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Abstract

In the budding yeast Saccharomyces cerevisiae the protein phosphatase Sit4 and four associated proteins (Sap4, Sap155,
Sap185, and Sap190) mediate G1 to S cell cycle progression and a number of signaling events controlled by the target of
rapamycin TOR signaling cascade. Sit4 and the Sap proteins are ubiquitously conserved and their human orthologs, PP6 and
three PP6R proteins, share significant sequence identity with their yeast counterparts. However, relatively little is known
about the functions of the PP6 and PP6R proteins in mammalian cells. Here we demonstrate that the human PP6R proteins
physically interact with Sit4 when expressed in yeast cells. Remarkably, expression of PP6R2 and PP6R3 but not expression
of PP6R1 rescues the growth defect and rapamycin hypersensitivity of yeast cells lacking all four Saps, and these effects
require Sit4. Moreover, PP6R2 and PP6R3 enhance cyclin G1 gene expression and DNA synthesis, and partially abrogate the
G1 cell cycle delay and the budding defect of the yeast quadruple sap mutant strain. In contrast, the human PP6R proteins
only modestly support nitrogen catabolite gene expression and are unable to restore normal levels of eIF2a
phosphorylation in the quadruple sap mutant strain. These results illustrate that the human PP6-associated proteins are
capable of providing distinct rapamycin-sensitive and Sit4-dependent Sap functions in the heterologous context of the
yeast cell. We hypothesize that the human Saps may play analogous roles in mTORC1-PP6 signaling events in metazoans.
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Introduction

Protein dephosphorylation is an essential enzymatic activity

through which cell signaling in response to diverse cues is

processed and cellular events evoked by protein phosphorylation

are mechanistically reversed. In the yeast Saccharomyces cerevisiae the

type 2A-like protein phosphatase catalytic subunit Sit4 functions

downstream of the rapamycin-sensitive TOR complex 1 (TORC1)

to govern responses to nutrients and events required for normal G1

to S phase cell cycle transition and budding [1,2]. In response to

nutrient signals TORC1 modulates interaction of Sit4 with its

essential effector Tap42 and thereby regulates translation,

expression of the nitrogen catabolite-repressed (NCR) and

retrograde response genes, and the Pkc1 cell integrity pathway

[3–6].

Homologs of Sit4 and Tap42, known as PP6 and alpha4,

respectively have been identified in mammalian cells. Moreover,

pairwise interactions between PP2A, PP6, and alpha4 have been

characterized [7]. Although rapamycin-sensitive functions have

been ascribed to the PP2A-alpha4 protein phosphatase, a role for

the PP6-alpha4 holoenzyme in mTORC1signaling has not yet

been demonstrated [8–10]. PP6 shares 61% amino acid sequence

identity with Sit4 and functionally complements sit4 mutations in

S. cerevisiae and of the Sit4 homolog ppe1 in Schizosaccharomyces

pombe [11].

In addition, Sit4 also interacts with four proteins known as the

Saps (Sit4 associated proteins). Because either deletion of SIT4 or

all four SAP genes results in similar phenotypic consequences,

including delayed G1 to S phase cell cycle progression and thereby

slower growth, budding defects, and impaired NCR gene

expression and Gcn2-regulated translation, it has been thought

that Sit4 functions in concert with the Saps to control these cellular

processes [2,3,5,12–14]. Based on amino acid sequence identity

and functional analysis, the four Saps can be classified into two

distinct subgroups: Sap185 and Sap190 are more similar to each

other than to Sap155 and Sap4 [12]. Also Sap185 and Sap190

share similar functions not shared with Sap155 and Sap4. Thus,

Sap185 and Sap190 function together with Sit4 to provide an

essential role in the absence of Bem2 (most likely in regulating the

Pkc1-cell integrity pathway), and are required for eIF2a
dephosphorylation and to render yeast cells sensitive to the toxin

zymocin (produced by Kluyveromyces lactis) [5,6,12,15]. Moreover,

Sap155 and Sap185 perform distinct, albeit in this case opposite,

functions in K+ efflux regulation [16]. Finally, Sap185, Sap190, or

Sap155 are individually equally effective in mediating NCR gene

expression [5]. Thus, based on these criteria Sap4 is less

functionally effective than the other three Saps and, similar to

cells lacking the four Saps, cells expressing only Sap4 (sap155

sap185 sap190 triple mutant cells) grow poorly, show defects in

NCR gene expression, and are hypersensitive to rapamycin and
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resistant to zymocin [1,5,15]. These and other genetic data are

consistent with a model in which the Sap proteins act positively

and in combination with Sit4 to regulate phosphatase activity,

substrate specificity, or both [5,6,12,15].

Recently, combined sequence and biochemical analysis uncov-

ered Sap homologs in diverse organisms including other fungi,

amphibians, worms, plants, flies, and metazoans, underscoring a

potentially widespread biological conservation of Sap function

[17]. Interestingly, the three human Saps identified, named

PP6R1, PP6R2, and PP6R3, were shown to physically interact

with human PP6 and share limited amino acid sequence identity

(10%) with the four yeast Saps [17]. PP6R1 and PP6R3 share

nearly identical tissue distribution, and are enriched in lung,

spleen, and the bladder whereas PP6R2 is mainly present in

bladder. Subsequently, it was shown that PP6, together with a

PP6R and an Ankyrin repeat subunit, forms holoenzyme trimers

that effectively interact with IkBe in response to TNFa [17,18].

These results are consistent with a role for PP6-PP6R complexes in

limiting NF-kb signaling; however, little else is known about

PP6Rs function and any involvement in mTor signaling has not as

yet been demonstrated.

In this study we have examined if the human PP6R proteins are

functional Sap homologs by testing their ability to provide Sap

function in S. cerevisiae. We find that human PP6R2, PP6R3, and to

a lesser extent PP6R1, are stably expressed and physically interact

with Sit4 in yeast cells. Expression of the individual PP6R2 and

PP6R3 proteins rescued the growth defect and rapamycin

hypersensitivity of yeast cells lacking all four Saps in a Sit4-

dependent fashion. Sit4 and the Sap proteins function in G1 to

promote timely DNA replication and bud formation [2,12]. Both

PP6R2 and PP6R3 but not PP6R1 partially provided these G1

functions when expressed in the quadruple sap mutant strain. In

addition, the human PP6R proteins have a modest effect in

restoring NCR gene expression in response to rapamycin

treatment in cells devoid of the Saps. In contrast, none of the

human PP6Rs were capable of restoring normal eIF2a phosphor-

ylation levels in either a quadruple sap mutant or a sap185 sap190

double mutant strain. PP6R2 and PP6R3 partially restored

zymocin sensitivity to cells lacking Sap185 and Sap190. Taken

together, these results illustrate that the PP6-associated proteins

are capable of providing distinct rapamycin-sensitive, Sit4-

dependent Sap functions in yeast cells. By extension, we

hypothesize that the human Saps may play related roles in

TORC1-PP6 signaling events in metazoans.

Results

The human PP6R proteins are stably expressed in yeast
cells and physically interact with Sit4

PP6 and Sit4 share a high degree of amino acid sequence

identity; however, the PP6R proteins exhibit limited identity with

the yeast Saps (Figure 1). This homology is largely confined to the

SAPS domain (as defined by the Protein families database of

alignments - Pfam), a central four hundred amino acid region

containing several discrete, common motifs with the ability to form

a helices [17]. The striking conservation between the yeast Saps

and the PP6R proteins prompted us to explore the functions of the

PP6R proteins in yeast cells. To this end, FLAG epitope-tagged

versions of PP6R1, PP6R2, and PP6R3 were PCR amplified from

previously published pcDNA3-FLAG constructs [17], placed

under the control of the ADH1 constitutive promoter in the

centromeric pRS416-ADH vector, and expressed in yeast cells

lacking the four SAP genes. All three PP6R proteins were

effectively expressed as detected by immunoprecipitation and

western blot analysis; however, PP6R2 and PP6R3 were expressed

at a higher level than PP6R1 (compare lanes 2–4 in Figure 2).

Because all characterized Sap functions are known to require

Sit4, it was therefore important to examine if the PP6R proteins

interact with Sit4. As shown in Figure 2 (lanes 2–4), PP6R1,

PP6R2, and PP6R3 effectively co-immunoprecipitated with Sit4

when expressed in the quadruple sap mutant. Interestingly,

whereas the PP6R1-Sit4 interaction was robust in the sap185

sap190 double mutant, which still expresses Sap155 and Sap4, the

PP6R2 and PP6R3-Sit4 interactions in this strain were reproduc-

ibly weaker than those observed in the quadruple sap mutant

(Figure 2, lanes 6–8). These results suggest that PP6R1 competes

more effectively than PP6R2 and PP6R3 with Sap155 for Sit4

interaction. This is in accord with previous observations that the

Sap proteins compete with each other for Sit4 binding and that

Sap155 outcompetes the other Saps in this function [12,19] (and

see further evidence below).

Human PP6R proteins support growth and abrogate
rapamycin hypersensitivity of Sap-defective yeast
mutants

S. cerevisiae mutant cells lacking the four SAP genes grow poorly

and are hypersensitive to the Tor inhibitor rapamycin. To

investigate if the PP6R proteins can provide Sap function in

yeast, we tested their ability to suppress these mutant phenotypes.

Strikingly, similar to expression of Sap185 and Sap155, expression

of PP6R2 and PP6R3 but not PP6R1 greatly improved the growth

of the quadruple sap mutant strain and moreover, restored the

rapamycin sensitivity of these cells to a level comparable to that

observed in the WT strain (Figure 3). In contrast, expression of

either Sap185 or the PP6R proteins in a sit4 deleted strain, which

also exhibits severe growth defect and rapamycin hypersensitivity,

failed to mitigate either phenotype. These results demonstrate that

the PP6R effects on cell growth and rapamycin sensitivity are Sit4-

dependent (Figure 3). Intriguingly, the expression of PP6Rs failed

to alleviate the rapamycin hypersensitivity characteristic of sap185

sap190 double mutant cells (Figure 3). This result correlates well

with the observation that PP6R2 and PP6R3 are not effective in

competing with Sap155 and Sap4 for Sit4 binding and suggest

that, despite the robust PP6R1-Sit4 interaction, PP6R1 is unable

to provide Sap function (Figure 2). These data illustrate that the

PP6R2 and PP6R3 proteins are capable of supporting Sap-Sit4-

dependent growth and can provide rapamycin-sensitive function

in a Sit4-dependent fashion in yeast cells.

PP6R2 and PP6R3 can partially promote G1 progression
through DNA replication and bud formation

Sit4 is required for cell cycle transition from late G1 phase to S

phase [2,20]. Deletion of the SIT4 gene or deletion of the four SAP

genes results in slow growth with a large population of unbudded

cells and an increase in the number of cells with a 1N DNA

content, characteristic of a G1 cell cycle arrest [12,20]. This

prompted us to examine whether the PP6R proteins act by

reversing the G1 cell cycle arrest of the quadruple sap mutant. We

note that asynchronous cells from the quadruple sap mutant of the

g1278b background have a tendency to aggregate, complicating

cell sorting by FACS analysis. However, despite this limitation we

reproducibly observed an increase in the number of cells

containing 2N DNA (1.5- and 1.8-fold, respectively) when

PP6R2 and PP6R3, but not PP6R1, were expressed in the

quadruple sap mutant (Figure 4). This result is in agreement with

the observed failure of PP6R1 to overcome the growth defect of

cells lacking the four Saps (Figure 2).

Human PP6Rs Function in Yeast
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Figure 1. The human PP6R and the yeast Saps proteins share marked homology within the SAPS domain. The protein sequences of the
SAPS domain of Saccharomyces cerevisiae Saps and Homo sapiens PP6Rs were aligned using Jalview. Amino acid conservation is highlighted with grey
boxes where the darkest grey indicates the highest level of similarity. Dashed line denotes non-homologous region.
doi:10.1371/journal.pone.0006331.g001
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The increased 1N DNA content of the sit4 and the quadruple

sap mutant strains is associated with a large fraction of unbudded

cells in exponentially growing cultures [12,20]. To investigate if

the PP6R proteins promote budding, we monitored the percentage

of budded cells in exponentially growing cultures of the quadruple

sap mutant strain expressing these proteins. Unlike PP6R1,

expression of PP6R2 and PP6R3 resulted in an increase (1.8- and

2.5-fold, respectively) in the fraction of budded cells (Figure 4B).

The Sit4 and Sap proteins are also required for normal expression

of G1 cyclins [2,12]. To further study the effect of PP6R3 expression

on Sit4 functions in cell cycle progression, we monitored bud

emergence and the induction of G1 cyclins in synchronized cultures.

To this end, G1-phase daughter cells from the wild-type and

quadruple sap mutant were collected by centrifugal elutriation and

cells were allowed to progress through the cell cycle. Saccharomyces

cerevisiae cells are best sorted by centrifugal elutriation when grown in

media containing sucrose as the sole carbon source (D.J. Lew,

personal communication). However, we found that the quadruple

sap mutant cells grow very poorly in sucrose media. To obviate this

limitation we grew the cells in dextrose containing media. Under

these growth conditions, elutriation of the WT strain yielded an

enrichment of 74% of cells with a 1N DNA content, whereas

elutriation of the quadruple sap mutant mostly resulted in cells with a

1N DNA content (see panels for zero time points in Figure 5A).

Upon incubation of elutriated G1-cells in fresh media an increase in

CLN1 expression was observed when wild-type cells resumed growth

as expected (Figure 5C and 5D). Interestingly, whereas cells

transformed with the vector alone showed CLN1 expression at the

3 hr time point, expression of PP6R3 resulted in an earlier and

increased expression of CLN1 at the 2 hr time point (Figure 5C and

5D). These results correlated with a four-fold increase in the

percentage of PP6R3 expressing-cells with a 2N DNA content

(,21%) compared to the quadruple sap mutant cells transformed

with vector alone (4.7%) (Figure 5A). In accord with this result, we

also observed an increase in the budding index of the quadruple sap

mutant cells expressing PP6R3 (11%) versus cells transformed with

vector (1%) (Figure 5B). Taken together, these data show that PP6R2

and PP6R3 are able to promote G1 progression in yeast cells whereas

PP6R1 is not.

The human PP6R proteins support a modest level of NCR
gene expression but fail to promote eIF2a
dephosphorylation

We have previously shown that expression of the NCR genes in

response to either rapamycin treatment or ammonium limitation

Figure 3. PP6R2 and PP6R3 rescue the growth defect and rapamycin hypersensitivity of yeast cells lacking all SAPs. Isogenic WT
(MLY41) strain transformed with vector, quadruple sap (JRY40), sit4 (SCY94) and sap185 sap190 (JRY29) mutant strains transformed with vector and
plasmids expressing SAP185, SAP155, PP6R1, PP6R2, and PP6R3 were grown overnight in SD-Ura medium. Equivalent numbers of cells were serially
diluted, and aliquots were spotted onto SD-Ura plates containing drug vehicle or 50 nM and 100 nM rapamycin. After 3 days of incubation at 30uC,
the plates were photographed.
doi:10.1371/journal.pone.0006331.g003

Figure 2. PP6R proteins associate with the PP2A-like phospha-
tase catalytic subunit Sit4. The quadruple sap mutant (JRY40) and
sap185 sap190 double mutant (JRY29) strains were transformed with
vector and derivatives expressing N-terminal FLAG tagged versions of
PP6R1, PP6R2 and PP6R3. Proteins were immunoprecipitated with anti-
FLAG antibody and analyzed by western blotting. The membrane was
stripped and interaction with Sit4 was detected by reprobing with a Sit4
specific antiserum. Sit4 was also detected in equivalent amounts of
protein extracts and Pgk1 served as a loading control.
doi:10.1371/journal.pone.0006331.g002
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requires Sit4 and one of the Sap proteins. Sap155, Sap185, or

Sap190 alone are equally effective; however, Sap4 is unable to

support this function [5]. The yeast sap quadruple mutant

individually expressing PP6R2 and PP6R3 was treated with

rapamycin for various periods of time. In agreement with previous

results, in wild type cells (transformed with the vector control)

rapamycin triggered the expression of the NCR genes GLN1, MEP2,

and GAP1 and rapamycin treatment largely failed to activate these

genes in the quadruple sap yeast mutant transformed with the vector

alone (Figure 6A and 6B). Expression of PP6R2 and PP6R3 resulted

in a modest and delayed NCR gene expression (Figure 6A and 6B),

indicating that despite effective interaction with Sit4 these human

Sap proteins are only modestly effective in providing the Sit4-

dependent function required for the NCR response.

Exposing yeast cells to amino acid starvation, nutrient

limitation, or inhibition of Tor with rapamycin all result in

activation of the Gcn2 kinase and initiation of the general amino

acid control response [13,14,21]. In turn, activated Gcn2

phosphorylates and thereby inactivates the translation initiation

factor eIF2a, resulting in a lower level of general translation and

preferential translation of a small subset of mRNAs (such as the

GCN4 mRNA), which feature multiple short open reading frames

via which translation is regulated [22]. Gcn4 is a master

transactivator that promotes expression of ,400 genes, including

those encoding enzymes involved in amino acid biosynthesis [23].

We have characterized a role for Sit4, Sap185, and Sap190 in

maintaining a low level of phosphorylated eIF2a to promote

general translation [5].

We next examined if the PP6R proteins are able to restore

normal levels of eIF2a phosphorylation in quadruple sap mutant

cells. As expected, eIF2a phosphorylation was increased in wild-

type cells treated with rapamycin or in cells lacking the four SAP

genes (Figure 6C and [5,13]). Ectopic expression of SAP185

effectively restored the wild type level of eIF2a phosphorylation in

the quadruple sap mutant, however expression of the three

individual PP6R proteins failed to promote eIF2a dephosphoryla-

tion (compare control lanes without rapamycin in Figure 6C).

PP6R proteins partially mediate K. lactis toxin zymocin
sensitivity in yeast sap mutants

Exposure of S. cerevisiae cells to the K. lactis toxin zymocin results

in a G1 cell cycle arrest. The zymocin target is Elongator, an RNA

polymerase II-associated histone acetylase multisubunit complex

that facilitates PolII-dependent transcription. It has been shown

that sit4 and sap mutants lacking Sap185 and Sap190 are resistant

to zymocin toxicity [15]. Moreover, Sit4 in combination with

Sap185 and Sap190 facilitates zymocin toxicity and acts by

dephosphorylating Tot1, which is the largest subunit of the

Elongator complex [19]. Zymocin is a trimeric homotoxin

composed of a, b, and c subunits. It has been hypothesized that

interaction of the c subunit with dephosphorylated Tot1 sequesters

PolII, precluding transcription of key G1-S phase cell cycle

regulators [19].

We tested if the mammalian PP6R subunits can substitute for

Sap185 and Sap190 to restore zymocin sensitivity to sap185 sap190

mutants. While the quadruple sap, and the sap155 sap185 sap190

(expressing only SAP4) and sap4 sap155 sap185 (expressing only

SAP190) triple mutant strains transformed with the vector alone

were more resistant to zymocin than the wild type strain,

expression of either SAP185 or any of the three PP6R genes

restored zymocin toxicity, although not to the same level as that

observed in the wild type strain (Figure 7). In this experiment

strains were exposed to zymocin in YPD media. We note that

although the PP6R proteins are being expressed from an stable

maintained, centromeric plasmid, we performed control experi-

ments in which the cells were replica-plated onto plasmid selective

medium (SD-Ura) following zymocin exposure to rule out plasmid

loss as a trivial explanation for these findings. These results suggest

that the PP6R subunits function to mediate interaction with Sit4

targets for zymocin toxicity.

Discussion

The Saps were originally identified in S. cerevisiae as Sit4

associated proteins [12,20]. The Saps were demonstrated to

function positively with Sit4 to promote G1 to S phase cell cycle

progression and budding [12]. Later, it was shown that Sit4 and

the Sap proteins perform a critical role downstream from the

Figure 4. PP6R proteins partially overcome the G1 delay and
budding defects of quadruple sap mutant cells. Isogenic WT
(MLY41) and sit4 (SCY94) strains transformed with vector, and
quadruple sap (JRY40) mutant strain transformed with vector and
plasmids expressing PP6R1, PP6R2 and PP6R3 were grown to
exponential phase and prepared for flow cytometry analysis. The plots
show cell count (vertical axis) versus fluorescence intensity, which is
proportional to DNA content (horizontal axis). The percentage of cells
with 2N DNA content is shown in the upper right corner of each panel.
(B) Table shows the percentage of budded cells, which was determined
in cell cultures used for the flow cytometry. Results shown are
representative of three independent experiments.
doi:10.1371/journal.pone.0006331.g004
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TORC1 in controlling the expression of nutrient-regulated genes

and in governing Gcn2-dependent translation [5,13,14]. More-

over, Sit4 in conjunction with Sap185 and Sap190 is required to

sensitize cells to zymocin and to counteract rapamycin toxicity

[5,15]. Sit4 and the Sap proteins have been ubiquitously

conserved throughout evolution from yeast to humans. The

human Sit4 ortholog PP6 is able to complement the growth defects

of sit4 and pp1 mutants in budding and fission yeast, respectively

[11]. However, studies to examine the role of PP6 have been

hampered by the fact that PP6 knock down results in high levels of

apoptosis [24]. Nonetheless, indirect evidence has suggested that

the N-terminal domain of PP6 has a role in G1 cell cycle

progression by influencing stabilization of cyclin D protein levels

[25]. Apart from a role in limiting NF-kb signaling, little else is

known about the possible cellular functions of the PP6R proteins.

Our studies have shown that the PP6R proteins are expressed in

yeast cells and are capable of physically interacting with Sit4 in

cells lacking the four Sap proteins. While the observed PP6R

interaction with Sit4 is robust in cells devoid of Sap proteins, this

interaction is reduced for PP6R2 and PP6R3 in yeast cells

expressing the endogenous Sap155 and Sap4, supporting earlier

results that the Sap155-Sit4 interaction is quite stable and not

subject to competition from the other yeast Saps [12]. Remark-

ably, PP6R2 and PP6R3 but not PP6R1 complement the growth

defect of the quadruple sap yeast mutant. The growth improve-

ment afforded by the PP6R2 and PP6R3 proteins in the quadruple

sap mutant is correlated with a decrease in the fraction of cells with

a 1N DNA content and concomitant increase in cells with 2N

DNA content, and more efficient budding. Furthermore, PP6R3

expression is able to enhance bud emergence and CLN1

Figure 5. PP6R3 partially enhances CLN1 expression and cell cycle progression. Isogenic WT (MLY41) and quadruple sap (JRY40) mutant
strains transformed with vector or plasmid expressing PP6R3 were grown to exponential phase and elutriated to enrich for G1 cells. Elutriated cells
were collected, transferred to fresh SD-Ura media, and samples were taken over a 3 hours period for G1 functions analysis. (A) Samples were analyzed
for DNA content by flow cytometry as in Figure 4A. The percentage of cells with 2N DNA content is shown in the upper right corner of each panel).
(B) Table shows the percentage of budded cells (ND, not detectable). (C) CLN1 and ACT1 mRNA expression was assessed by northern blot. (D)
Northern blot signals from experiment shown in Panel C for CLN1 were quantified and normalized to the ACT1 loading control signal. Results shown
are the relative percentage of gene expression with maximal level of expression at 30 min for WT as 100%.
doi:10.1371/journal.pone.0006331.g005
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expression, and increase DNA synthesis upon growth resumption

of G1-synchronized quadruple sap mutant cells. These results

suggest that the PP6R proteins could perform an analogous role in

combination with PP6 to promote G1 to S phase cell cycle

progression as recently proposed [25]. The modest ability, or

inability, of the PP6Rs to restore TORC1-governed NCR gene

expression or normal eIF2a phosphorylation levels respectively, in

the quadruple sap mutant cells could reflect a reduced (or lack of)

ability of these proteins to interact with the effectors for these

functions. Thus, the precise mechanisms by which the human

PP6Rs abrogate the rapamycin hypersensitivy of the yeast

quadruple sap mutant do not involve these TORC1 functions.

However, rapamycin exposure of cells devoid of Sap function

might impose a G1 block by more than one mechanism and an

attractive model is that the PP6Rs ability to support CLN1

expression in G1 and DNA synthesis promotes G1 to S phase cell

cycle progression by directly relieving one of these blocks.

Our results show that PP6R1 differs from PP6R2 and PP6R3,

and fails to overcome the growth and budding defects and the

rapamycin hypersensitivity observed in the quadruple sap yeast

mutant. Although PP6R1 was expressed at a lower level than

PP6R2 and PP6R3 in the quadruple sap mutant, it showed a

robust interaction with Sit4, and was not out-competed by Sap155

in the sap185 and sap190 double mutant (Figure 2). We

hypothesize that the unusually stable PP6R1-Sit4 interaction

results in an inactive phosphatase and this may be the reason why

PP6R1 is the least efficient of the PP6R proteins in providing Sap

function when heterologously expressed in yeast. Interestingly,

binding of the SV40 small t antigen to the PP2A AC dimer

(thought to be tight) in place of the B regulatory subunit was shown

to virtually inactivate the phosphatase towards most of its known

substrates, and this effect are the basis for the oncogenic effects of

small t antigen [26].

The Tor proteins were first identified in yeast via genetic

analysis of rapamycin resistant mutants [27] and the mammalian

mTor ortholog was later identified by biochemical approaches

[28,29]. These studies provided the foundation to define a key

cellular signaling conduit that globally controls cellular physiology

and growth in response to nutrients and growth factors [30].

Heterologous expression studies demonstrated that the Tor

proteins are not only physically but also functionally conserved

[31]. While expression of full-length mTor failed to complement

Figure 6. PP6R2 and PP6R3 fail to restore normal levels of NCR response in cells lacking all SAP genes. (A) Exponentially growing
cultures of the quadruple sap mutant strain (JRY40) transformed with vector or its derivatives expressing PP6R2 and PP6R3 were treated with
rapamycin over a 2 hr period. RNA was isolated at the indicated time points GLN1, MEP2, GAP1and ACT1 mRNA expression levels were assayed by
northern blot. (B) Northern blot signals from Panel A were quantified and normalized to the ACT1 loading control signal. Results shown are the
relative percentage of gene expression with maximal level of expression at 15 min as 100%. (C) PP6R proteins fail to restore normal levels of eIF2a
dephosphorylation to the quadruple sap mutant strain (JRY40). Exponentially growing cultures of isogenic WT (MLY41) strain transformed with
vector, and the quadruple sap mutant (JRY40) strain transformed with vector and derivatives expressing PP6R1, PP6R2, PP6R3 and SAP185 were
treated with 100 nM rapamycin for 0 or 20 min. Whole-cell extracts were prepared and analyzed by sequencial western blotting with antibodies
specific for the phosphorylated and non-phosphorylated form of eIF2a.
doi:10.1371/journal.pone.0006331.g006
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yeast tor1 or tor2 mutant cells, expression of Tor1-mTor and Tor2-

mTor hybrids supported Tor-dependent, rapamycin-sensitive

growth of yeast cells [31]. Thus, both the FKBP12-rapamycin

binding (FRB) domain and the kinase domain of mTor are fully

functional in the context of the yeast cell [31]. Similarly,

expression of human FKBP12 suffices to complement a yeast

fpr1 mutation and restores rapamycin-sensitive cell growth [32].

Thus, all of the residues in human FKBP12 required to interact

with Tor are sufficiently conserved indicating that the human

FKBP12-rapamycin complex is fully proficient in binding and

inhibiting the yeast Tor1 and Tor2 proteins.

The studies reported here extend this approach to define

functions for the mammalian Sap protein orthologs PP6R2 and

PP6R3 that appear to have been similarly conserved over the

billion years of evolution separating yeast and humans from their

last common ancestor. These findings suggest that PP6R1, PP6R2,

and PP6R3 may play analogous mTor related signaling roles in

metazoans that remain to be defined. By a similar approach

recently reported by other investigators, the elements of the PI-3

kinase/PTEN/Akt cascade have been reassembled in yeast and

found to provide signaling activity [33]. Thus, it may prove both

technically feasible and informative to express heterologous, multi-

molecular signaling circuit ensembles in the context of the yeast

cell as a proxy for their functions in the much more complex

milieu of the multicellular eukaryotic system.

Materials and Methods

Ethics Statement
N/A

Yeast strains, plasmids, and media
All strains used in this study are derived from wild type strain

MLY41 (g1278b background) and are listed in Table 1.

Construction of SCY94, JRY29, JRY40, JRY44, and JRY45

was described earlier [5]. Plasmids pSAP185 and pSAP155 were a

kindly provided by Charles DiComo. Kluyveromyces lactis strain

AWJ137 was obtained from Craig Bennett (Duke University).

YPD-Zymocin containing plates were prepared as previously

indicated [15]. All three PP6R genes containing an N-terminal

Flag tag were amplified by PCR from pcDNA3-based plasmids

[17] and cloned into pRS416-ADH1 (URA3) [34] by homologous

recombination [35].

Unless otherwise indicated strains were grown to exponential

phase in yeast extract peptone dextrose (YEPD) or synthetic complete

media. Yeast synthetic media (YNB) with ammonium sulfate was

supplemented with 2% glucose. SD media was supplemented with

amino acids to satisfy auxotrophic requirements. Rapamycin was

added to the media from a concentrated stock solution in 90%

ethanol, 10% Tween20. Yeast transformations were performed using

the Lithium acetate method [36].

Amino acid sequence comparisons
Amino acid sequences of Sap155 (P43612), Sap4 (P53036),

Sap185 (P40856), Sap190 (P36123), PP6R1 (Q9UPN7), PP6R2

(O75170), and PP6R3 (Q5H9R7) were obtained from the

European Bioinformatics Institute (EBI, http://www.ebi.ac.uk).

Sequence alignment was performed using Jalview as alignment

editor [37].

Western blotting
For immunoprecipitation of FLAG tagged PP6R proteins,

whole cell extracts were prepared from exponentially growing

cultures of JRY40 transformed with vector alone (pRS416-ADH)

or containing each of the PP6R genes N-terminally tagged with

one FLAG epitope. Cells were harvested and subjected to

mechanical breakage using glass beads in lysis buffer containing

20 mM KHPO4 (pH 7.2), 2 mM EDTA, 2 mM EGTA, 25 mM

b-glycerophosphate, 25 mM NaF, 1 mM NaVO4, 0.5% TritonX-

100, 1 mM DTT, a mixture of proteinase inhibitors (cocktail IV-

Calbiochem, La Jolla, CA), and 0.5 mM phenylmethylsulfonyl

fluoride [5]. To detect the PP6R proteins, 3 mg of protein extract

was immunoprecipated with 30 ml of EzviewTM Red Anti-FLAG

M2 Affinity Gel (Sigma) for 2 hrs at 4uC. Immunoprecipitates

were washed four times with lysis buffer. Proteins extracted from

immunoprecipitated beads were electrophoresed through 4–20%

Novex Tris-Glycine Gels (Invitrogen), subjected to Western blot

analysis, and probed with a monoclonal antibody specific for

FLAG (Sigma). The blot was stripped and reprobed with a rabbit

polyclonal Sit4 specific antibody (kindly provided by Yu Jiang,

Figure 7. PP6R proteins partially restore zymocin sensitivity to
the quadruple sap mutant strain. Isogenic WT (MLY41) transformed
with vector, the quadruple sap mutant (JRY40), and only SAP4 (sap155
sap185 sap190; JRY45) strains transformed with vector or constructs
expressing PP6R1, PP6R2, PP6R3, or SAP185 were grown overnight in SD-
Ura medium. Equivalent numbers of cells were serially diluted, and
aliquots were spotted onto plates of YPD and YPD containing zymocin.
After 3 days of incubation at 30uC, the plates were photographed.
doi:10.1371/journal.pone.0006331.g007

Table 1. Yeast strains.

Strain Genotype Source

S.cerevisiae

MLY41 MATa ura3-52 (g1278 background) Lorenz et al., 1997

SCY94 MATa ura3-52 sit4::kanMX Cutler et al., 2001

JRY29 MATa ura3-52 sap185::hygB sap190::kanMX Rohde et al., 2004

JRY40 MATa ura3-52 sap4::kanMX sap155::hygB
sap185::hygB sap190::kanMX

Rohde et al., 2004

JRY44 MATa ura3-52 sap4::kanMX sap155::hygB
sap185::hygB

Rohde et al., 2004

JRY45 MATa ura3-52 sap155::hygB sap185::hygB
sap190::kanMX

Rohde et al., 2004

K. lactis

AWJ137 MATa leu2 trp1 [pGK11+ pGK12+] Kamper et al., 1991

doi:10.1371/journal.pone.0006331.t001
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University of Pittsburg). Pgk1 was detected with a monoclonal

antibody (Molecular Probes).

For analysis of eIF2a, 75 mg of protein were electrophoresed

through 4–20% Novex Tris-Glycine Gel (Invitrogen) and

subjected to Western blot analysis. To prevent the dephosphor-

ylation of proteins 100 mM NaF was added to the blocking milk

solution. Blots were probed with an antibody specific to the

phosphorylated Ser51 residue of eIF2a (BIOSOURCE Interna-

tional). Blots were stripped and reprobed with an anti-Sui2

antibody (a generous gift of A. Hinnebusch) to detect the eIF2a
non-phosphorylated isoform.

Flow cytometry, budding index, and cell cycle synchrony
Flow cytometry analysis were performed as previously described

[38]. Cells were harvested at OD600 of 0.4, fixed overnight in 70%

ethanol, washed with water, and incubated with 2 mg/ml RNase

A (Sigma) in 50 mM Tris-HCl (pH 8.0) for 3 hrs at 37uC. Cells

were washed and treated with 5 mg/ml pepsin (Sigma) in 0.45%

HCl (vol/vol) for 15 min. DNA was stained with Sytox Green

(Invitrogen) in 50 mM Tris-HCl (pH 7.5) and cells were briefly

sonicated to separate clumped cells prior to FACS analysis. DNA

content of 10,000 cells was measured with a Becton Dickinson

FACSCalibur and analyzed with CellQuest software (Becton

Dickinson Biosciences, San Jose, CA). The percentage of budded

cells was determined as previously described [12] by counting at

least 400 cells for each of three independent cultures.

For cell cycle synchronization studies, cells were elutriated as

described [39]. Briefly, 1–2 liters of cells were grown at 30uC in

SD-Ura to an OD600 of 0.8, chilled to 4uC, and sonicated to

disperse clumps. The cells were loaded into an elutriator rotor

(Beckman Instruments) and centrifuged at 4,000 rpm for 1 hr at

4uC. The fraction enriched in G1 cells was collected in bottles on

ice, concentrated by centrifugation, resuspended in fresh SD-Ura

media at OD600 0.4, and incubated at 30uC for various times.

Northern Blot Analysis
Yeast strains were grown overnight in SD-Ura medium to

exponential phase (OD600 of 0.6–0.8). 100 nM rapamycin was

added to the cultures and cells were harvested at various time

points. RNA isolation and northern blot analysis were performed

as previously described [40] and specific signals were quantified

with a Typhoon 9200 variable mode imager using the Image

Quantifier 5.2 software (Molecular Dynamics).
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