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Abstract

Defining the structural and functional connectivity of the human brain (the human ‘‘connectome’’) is a basic challenge in
neuroscience. Recently, techniques for noninvasively characterizing structural connectivity networks in the adult brain have
been developed using diffusion and high-resolution anatomic MRI. The purpose of this study was to establish a framework
for assessing structural connectivity in the newborn brain at any stage of development and to show how network
properties can be derived in a clinical cohort of six-month old infants sustaining perinatal hypoxic ischemic encephalopathy
(HIE). Two different anatomically unconstrained parcellation schemes were proposed and the resulting network metrics
were correlated with neurological outcome at 6 months. Elimination and correction of unreliable data, automated
parcellation of the cortical surface, and assembling the large-scale baby connectome allowed an unbiased study of the
network properties of the newborn brain using graph theoretic analysis. In the application to infants with HIE, a trend to
declining brain network integration and segregation was observed with increasing neuromotor deficit scores.
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Introduction

During brain maturation, structural and functional pathways

are formed and reshaped in cases of prenatal, perinatal or early

childhood brain injury. Studying these pathways in vivo remains a

challenge. With advances in MRI, it has become possible over the

last decade to noninvasively characterize large white matter

bundles using diffusion MRI. The technique has been widely

applied to both the adult and the baby brain [1], and has led to

new insights into the tissue microstructure of individual tracts.

Tractography has been extensively used to visualize white matter

tracts and offer tract-based regional analyses. More recently,

studies in the adult brain [2–4] have attempted to provide a more

complete description of the brain’s structural connectivity by

assembling the ‘‘connectome,’’ a term introduced by Sporns et al.

[5] in analogy to the human genome. In these recent studies, the

analysis included not only single tracks and regions-of-interest

(ROIs) but also the whole brain structural network topology, as

assessed at the scale possible using diffusion MRI techniques. The

brain network describes interregional mesoscale connectivity

patterns of the brain and can be represented by the connectivity

matrix (also called ‘‘adjacency matrix’’) of size n2, where n is the

number of brain regions (nodes). Graph theoretic analysis can be

applied to the connectivity matrices in order to extract important

network characteristics [6,7]. Key concepts to describe and

quantify complex brain networks include local topological

parameters, such as node centrality, and global (aggregate)

parameters, such as characteristic path length and average

clustering coefficient that in concert may indicate the presence

of so called ‘‘small-world’’ network characteristics [8]. Studying

the human connectome using network science offers a unique

opportunity to better understand inter-individual differences in

neural connectivity.

The purpose of this study was to establish a framework for assessing

structural connectivity in the newborn brain at any stage of

development, starting with premature neonates, and to show how

such a framework could be used to characterize structural network

properties in a cohort of six-month old infants with hypoxic

ischemic encephalopathy (HIE). Babies with neonatal encepha-

lopathy face a much higher risk of neurological and developmental

deficits that are difficult to predict on an individual basis [9].

Characterization of individual structural connectivity networks,

together with conventional anatomic MRI imaging, may provide

valuable anticipatory information about the potential for encoun-

tering abnormalities at a later stage in development. Our

hypothesis in this work was that the topological trajectory of the

baby brain network is altered by perinatal HIE, and as a result the

observed clinical severity of injury would correlate to different

structural network phenotypes at 6 months.

Imaging newborn infants poses several unique technical

challenges. For reliable structural connectivity network construc-

tion and characterization, the following issues had to be addressed:

– data quality assurance. Data quality suffers from bulk motion,

particularly in unsedated infants. Therefore, it is necessary to

analyze the occurrence of corrupted diffusion-weighted images
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and develop an algorithm for their correction or rejection, as in

the case of information loss due to motion during half-Fourier

acquisition [10].

– automated and unbiased definition of network nodes of the connectome.

Another challenge that had to be addressed for the proposed

work was the need for an automated and yet unbiased cortical

parcellation scheme suitable for objective evaluation in the

developing brain. No single universally accepted parcellation

scheme currently exists for human brain regions [5]. In

previous studies of the adult human brain [3,4,11,12]

parcellation of the brain into nodes was based on anatomic

templates and landmarks or functional architecture. Also, a

recent study of white matter connectivity in the first years of life

[13] used an anatomic template to map the brain at ages of 2

weeks, 1 year, and 2 years. We believe that rapidly changing

newborn brains require an unbiased parcellation scheme that

does not rely on (adult) brain atlases. This is crucial for the

design of both cross-sectional and longitudinal brain imaging

studies during the course of development in order to account

for the neural plasticity of the pediatric brain. As a part of this

work, we propose two different template-free parcellation

schemes, and demonstrate their relationship to derived brain

network parameters in infants after neonatal HIE.

Methods

A. Data Acquisition
All of the MRI scans were compliant with the Health Insurance

Portability and Accountability Act (HIPAA) and the study was

approved by the Committee on Human Research (CHR) of the

University of California, San Francisco. Written informed parental

consent was obtained.

As part of a study on neonatal encephalopathy, diffusion tensor

imaging (DTI) was performed on 17 six-month old babies who had

encephalopathy at birth which affected neurological outcome at 6

months to varying degree. The babies were scanned on a General

Electric 3T EXCITE MR scanner using half-Fourier spin-echo

(SE) echo planar imaging (EPI) diffusion sequence with a field of

view (FOV) of 24 cm624 cm, 726128 matrix (half-Fourier with 8

overscans) reconstructed to 1286128 and zero-filled to 2566256,

TE = 57 ms, TR = 9 s, 30 directions distributed by electrostatic

repulsion [14], b-value = 700 s/mm2, with a parallel imaging

ASSET (Array Spatial Sensitivity Encoding Technique) acceler-

ation factor of 2. Forty-five to fifty consecutive slices of a 2 mm

thickness were acquired through the entire brain, aligned axially

along a plane between the genu and splenium of the corpus

callosum with the interhemispheric fissure vertically in the midline.

The scan time for the DTI sequence was approximately four

minutes. Total time for each examination, which also included T1-

weighted, T2-weighted, and spectroscopic imaging sequences, was

approximately one hour. The patients were scanned in an 8-

channel adult head coil while under anesthesia.

Data were processed offline and used to construct structural

networks according to the following computational pipeline we

devised using Matlab, FSL [15], and Diffusion Toolkit [16]. A

flowchart depicting the work flow is shown in Fig. 1.

B. Data Quality Assurance
Data quality often suffers from bulk motion in unsedated babies

and due to infant movement despite sedation, in addition to large

eddy current artifacts. In diffusion-weighted imaging, problems

associated with patient motion are amplified due to the presence of

the diffusion-sensitizing gradient pulses [17]. Fast imaging

techniques, such as half-Fourier EPI used in our study, help to

reduce the scan time and thus the probability of motion during the

sequence. On the other hand, the half-Fourier technique increases

the sensitivity of the scan to bulk motion. Intra-scan rotation of the

imaged object during the application of the diffusion gradient

introduces a linear phase shift across the object, which displaces

the echo in k-space orthogonal to the direction of the applied

diffusion gradient [17]. With half-Fourier imaging, sufficiently

high rotational speed may displace the DC component of the k-

space outside the sampling range [10]. This results in a dramatic

intensity loss in the image that cannot be corrected. Displacement

of the DC component in the opposite direction cannot be tolerated

either, as the standard homodyne reconstruction produces

spurious high-frequency image intensity oscillations.

To insure data quality, we implemented an automated data

rejection algorithm to identify and discard directionally-encoded

diffusion measurements that are corrupted by motion. Images with

intensity ripples or signal loss due to the displacement of the k-

space center in half-Fourier imaging were identified as outliers.

This was done by pixel-wise analysis of the diffusion-weighted

DICOM images. When a certain number of pixels deviated from

the corresponding mean pixel value for all diffusion directions by

three standard deviations, the direction was not included in the

tensor calculation. The threshold for the number of pixels was set

empirically, depending on the head size. Slices covering nasal

cavities and affected by susceptibility artifacts were excluded from

the rejection process.

The remaining DICOM images were converted to the

Neuroimaging Informatics Technology Initiative (NIfTI-1) format

and corrected for eddy current distortions and simple head motion

using affine registration to a reference volume [15].

C. Data Reconstruction and Tractography
After quality assurance steps were taken, tensor-based recon-

struction and whole-brain streamline fiber tractography was

performed using Diffusion Toolkit [16]. The deterministic Fiber

Assignment by Continuous Tracking (FACT) algorithm was

applied [18] using the entire diffusion-weighted volume as the

mask image. A threshold angle of 35u was chosen as a compromise

between false positive and false negative streamlines [19].

D. Brain Cortex Extraction, Parcellation into Nodes, and
Structural Network Construction

The algorithm for assembling the structural network included

subcortical surface extraction, surface parcellation, identification

of white matter tracts connecting individual parcellated nodes, and

finally, assembly of the connectivity matrix. Subcortical surface

extraction was based on the non-zero fractional anisotropy (FA)

map. Morphological operations were applied and the surface 2–

4 mm below the cortex was extracted, achieving similar results to

previously proposed methods [4].

Template registration, which has been used to define anatomic

nodes in prior work in adult brain [2,4], is not directly applicable

to the developing infant brain which is known to undergo

considerable changes in both structure and function. In this work,

we developed two unbiased automated methods for parcellating

the brain surface:

i) the derived subcortical surface was divided into nodes based

on Recursive Zonal Equal Area Sphere Partitioning [20]

(‘‘equipartition’’) (Fig. 2 a);

ii) the brain was partitioned into spatial regions of equal spatial

extent along the x, y, and z axes of the imaging volume

(‘‘gridded’’) (Fig. 2 b).

Structural Baby Connectome
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Based on the spatial prescription of the images with the corpus

callosum and interhemispheric fissure, the x, y, and z axes of the

imaging volume corresponded to the biological developmental

axes. Therefore, the gridded parcellation was performed between

ventral and dorsal, rostral and caudal, and medial and lateral

surfaces of the brain. The equipartition, on the other hand, was

not aligned with the anatomy. A unit sphere was first divided into

regions of equal area and the set of center points of the regions was

determined, in order to serve as the node reference points. The

sphere was then scaled to the brain surface and every point on the

brain surface was assigned to the closest node reference point. This

simple and practical approach resulted in nodes of a similar size.

Note that both approaches avoid imposing arbitrary anatomical

constraints on connectivity and therefore may be better suited to

address the dynamic structure of the rapidly changing developing

brain, in which the sulci and gyri of the adult brain cannot be used

as reliable fiducials.

In both cases the number of nodes was chosen to be 40. Previous

studies of adult connectivity networks have used between five [11]

and 998 [12] cortical regions of interest. For example, Hagmann et

al. [21] used a ‘‘low-resolution’’ parcellation into 66 cortical regions

of varying sizes using an automated-landmark based algorithm and

a ‘‘high-resolution’’ parcellation with 241 ROIs of approximately

equal area of 6 cm2. In our study, we used 40 ROIs of similar

surface area, such that parcellation of the relatively smaller infant

brain also resulted in ROIs with surface areas of approximately

6 cm2 for babies at a mean gestational age of 31 weeks [22].

Connectivity was then defined using the results of whole-brain

fiber tractography. A lower cutoff fiber length of 10 mm was applied

in order to remove extremely short tracts from further analysis. Any

Figure 1. Flowchart: Assembling a Baby Brain Structural Network. After a set of diffusion-weighted images is acquired (1), a quality
assurance step is performed in which data affected by motion are rejected and the remaining images are corrected for eddy current distortions and
affine head motion (2). Although this step may not be necessary in cooperative adults, it is essential for high-quality tractography in infants. The
diffusion tensor is calculated for the resulting data (3), and whole-brain streamline fiber tractography is undertaken (4). The subcortical surface is
extracted (5) and partitioned into nodes using either the gridded or equipartition parcellation scheme (6, see below). Node-track and node-node
connections are derived (7) and the adjacency matrix is constructed (8).
doi:10.1371/journal.pone.0031029.g001

Structural Baby Connectome
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two nodes were considered to be connected if tracks with two end

points located in their respective ROIs were present. Two ROIs

may have multiple connections which we can represent by weights

on the edges of the network. However, given the inherent noise in

the diffusion data and the arbitrary units for edge weights, we

instead treated all edges as unweighted. The matrices for all babies

were binarized using a threshold in the range from 1 (only one fiber

track is required to consider two nodes connected) to 10. The

thresholds higher than 1 were used to eliminate pseudoconnections

that may come about as the result of noise or modeling error.

E. Network Graph Analysis
We modeled our connectivity networks as a graph [23], defined

as a set of nodes or brain regions, {N = 1…n} connected by a set of

edges or tracts, {E = (Ni,Nj)…e}. The graph can be represented by

an adjacency matrix, A, where Aij = w if the ith and jth nodes are

connected by an edge with weight w. Our graphs were unweighted

and undirected as diffusion MRI provides no information about

directionality of the connections. From the adjacency matrix, any

network measure can be quantified. As proof of principle we

limited ourselves to properties which have been previously

reported in adult brains including global measures of segregation

(average clustering coefficient, C) and integration (characteristic

path length, L), that together describe the small-world properties of

the network.

We define the clustering coefficient of the network as

C~
1

n

X

i[N

Ci~
1

n

X

i[N

2ti

ki(ki{1)
,

Figure 2. Parcellation Schemes and Adjacency Matrices. a) Equipartition and b) gridded parcellation of the six-month old baby brain. c), d)
Adjacency matrices binarized with threshold 1 for both parcellation schemes in a representative baby with NMS 0, for which no diffusion directions
were discarded.
doi:10.1371/journal.pone.0031029.g002
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where ki is the degree, Ci is the clustering coefficient of node i

(Ci = 0 for ki,2), and ti is the number of triangles around node i

[6].

We define the characteristic path length of the network as

L~
1

n

X

i[N

Li~
1

n

X

i[N

P
j[N,j=i

dij

n{1
,

where Li is the average shortest distance between node i and all

other nodes and dij is the shortest distance between nodes i and j

[6].

Adjacency matrices were constructed for all babies and then

analyzed using the Brain Connectivity Toolbox in Matlab [6].

F. Correlation with the Neurological Outcomes
Neurological outcome was assessed at 6 months by pediatric

neurologists blinded to neonatal course, MR imaging findings, and

derived structural network parameters. A validated neuromotor

score (NMS) was assigned during a standardized neurologic

examination: 0, normal; 1, abnormal tone or reflexes; 2, abnormal

tone and reflexes; 3, functional deficit of power in addition to tone

or reflex abnormality; 4, cranial nerve involvement with motor

abnormality; 5, spastic quadriparesis [24]. To assess the

relationship between the small-world network properties in babies

with observed neurological outcome, linear regression analysis was

performed on the derived network metrics (average clustering

coefficient and characteristic path length) using Matlab. A p value

of less than 0.05 was considered statistically significant.

Results

Data Quality Assurance
As the overarching aim of this work was to develop a framework

suitable for characterization of structural brain networks in babies

at any stage of development, the performance of our quality

assurance algorithm was demonstrated on the diffusion data

acquired for unsedated neonates obtained as a part of an ongoing

study of brain injury in newborn babies. Figure 1, step 2 shows two

common examples of corrupted diffusion-weighted images ac-

quired on a preterm baby. As described above, the use of half-

Fourier k-space sampling reduces the scan time but simultaneously

increases the sensitivity of the sequence to rigid-body motion.

Depending on the direction of object motion, the DC component

of the k-space is displaced either into the high spatial frequency

range, causing ripple-like intensity oscillations across the image, or

outside of the sampled range of spatial frequencies, causing a

dramatic signal loss. In the studied cohort of anesthetized six-

month old infants, the algorithm, on average, resulted in rejection

of 0.9 diffusion directions. It should be noted, however, that these

babies were preselected from a larger cohort based on visual

assessment of artifacts. Artifacts in sedated babies were caused by

mechanical vibrations of the MRI table, as well as movement

caused by the mechanical ventilator used during anesthesia. On

visual inspection, rejection of diffusion directions in images with

artifacts significantly improved fiber tractography.

Baby Connectome
Figures 2 c and d show binarized (threshold 1) adjacency

matrices for both parcellation schemes in a representative baby

with NMS 0, for which no diffusion directions were discarded in

the quality assurance step. An element ij in the adjacency matrix A

has a value of one if node i is connected to node j. The diagonal

elements of the matrix represent self-connections. Node numbers

were arbitrarily assigned. In the case of the more structured

gridded parcellation scheme, the node numbers from one to forty

run first through the right hemisphere and then through the left

hemisphere. Therefore, non-zero values in the upper left quadrant

show association fibers in the right hemisphere and in the lower

right quadrant show fibers in the left hemisphere. The two

remaining quadrants show commissural fibers connecting two

hemispheres. The pattern in the equipartition matrix, however,

merely reflects a circular enumeration of the nodes around the

cortical surface.

Because the chosen parcellation schemes are not anatomically

registered, the resulting adjacency matrices cannot be compared

element-wise or multiplied to obtain the skeleton matrix for a

group of subjects. Overall network topology, however, can be

assessed using aggregate measures such as small-world properties.

Characteristic path length L showed a positive correlation with

NMS for both parcellation schemes (Figs. 3 a and b); however, the

correlation was statistically significant for most of the threshold

values only for the equipartition parcellation approach. Average

clustering coefficient C, in contradistinction, decreased with

increasing NMS (Figs. 3 c and d). The correlation was significant

(p,0.05) only for the threshold of 8 with the equipartition scheme.

The figures show the results for the threshold of 5. C and L ranged

0.2–0.5 and 2–4, respectively, for both parcellation schemes across

different thresholds (NMS 0). These values are comparable to

values reported by several other studies of the structural and

functional adult brain networks summarized by Li et al. [25]. The

obtained clustering coefficients were above those of random

networks (C.Crand), and the characteristic path length was

comparable to random networks (L,Lrand). The random networks

were obtained by randomizing the binary adjacency matrices,

while preserving the degree distribution [6]. This is often referred

to as the configuration model [26] and is a standard random

model used in the literature to assess statistical significance. Thus,

similar to what has been described in adult connectivity networks,

the topological structure of the infant network exhibited small-

world properties. Small-world networks are neither completely

regular nor completely random [8,27]. Most connections are local,

as in regular networks; however, a small number of connections

are rewired to reach over a longer distance. This network topology

allows for a high efficiency and a high level of adaptation with a

very low wiring and energy cost.

The influence of the number of nodes on the network metrics

was explored for both parcellation schemes. In the case of the

gridded parcellation scheme this was accomplished by varying the

number of regions along the rostral-caudal axis. A decrease in the

total number of nodes from 40 to 20 resulted in a significant

change in the network metrics (a 17–47% increase of the clustering

coefficient and a 21–28% decrease of the path length value for

both parcellation schemes, NMS 0). However, the 20-node

network still demonstrated small-world properties (although it

should be noted that the ratio C/Crand decreased and was lower

than 2 in most cases). The trend for the small-world characteristic

L and C depending on NMS remained the same; however, almost

none of the thresholds between 1 and 10 resulted in a statistically

significant correlation.

Discussion

In this work, we have developed an automated technique to

map structural connectivity in the infant brain using diffusion

MRI, and used this approach to characterize large-scale

connectivity of the cortex in 17 six-month old babies with HIE

at birth. The approach is similar to what has been described in

Structural Baby Connectome
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adults, but was modified to include more rigorous quality

assurance and an anatomically unconstrained approach to

parcellation in order to better study the variable anatomy of this

group. Interestingly, the derived networks demonstrated properties

which were correlated to neuromotor outcome in HIE babies at

six months. The choice of the threshold for binarizing connectivity

matrices affected the statistical significance of the resulting

correlation. Nevertheless, a trend to declining brain network

integration and segregation was observed with increasing neuro-

motor deficits. These results should be interpreted with caution, as

the mechanisms for brain network disruption in babies with

encephalopathy have not yet been well-characterized and are

Figure 3. Correlations between Neuromotor Score and Small World Properties. Observed correlations between neuromotor score and
characteristic path length (a and b) and average clustering coefficient (c and d) in babies with encephalopathy.
doi:10.1371/journal.pone.0031029.g003

Structural Baby Connectome

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e31029



likely heterogenous in both etiology and outcome [9]. A larger

number of subjects and a longitudinal study design over years

would provide more information on this aspect of the study. The

principle result that we intended to achieve is the framework for

structural network construction in the pediatric brain – a step

towards the large-scale baby connectome that will contribute to

our understanding of brain development, as well as developmental

abnormalities or lesions that affect brain function.

The important step of data quality assurance preceded the

mapping of the structural connectivity. This step included

considerations for not only inter-image motion and eddy-current

correction, but addressed intra-image diffusion encoding artifacts

that were not accounted for by traditional motion correction

algorithms. Rejection of diffusion directions in half-Fourier images

with artifacts significantly improved fiber tractography. Unless the

location of the DC component of the k-space is detected and an

adaptive version of the homodyne algorithm is used [10], affected

images have to be excluded from diffusion data reconstruction.

Furthermore, no algorithm can solve the problem if displacement

of the k-space center is outside the sampling range.

No single universal parcellation scheme of the brain exists for the

infant brain. A major drawback of using anatomical brain regions,

such as the Anatomical Automatic Labeling (AAL) atlas, for studying

early brain development was pointed out by Fan et al. [28]. Brain

networks were built in the same subjects at the ages of 1 month, 1

year, and 2 years based on correlations in regional gray matter

volume measures. The authors noted that the AAL atlas might not

match very well with function and anatomy of the early development

brains. In our study, we proposed two different anatomically

unconstrained parcellation schemes. The only anatomic alignment

imposed with the proposed gridded parcellation was alignment of the

imaging plane with the corpus callosum and interhemispheric fissure,

so that the baby brain was evaluated using the same cardinal x, y, and

z axes. The equipartition scheme imposed no anatomic constraints.

The proposed schemes are straightforward and more suitable for the

rapidly changing newborn brain, as they avoid the inherent bias

associated with using anatomically-predefined node locations. While

the nodes partitioned in the proposed way do not directly correspond

to each other across subjects, comparison and assessment are possible

using the total resulting network and derived global characteristics.

We also expect that, in the future, network-driven co-registration will

be an advantageous alternative to atlas-based coregistration,

especially in case of challenging age groups and variable anatomy.

This will enable unbiased comparison of networks on the local scale,

i.e. using single node features. In our study, while both of the

parcellation schemes showed the same trend for the small-world

metrics, the equipartition demonstrated a stronger correlation with

the NMS. The more structured gridded parcellation facilitated visual

inspection of the adjacency matrices, in which, e.g. the symmetry of

the right and left hemispheres could be easily observed. However, this

is only possible in case of a proper alignment of the imaging box with

the anatomy. This link to the anatomy, on the other hand, makes the

scheme inferior to the equipartition, which is truly automatic and

unbiased.

Connections between the cortex and subcortical gray matter

structures, such as thalamus, were not analyzed in this work.

Including those connections into the analysis would require a

relatively precise definition of the inner brain structures manually

and/or using templates and, thus, hinder the universal, fully

automated approach to studying the developing brain. Results of

mapping of connections between thalamus and cortex in the adult

brain using DTI [29] and using both DTI and fMRI [11] have

been reported, but the influence of these structures on overall

connectivity is difficult to define.

The proposed framework can be applied to babies of different

ages, including premature newborns, and thereby provides a novel

tool for unbiased study of structural maturation of the brain.

Previously, developmental trajectories could only be studied by

measuring anatomy and analyzing separate DTI tracks using tract-

or region-of-interest based analysis. We also expect that, by

studying brain network topology in newborns, it will become

possible to better understand the process of relocation of specific

brain functions as a consequence of brain plasticity. The proposed

anatomically unconstrained approach to parcellation followed by

network-driven analysis of the connectome should facilitate this

task.

Recently Hagmann et al. [21] applied the principles of MR

connectomics to explore the contribution of white matter

maturation to the development of connectivity between 2 and

18 years. Among other network refinements, they observed a

significant increase in node strength and efficiency along with a

decrease in clustering. The betweenness centrality of brain regions

remained largely unchanged, with the precuneus, posterior

cingulate cortex, superior frontal cortex, and superior parietal

cortex remaining the hub regions with the highest centrality ranks.

Another very recent longitudinal study by Yap et al. [13] explored

developmental trends of white matter connectivity in healthy

pediatric subjects at ages of 2 weeks, 1 year, and 2 years. The

results indicated that the small-world architecture exists at birth

with efficiency that increases in later stages of development. The

framework developed here specifically aims at facilitating similar

studies by ensuring the diffusion data quality and anatomically

unbiased parcellation in children under the age of 2.

Our graph theoretical analysis showed small-world properties in

six-month old babies. The results are in agreement with previous

studies of the adult human brain using EEG, MEG, diffusion

MRI, and functional MRI (see [30] for a review), as well as with

the pediatric studies mentioned in the previous paragraph. While

the detection of small-world attributes is considered to be largely

independent of the parcellation scheme and spatial resolution

[27,31], the specific network metrics can be affected by both, the

network resolution (number and size of nodes), and the angular

and spatial resolution of the diffusion acquisition [32]. Zalesky et

al. [33] and Hagmann et al. [12] recently showed that the

parcellation scale strongly influences the network metrics. We have

observed this effect when decreasing the number of nodes from 40

to 20. However, it is also reported that this strong dependence

does not suggest that any given parcellation scale is more optimal

than another and its choice remains a subject of research.

The patterns of structural connectivity that have been observed

in the human brain parallel similar findings of functional

connectivity using BOLD fMRI ([11,21,34] and [35] for a review

of earlier studies). Though interrelated, these two approaches are

complementary, and the full description of both structural and

functional connectivity is crucial in understanding normal and

abnormal maturation of the brain as a whole. Functional

connectivity of the newborn brain was studied recently by

Fransson et al. [36]. It was shown that at the time of birth, the

functional brain connectome largely involves brain regions

responsible for sensation and action, whereas only weak

involvement was found for heteromodal brain areas. The strong

candidates for cortical hubs were found in motor, sensory,

auditory, and visual primary cortex. Another study in preterm

infants [37] concluded that all resting state networks, including

visual, auditory, somatosensory, motor, default mode, frontopari-

etal, and executive control networks, are present by term. A recent

review by Smyser et al. summarizes exploration of the functional

organization of the developing brain [38]. However, the
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importance of the structural network cannot be overemphasized,

as functional connections represent a single brain state that unfolds

within a milieu of fixed anatomic connections. The combined use

of noninvasive structural and functional imaging methods in the

same subject would offer the most robust path toward defining the

full large-scale connectome. To date, this has been done only for

the adult brain, with the structural connectome being the

challenging task in the immature brain. The framework developed

in this study will facilitate this important step of going from

structure to function, which is essential for understanding how

cognitive processes emerge from their morphological substrates

[11].

In the present study, we used diffusion tensor MRI in

combination with deterministic tractography to track white matter

pathways. Though fast and straightforward, deterministic tracto-

graphy produces reliable results only in brain areas where

anisotropy is high [29]. As fibers approach the cortex, diffusion

anisotropy diminishes, and calculated principal diffusion directions

become increasingly uncertain as a result [39]. This has limited

attempts to trace pathways directly from deep gray matter, which

typically has low anisotropy. To reduce the effect of this limitation,

we restrained connectivity mapping to the white matter by

choosing the nodes on the subcortical surface 2–4 mm below the

cortex. Probabilistic tractography could be used instead to

improve fiber tracking. Yo et al. showed that probabilistic

approaches show on average more connected regions but lower

connectivity values than deterministic methods [40]. High angular

resolution diffusion models may also reveal connections between

more brain areas than the simple tensor model, by resolving

crossing fibers. These differences should be taken into account

when comparing results obtained with different frameworks for

assembling the connectome.
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