also induce TP53 in human primary myoblasts.

Since DUX4 directly activates transcription of the PITX1 gene in

myoblasts, TP53 can be considered an FSHD marker as part of

the gene deregulation cascade initiated by DUX4 (Fig. 8, [8]).

Therapeutic approaches
No therapeutic strategies targeting the FSHD molecular cause

has been described to-date. Because of the pivotal role caused by

DUX4 expression in the FSHD pathology [8,9,17,18] we wished

to suppress its expression using small double-stranded RNAs

(siRNAs) or antisense oligonucleotides (AOs) in the aim to develop

therapeutic strategies for FSHD. AOs can redirect gene expression

through RNA silencing [43], suppressing specific mRNA transla-

tion [44,45], altering mRNA stability [46], and/or redirecting pre-

mRNA splicing patterns to disrupt the mature mRNA [27,28]. We

have thus focused two distinct mechanisms of antisense gene

silencing or splice-switching technologies to block DUX4 protein

expression. As the DUX4 transcript is very similar to the

homologous DUX4c mRNA, we targeted the most divergent

region, located in the DUX4 39UTR. We could demonstrate the

specificity of these antisense agents since at lower concentrations

they could mediate DUX4 suppression without interfering with

the expression of the homologous DUX4c protein. As the

endogenous DUX4 protein is present at high level in very few

FSHD primary myotubes, it was appropriate to select the lower

antisense agent concentration showing inhibition in cells trans-

fected with the strong pCIneo-DUX4 expression vector. This

concentration appears sufficient to suppress the endogenous

DUX4 protein. Since the DUX4 protein expressed in FSHD is

Figure 8. Schematic representation of the transcriptional cascade induced by mis expression of DUX4 in FSHD. The DUX4 gene
mapped in the D4Z4 repeated element at 4q35 encodes a transcription factor that can directly interact with a set of target genes. Among those DUX4
inhibits the MYOD1 gene that encodes the transcription master switch of muscle differentiation thus causing inhibition of the MYOD1 target genes in
FSHD. DUX4 also inhibits the expression of genes involved in response to oxidative stress, and induces the mu-crystallin (CRYM) gene. Another direct
DUX4 target gene is PITX1 specifically induced in FSHD muscles as compared to 11 neuromuscular disorders; it induces E3 ubiquitin ligases (Atrogin1
and MuRF1) linked to atrophy in adult skeletal muscles and is involved in inflammation. The MuRF1 protein causes a.o. MYOD1 polyubiquination and
proteasome-mediated degradation. Among the PITX1 target genes is TP53 that has major roles in the control of DNA repair, cell cycling and
apoptosis as well as at multiple levels of cell metabolism. Legend: Activate: -----> Inhibit: -----.
doi:10.1371/journal.pone.0026820.g008
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only detectable at the myotube stage, it was necessary to establish

transient transfection procedures for cultured myoblasts in which

the siRNA or AO enters the cells with high efficiency and without

significant cytotoxicity. Under these conditions, differentiation can

be induced a few hours after transfection and myotubes harvested

3 days later for analysis.

We have identified several useful antisense agents targeting the

DUX4 pre-mRNA, preventing DUX4 protein expression and

affecting the FSHD markers defined above as part of the DUX4

deregulation cascade. Among these the amount of TP53 protein

appeared decreased in relation with the residual amounts of DUX4

mRNA detected by RT-PCR (80% with siRNA and 30% or 50%

with AOs pLAM2A(27+18) or pLAM3A(212+13), respectively).

These antisense agents target both DUX4 transcript variants: (i) the

full-length DUX4 mRNA (fl-DUX4) produced from the last D4Z4

unit in FSHD and extended to the flanking pLAM region that

provides a polyadenylation signal [8,11]; (ii) the shorter DUX4

mRNA (s-DUX4) that ends at the same pLAM polyadenylation site

and uses a cryptic splice donor site within the DUX4 ORF that

would limit a putative expressed protein to its double homeodo-

main [11]. The fl-DUX4 mRNA is only detected in FSHD muscle

cells and biopsies, whereas s-DUX4 is detected both in control and

some FSHD samples [11]. It is possible that any antisense

strategies affecting the s-DUX4 mRNA could be detrimental to

control cells, but s-DUX4 mRNA degradation does not seem to be

problematic since healthy homozygous 4qB/4qB individuals were

described who do not produce this transcript isoform [47].

Moreover the s-DUX4 mRNA was only mentioned in one report

[10] but not in the second [11] of the same group suggesting it is

not present in every individual.

In conclusion we have demonstrated a biological impact of

DUX4 inhibition leading to decreased atrophy markers and

phenotype observed in FSHD and resulting from DUX4

expression. These diverse strategies seem promising and could

contribute to future development of therapeutic approaches for

FSHD as well as confirming the important role of DUX4 in the

pathogenesis of this disease.

Materials and Methods

Ethics Statement
Primary human myoblasts were derived from muscle biopsies

performed according to current ethical and legislative rules of

France and written informed consent was obtained from all

subjects, as directed by the ethical committee of CHU de

Villeneuve (Montpellier, France) [23]. In addition, the uses of this

material have been approved by the ethics committee of the

University of Mons (ref # A901).

Myogenic cell cultures and DNA vector transfection
C2C12 (mouse myoblast) and TE671 (human rhabdomyosar-

coma) cells were grown in DMEM High Glucose (4.5 g/l) with L-

Glutamine and Sodium pyruvate (PAA Laboratories GmbH,

Pasching, Austria), 1% Antibiotic/antimycotic (PAA Laboratories

GmbH) and 10% Fetal Bovine Serum Gold (PAA Laboratories

GmbH) at 37uC under 5% CO2. For transfection, C2C12 cells

were seeded in 6-well plates (Greiner bio-one, Frickenhausen,

Germany) and transfected 24 hours later in Opti-MEM (Invitro-

gen, CA, USA) with Lipofectamin 2000 (ml) and DNA vector (mg)

at a 10:2 ratio according to the manufacturer’s instructions

(Invitrogen). TE671 cells were transfected in culture medium,

24 hours after seeding, with Fugene 6 (Roche Diagnostics GmbH,

Mannheim, Germany) and DNA vector at a 4:1 ratio according to

manufacturer.

Immortalized human myoblasts have been kindly provided by

Drs. G. Butler-Browne and V. Mouly (Institute of Myology, Paris).

These lines were derived from primary myoblasts of a patient with

FSHD (2 D4Z4 units; FSHcl17) and a non-affected control

(LHCN-M2); they were immortalized as described in [48],

Table 2. The endogenous DUX4 protein was detected by

Western blot on nuclear extracts of FSHD but not control

immortalized myotubes (Fig. S6A). Myoblasts were grown in

DMEM with 4.5 g/l Glucose and L-Glutamine (Lonza, Verviers,

Belgium) with 20% 199 medium (Invitrogen), Gentamicin (50 mg/

ml, Sigma-Aldrich, St Louis, USA), 20% Fetal Bovine Serum

(Invitrogen), HGF (1 mg/ml, Sigma-Aldrich) and dexamethazone

(20 mg/ml, Sigma-Aldrich) at 37uC under 5% CO2. Confluent

myoblast cultures were differentiated by replacing the medium to

DMEM/Gentamicin (50 mg/ml) without serum but supplemented

with insulin (10 mg/ml, Sigma-Aldrich) and apotransferrin

(100 mg/ml, Sigma-Aldrich) during 3–5 days. For transfection,

myoblasts were transfected in culture medium, 24 hours after

seeding, with NanoJuice (Novagen, WI, USA) and DNA vector at

1:1 ratio according to the manufacturer. The transfection

efficiency was at its maximum after 48 hours (Fig. S7A and S7B).

Primary human myoblasts from an unaffected control and a

patient with FSHD were isolated from muscle biopsies, purified

and established as described ([23], Table 2). The endogenous

DUX4 protein was detected by Western blot in nuclear extracts

of each FSHD but not control primary myotube cultures (Figs. 5,
6, S6B and S6C). They were grown in 35 mm collagen-coated

dishes (Ywaki, Japan) in DMEM with 4.5 g/l Glucose and L-

Glutamine (Lonza) with Gentamycin (50 mg/ml, Sigma-Aldrich),

10% Fetal Bovine Serum (Invitrogen), and 1% Ultroser G (Pall

BioSepra, Cergy-St-Christophe, France) at 37uC under 5% CO2.

Confluent myoblast cultures were differentiated by replacing the

medium to DMEM/Gentamicin (50 mg/ml) with 2% FBS during

3–5 days. Myoblasts were transfected in their culture medium,

24 hours after seeding, with Fugene HD (Roche Diagnostics) and

DNA at a 6:2 ratio according to the manufacturer (Fig. S7C
and S7D).

siRNA design and transfection
Short interfering (si)RNAs were designed using the Eurogentec

siRNA Design Service on the DUX4 39UTR and in vitro

synthesized with the siRNA Construction Kit (Applied Biosystems

Ambion, Austin, Texas (Fig. 1). For cell transfection, we used the

‘‘Silencer siRNA Starter Kit’’ (Applied Biosystems Ambion) with

the ‘‘siPORTNeoFX’’ transfection agent. This kit also contains

two control siRNAs: a GAPDH-siRNA and a negative control

siRNA (nc-siRNA), with no significant similarity with transcribed

sequences of human, mouse or rat. We used ‘‘reverse’’ transfection

in which the reagent is introduced into the culture dishes before

seeding the cells. We used 2 ml siPORTNeoFX and 10 nM siRNA

for TE671 transfection or 4 ml siPORTNeoFX and 10 nM siRNA

for primary myoblasts according to the manufacturer. All

transfections were done in duplicate wells and repeated 3 times

to ensure consistency.

AOs design, synthesis and transfection
We used 25–30 mer 29-O-methyl phosphorothioate oligonucle-

otides (AOs) (positions given in Fig. 1C) produced from the

sequence of the DUX4 gene we characterized (Genbank #
AY044051.4). They were synthesized on an Expedite 8909

Nucleic Acid Synthesizer using the 1 micromole Thioate protocol

at the ANRI (Australian Neuromuscular Research Institute,

Nedlands, WA, Australia) [27]. Splice switching AO nomenclature

is based upon that described by Mann et al. [49]. The first letters
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designate the region (here, pLAM region), the number indicates the

exon, the second letter specifies Acceptors or Donor splice sites,

with the +/2 and numbers representing the annealing coordinates

in the intronic and exonic domain respectively. For example,

pLAM3A(212+13) will target acceptor site for exon 3, last 12

bases of intron II and 13 bases of exon 3.

C2C12 cells were transfected 24 hours after seeding in Opti-

MEM medium (Invitrogen) using Lipofectamin 2000 and different

AO ratios as indicated in the figure legends. For each experiment,

transfections were repeated 3 times to confirm reproducibility.

Primary human myoblasts were transfected in their culture

medium, 24 hours after seeding, with Fugene HD (Roche

Diagnostics) and different AO ratios as indicated in the figure

legends. All transfections occurred in duplicate wells and were

repeated 3 times to ensure consistency.

Immunofluorescence staining
TE671 or human myoblasts were fixed in PBS containing 4%

paraformaldehyde (Sigma-Aldrich) and treated with PBS 0.5%

Triton X-100. After blocking in PBS 20% FBS, cells were incubated

with primary antibodies during 2 hours at room temperature. The

following antibodies and dilutions were used: mouse monoclonal

(MAb) anti-troponinT 1/100 (clone JLT-12, Sigma-Aldrich), rabbit

polyclonal anti-MuRF1 1/200 (ECM Biosciences, KY, USA) or the

9A12 MAb we developed against DUX4 1/50 [8]. After washing

and blocking, cells were incubated during 1 hour at room

temperature with Alexa Fluor secondary antibodies 1/100 (goat

anti-mouse 488 and anti-rabbit 555, Invitrogen).

Myotube morphology
Troponin T was stained by immunofluorescence as described

above. Myotubes with a width ,5 mm were considered «atrophic»

and counted from at least 10 random fields. The ratio of atrophic

versus total myotubes is expressed in percent as mean 6 SD. The

significance of the differences between experiments was evaluated

with Student’s t-test. ***p,0.001 was considered significant.

Immunodetection on Western blot
Cells were lysed in hypertonic buffer containing 50 mM Tris

pH7, 50 mM NaCl, 0.1% NP40, protease inhibitor cocktail

(Roche Diagnostics), and 1 mM DTT. For endogenous DUX4

detection, nuclear extracts were prepared with the NE-PER

Nuclear and Cytoplasmic Extraction Reagent kit (Thermo

Scientific, Rockford, IL, USA) according to the manufacturer.

Each cell lysate or nuclear extract was separated by electrophoresis

on a 12% polyacrylamide gel in the presence of SDS and

transferred to a nitrocellulose membrane (GE Healthcare Europe

GmbH, Diegem, Belgium). This Western blot was blocked 1 hour

at room temperature with 5% non fat dry milk diluted in

phosphate buffered saline (PBS). Membranes were then incubated

at 4uC overnight with primary antibodies in PBS 2% BSA. The

following antibodies and dilutions were used: 9A12 MAb 1/1000,

rabbit polyclonal anti-atrogin1 1/1000 (or anti-MAFbx, ECM

Biosciences), anti-GAPDH MAb 1/4000 (Applied Biosystems

Ambion), anti-CRYM MAb 1/1000 (or anti-mu-crystallin,

Abnova Gmbh, Heidelberg, Germany) and anti-TP53 MAb 1/

1000 (Abcam, Cambridge, UK). Membranes were washed in PBS

and incubated 1 hour at room temperature with secondary

antibodies coupled to horseradish peroxidase (HRP) 1/10000

(GE Healthcare). Proteins were detected on Amersham Hyperfilm

ECL (GE Healthcare) with the LiteAbLot (Euroclone, Victoria,

Australia), the Lumilight (Roche Diagnostics) or the Super Signal

West Femto Maximum Sensitivity Substrate kit (Thermo Scien-

tific). For standardization, the membranes were stripped and

immunostaining was performed with either rabbit polyclonal anti-

Table 2. Data of patients with FSHD and control individuals.

Code References Age Sex D4Z4 units Figures

FSHD1 Immortal myoblasts (FSHDcl17)
Institute of Myology, Paris

27 M 2 2, 4, S6A

Cont1 Immortal myoblasts (LHCN-M2)
Institute of Myology, Paris

41 M .10 2, 4, S6A

FSHD2 Primary myoblasts described in
Barro et al, 2008 (FSHD14)

25 M 4 3, S6B

FSHD3 Primary myoblasts described in
Barro et al, 2008 (FSHD8)

39 M 6 5A

FSHD4 Primary myoblasts described in
Barro et al, 2008 (FSHD7)

53 M 9 5C, S6C

FSHD5 Primary myoblasts described in
Barro et al, 2008

46 M 5 5B

FSHD6 Primary myoblasts described in
Barro et al, 2008 (FSHD5)

53 M 6 6, 7

FSHD7 Primary myoblasts described in
Barro et al, 2008 (FSHD10)

20 F 4 S6C

Cont2 Primary myoblasts described in
Barro et al, 2008 (ctl10)

21 M .10 3, 7

Cont3 Primary myoblasts described in
Barro et al, 2008 (ctl14)

43 M .10 5A

Cont4 Primary myoblasts described in
Barro et al, 2008 (ctl9)

24 F .10 5B, S6B

Cont5 Primary myoblasts described in
Barro et al, 2008 (ctl3)

41 M .10 S6C

doi:10.1371/journal.pone.0026820.t002
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actin serum 1/1000 (Sigma-Aldrich) or anti-TATA Binding

Protein MAb 1/2000 (Abcam) as indicated followed by HRP-

coupled secondary antibodies 1/10000 (GE Healthcare). A

densitometry of the immunoreactive bands was performed with

LabImage 1D Software (Kapelan Bio-Imaging). Data are

normalized to control loading levels in each sample.

RNA isolation and 39RACE
Total RNA was extracted with the NucleoSpin RNA II kit

(Macherey-Nagel GmbH, Düren, Germany) as described [8].

Reverse transcription was performed on 1 mg of DNase-treated

RNA with the 39adaptator of the RLM-RACE kit (Applied

Biosystems Ambion) and 200 units of SuperScript III reverse

transcriptase (Invitrogen) in a 20-ml final volume at 55uC as

described [8]. Five ml of the resulting cDNA were amplified by

nested PCR in a 50-ml final volume containing 1.25 units of

PrimeSTAR HS, 16GC Buffer (Takara-bio, Japan), and 15 pmol

of each primer. The specific outer primer for DUX4 amplification

was: 59-aggcgcaacctctcctagaaac-39 and the inner primer was: 59-

tggaagcacccctcagcgaggaa-39. The products were cloned and

sequenced to confirm DUX4 mRNA amplification. For GAPDH

cDNA amplification the following primers were used: 59-

gaaggtgaaggtcggagt-39 and 59-tgtaaaccatgtagttgaggtc-39.

Supporting Information

Figure S1 CRYM promoter activation by the pCIneo-
DUX4 expression vector. (A) Schematic representation of the

pCIneo-DUX4 expression vector. It contains the CMV promoter

and the full DUX4 ORF with the pLAM region. The DUX4 ORF

is represented in black with the two homeobox as in grey. The

positions of the different introns are indicated (dark grey boxes).

The pLAM region encompasses an intron (dark grey box) and the

poly-A signal (ATTAAA). (B) C2C12 cells were seeded in 6-well

plates and co-transfected 24 hours later by Lipofectamin 2000

(Invitrogen) with the CRYM promoter linked to the firefly

luciferase reporter gene, the internal control phRL-SV40 renilla

luciferase (Promega), and the pCIneo-DUX4 expression vector at

different concentrations (0, 5, 50 ng/ml). Cells were harvested

16 hours later and processed for enzymatic assays with the Dual

Luciferase Assay kit (Promega). Light emissions were recorded on

the GlowMax luminometer (Promega), and given in fold activation

of firefly versus renilla luciferase. Data are presented as mean6SD.

(TIF)

Figure S2 (A). PITX1 induce TP53 expression in human

myoblasts. Immortalized control myoblasts were transfected with

either the pCIneo–PITX1 expression vector or pCIneo as a control.

Cells were harvested 24 hours later and total extracts were

prepared. Ten mg of proteins were separated by electrophoresis

(10% PAGE-SDS) and transferred to a nitrocellulose membrane.

Immunodetectection was performed with an anti-TP53 antibody,

followed by secondary antibodies coupled to peroxydase (HRP),

and revealed with the Lumilight kit (Roche). The protein transfert

was confirmed by staining the membrane in Ponceau red that

provide a loading control (right panel). The antibodies were then

stripped, and the same membrane used for immunodetection with

the rabbit antiserum directed against PITX1 (upper pannel). A

densitometry of the immunoreactive bands was performed. Data

are normalized to actin levels in each sample. The production and

the characterisation of this antibody are described in Fig. S2B.

(B–C). Characterisation of the rabbit antiserum directed against

PITX1. (B) Immortalized control myoblasts were transfected with

the pSMD2-PITX1 expression vector. The cells were lysed

48 hours after transfection, and 40, 20 or 10 mg of protein extracts

were separated by electrophoresis (10% PAGE-SDS), and

transferred to a nitrocellulose membrane. Immunodetection was

performed with a rabbit antiserum directed against two PITX1

specific peptides (Eurogentec), followed by secondary antibodies

coupled to peroxydase (HRP), and revealed with the Lumilight kit

(Roche). The protein transfer was verified by staining the

membrane in Ponceau red that provided a loading control (left

panel). Specificity of the antibody against PITX1 was verified by

competition with the two immunogenic peptides (pep1, pep2) of

the indicated sequences. The PITX1 signal in transfected cells

decreased upon competition with a 10-fold excess of one of the two

immunogenic peptides and disappeared upon competition with

both (Right panel) (C) Immortalized control myoblasts were

transfected with the indicated vectors. After 48 hours, cells were

fixed with 4% PAF. PITX1 (red) was detected by immunofluo-

rescence with the PITX1 rabbit antiserum followed by appropriate

secondary antibodies coupled to Alexa Fluor (Invitrogen). The

rabbit pre-immune serum was used as a negative control.

(TIF)

Figure S3 Development of siRNA transfection conditions by

detection of GAPDH protein in TE671 cells (A) and FSHD

primary myoblasts (B). (A) We optimized the siRNA transfection

conditions with the siPORTNeoFX agent (Ambion) in TE671 cells

(human rhabdomyosarcoma cells) using a siRNA targeting

GAPDH and a negative control siRNA (nc-siRNA) (provided

with the siRNA starter kit, Ambion). The optimal transfection

conditions were obtained with the reverse method in which the

transfection reagent is introduced into the culture dish before

seeding cells. These cells were transfected with GAPDH-siRNA or

nc-siRNA and 3 parameters tested: volume of transfection reagent,

siRNA concentration and cell density. 72 hours after transfection,

20 mg of protein cell extracts were separated by electrophoresis

(12% PAGE-SDS) and transferred onto a nitrocellulose mem-

brane. The protein transfert was confirmed by staining the

membrane in Ponceau red. The membrane was then incubated

with anti-GAPDH MAb followed by a secondary antibody

coupled to peroxidase (HRP) and revealed with the LiteAbLot

kit (Euroclone).NT: non-transfected cells. (B) 105 cells were seeded

in 35 mm culture dish and reverse transfected with GAPDH-

siRNA or nc-siRNA (10 nM or 20 nM) and 4 ml of siPORT-

NeoFX reagent. Cells were harvested 72 hours later and 10 mg of

protein extracts were separated by electrophoresis (12% PAGE-

SDS) and transferred onto a nitrocellulose membrane. After

Ponceau red, staining and rinsing the membrane was incubated

with anti-GAPDH MAb followed by secondary antibodies coupled

to HRP and revealed with the Lumilight substrate (Roche).

(TIF)

Figure S4 Evaluation and specificity of siRNA targeting
DUX4. (A). TE671 cells were transfected with 10 nM DUX4-

siRNA (siRNA1, siRNA2 and siRNA3) or negative control siRNA

(nc-siRNA) using reverse transfection (Ambion) and 4 hours later

with the pCIneo-DUX4 vector (DUX4). Three days after transfec-

tion the cells were lysed and 20 mg of protein extracts were

separated by electrophoresis (12% PAGE-SDS), and transferred to

a nitrocellulose membrane. This Western blot was incubated with

9A12 MAb followed by a secondary antibody coupled to

peroxidase (HRP) and revealed with the LiteABlot kit (Euroclone).

NT: non-transfected cells. (B). TE671 cells were transfected with

10 nM DUX4-siRNA3 or nc-siRNA using reverse transfection

(Ambion) and 4 hours later with the pCIneo-DUX4 vector (DUX4).

The cells were lysed at 24, 48 or 72 hours after the second

transfection and 20 mg of protein extracts were analysed by

Western blot with 9A12 MAb as above (A). The antibodies were
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then stripped, and the same membrane revealed with an anti-actin

serum (internal control). A densitometry of the immunoreactive

bands was performed. Data are normalized to actin levels in each

sample. (C) TE671 cells were transfected with DUX4c-siRNA or

DUX4-siRNA (10 nM) using reverse transfection and 4 hours

later with the pCIneo-DUX4 (DUX4) expression vector as above.

The protein extracts were prepared on the third day after pCIneo

vector transfection and separated by electrophoresis (12% PAGE-

SDS), transferred to a Western blot, immunodetected with 9A12

MAb followed by a secondary antibody coupled to peroxidase and

revealed with the LiteABlot kit (Euroclone). The antibodies were

then stripped, and the same membrane revealed with an anti-actin

serum (internal control).

(TIF)

Figure S5 Determination of AO concentration range to
inhibit DUX4 without affecting DUX4c protein expres-
sion. 105 C2C12 cells were seeded per well of a 6-plate dish and

co-transfected 24 hours later with 500 ng both pCIneo-DUX4 and

pCIneo-DUX4c expression vectors combined with the indicated

AOs. The negative control AO mGMCSF3A(25+20) (nc-AO)

targets an unrelated gene transcript in a different species, the

murine granulocyte macrophage colony stimulating factor mRNA.

The cells were lysed 24 hours after transfection, and 15 mg of

protein extracts were separated by electrophoresis (12% PAGE-

SDS), and transferred to a nitrocellulose membrane. DUX4 (52-

kDa) and DUX4c (47-kDa) were detected on this Western blot

with 9A12 MAb followed by secondary antibodies coupled to

peroxydase (HRP), and revealed with the Lumilight kit (Roche).

After stripping these antibodies, the same membrane was

incubated with an anti-actin antibody to provide a loading

control. (A)The used AO concentration is 150 nM for AOs

targeting the DUX4 mRNA and 600 nM of the nc-AO. (B–C):

used AO concentrations are indicated. A densitometry of the

immunoreactive bands was performed. Data are normalized to

actin levels in each sample.

(TIF)

Figure S6 Endogenous DUX4 protein detection in
extracts of human myotubes. (A) 24 hours after seeding

immortalized control and FSHD myoblasts were switched to

differentiation medium. Cells were harvested 6 days later and a

nuclear extract was prepared. 20 mg of nuclear proteins were

separated by electrophoresis (12% PAGE-SDS), and transferred

onto a nitrocellulose membrane. The protein transfer was

confirmed by Ponceau red staining. After rinsing the membrane

was incubated with 9A12 MAb followed by secondary antibodies

coupled to horseradish peroxidase and revealed with the Femto

Super Signal kit (Pierce). (B–C) Primary FSHD and control

myotubes were harvested 3 days (B) or 4 days (C) after

differentiation induction. The protein extracts were prepared,

separated by electrophoresis (12% PAGE-SDS) and analysed by

Western blot as above. TBP: loading control; TE671 cells

transfected with the pCIneo-DUX4 (DUX4) or the empty pCIneo

expression vectors (pCI) were used respectively as a positive or

negative controls.

(TIF)

Figure S7 Transfection efficiency on immortal (A–B) or
primary (C–D) human skeletal myoblasts. (A–B) Immortal

myoblasts were transfected with pCIneo-EGFP (A) or pCIneo-DUX4,

-DUX1 (B) expression vectors (NanoJuice, Novagen). (A) 48 hours

later, nearly 60% of cells expressed EGFP compared with cells

counted under bright light (left column). 5 days after differenti-

ation induction cells always expressed EGFP. (B) 48 hours after

transfection, 10 mg of protein extracts were separated by

electrophoresis (12% PAGE-SDS) and transferred onto nitrocel-

lulose membrane. After blocking (5% milk powder), the mem-

brane was incubated with 9A12 MAb followed by a secondary

antibody coupled to peroxidase and revealed with the LiteAblot kit

(Euroclone). (C–D) Primary myoblasts were transfected with

pCIneo-EGFP (C) or pCIneo-DUX4, -DUX1 (D) expression vectors

(Fugene HD, Roche). (C) 24 hours later, nearly 80% of cells

expressed EGFP compared with cells counted under bright light

(left column). (D) 24 hours after transfection, 15 mg of protein

extracts were separated by SDS-PAGE electrophoresis (12%) and

analysed by Western blot as above.

(TIF)

Acknowledgments

We acknowledge the human cell culture platform from the Institute of

Myology (Paris, France) for the immortalized myoblasts. This study is

dedicated to the memory of Denyse Bourgeois, past president of the

ABMM, and a patient affected with FSHD whose friendly dynamism is

dearly missed.

Author Contributions

Conceived and designed the experiments: SDW FC AB. Performed the

experiments: CV EA SC NS AT. Analyzed the data: CV EA SW FC AB.

Contributed reagents/materials/analysis tools: AT DL SDW. Wrote the

paper: CV FC SDW FC AB.

References

1. Wijmenga C, Hewitt JE, Sandkuijl LA, Clark LN, Wright TJ, et al. (1992)

Chromosome 4q DNA rearrangements associated with facioscapulohumeral

muscular dystrophy. Nat Genet 2: 26–30.

2. Hewitt JE, Lyle R, Clark LN, Valleley EM, Wright TJ, et al. (1994) Analysis of

the tandem repeat locus D4Z4 associated with facioscapulohumeral muscular

dystrophy. Hum Mol Genet 3: 1287–1295.

3. van der Maarel SM, Frants RR, Padberg GW (2007) Facioscapulohumeral

muscular dystrophy. Biochim Biophys Acta 1772: 186–194.

4. de Greef JC, Lemmers RJLF, van Engelen BGM, Sacconi S, Venance SL, et al.

(2009) Common epigenetic changes of D4Z4 in contraction-dependent and

contraction-independent FSHD. Hum Mutat 30: 1449–1459.

5. de Greef JC, Lemmers RJLF, Camano P, Day JW, Sacconi S, et al. (2010)

Clinical features of facioscapulohumeral muscular dystrophy 2. Neurology 75:

1548–1554.

6. Ding H, Beckers M, Plaisance S, Marynen P, Collen D, et al. (1998)

Characterization of a double homeodomain protein (DUX1) encoded by a

cDNA homologous to 3.3 kb dispersed repeated elements. Hum Mol Genet 7:

1681–1694.
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