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Abstract

Background: Type | interferons have pleiotropic effects on host cells, including inhibiting telomerase in lymphocytes and
antiviral activity. We tested the hypothesis that long-term interferon treatment would result in significant reduction in
average telomere length in peripheral blood T lymphocytes.

Methods/Principal Findings: Using a flow cytometry-based telomere length assay on peripheral blood mononuclear cell
samples from the Hepatitis-C Antiviral Long-term Treatment against Cirrhosis (HALT-C) study, we measured T cell telomere
lengths at screening and at months 21 and 45 in 29 Hepatitis-C virus infected subjects. These subjects had failed to achieve
a sustained virologic response following 24 weeks of pegylated-interferon-alpha plus ribavirin treatment and were
subsequently randomized to either a no additional therapy group or a maintenance dose pegylated-IFNa group for an
additional 3.5 years. Significant telomere loss in naive T cells occurred in the first 21 months in the interferon-alpha group.
Telomere losses were similar in both groups during the final two years. Expansion of CD8*CD45RA*CD57" memory T cells
and an inverse correlation of alanine aminotransferase levels with naive CD8" T cell telomere loss were observed in the
control group but not in the interferon-alpha group. Telomere length at screening inversely correlated with Hepatitis-C viral
load and body mass index.

Conclusions/Significance: Sustained interferon-alpha treatment increased telomere loss in naive T cells, and inhibited the
accumulation of T cell memory expansions. The durability of this effect and consequences for immune senescence need to
be defined.

Citation: O'Bryan JM, Potts JA, Bonkovsky HL, Mathew A, Rothman AL, et al. (2011) Extended Interferon-Alpha Therapy Accelerates Telomere Length Loss in
Human Peripheral Blood T Lymphocytes. PLoS ONE 6(8): €20922. doi:10.1371/journal.pone.0020922

Editor: Naglaa H. Shoukry, University of Montreal, Canada
Received March 22, 2011; Accepted May 15, 2011; Published August 4, 2011

Copyright: © 2011 O'Bryan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The HALT-C study was supported by the National Institute of Diabetes and Digestive and Kidney Diseases. Additional support was provided by the
National Institute of Allergy and Infectious Diseases, the National Cancer Institute, the National Center for Minority Health and Health Disparities and by General
Clinical Research Center and Clinical and Translational Science Center grants from the National Center for Research Resources, National Institutes of Health (NIH)
(grant numbers are listed below). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center
for Research Resources or the National Institutes of Health. Additional funding to conduct the HALT-C study was supplied by Hoffmann-La Roche, Inc., through a
Cooperative Research and Development Agreement (CRADA) with the National Institutes of Health. This work was funded by the NIH under P01 Al049320, U19
Al057319 and T32 AlI007349. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have read the journal’s policy and have the following conflicts. Financial relationships of the authors with Hoffmann-La
Roche, Inc,, are as follows: H.L. Bonkovsky receives research support. Authors with no financial relationships related to this project are J.M. O'Bryan, J.A. Potts, A.
Mathew and A.L. Rothman.

* E-mail: Anuja.mathew@umassmed.edu

Introduction

Telomeres are repetitive DNA sequences, consisting of hundreds
to thousands of double-stranded repeats, found at both ends of every
chromosome [1]. A normal cell’s replicative potential has been
linked to a combination of its telomere length (TL) and the ability
to express telomerase. Telomerase assists in TL maintenance and
slows telomere erosion during activation-induced proliferation of T
lymphocytes [2,3]. Type I interferons (IFN), in addition to anti-viral
and anti-proliferative effects, inhibit expression and activity of
telomerase [4]. IFN also commonly causes lymphopenia [5], which
1s a stimulus for homeostatic proliferation [6]. How these competing

@ PLoS ONE | www.plosone.org

IFN responses combine to modulate TL in peripheral naive and
memory T cells is currently unclear.

Combination pegylated-IFNa (peg-IFNo) with ribavirin is the
standard therapy for subjects with chronic hepatitis C virus
(cHCV) infection. Unfortunately, therapy results in a sustained
virologic response (SVR) in less than 50% of HCV subjects [7].
After decades of cHCV, many patients progress to liver cirrhosis
and subsequent hepatic failure, and are at risk for developing
hepatocellular carcinoma [8]. The Hepatitis C Antiviral Long-
term Treatment against Cirrhosis (HALT-C) trial was a clinical
trial designed to assess whether sustained peg-IFNa reduced the
progression of liver disease in subjects who did not achieve SVR
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[9]. All study subjects initially received peg-IFNa plus ribavirin for
24 weeks. Subjects failing to achieve SVR were then randomly
assigned either to a control, monitor-only group or to a continued
peg-IFNa-treated group at a maintenance dose for an additional
3.5 years [10].

Multiple clinical measures, such as patient age, duration of
infection, viral load, obesity, and liver enzyme levels have been
noted to correlate to varying degrees with the IFNo treatment
virologic response rate in cHCV infection [11,12,13,14,15,16].
The role of liver hepatocyte destruction, seen as elevated blood
serum levels of alanine aminotransferase (ALT), may reflect
cytotoxic killing of virus infected cells by the on-going immune
response. Thus serum ALT levels are used in monitoring the
progression of liver damage [17]. Additionally, increasing obesity,
commonly measured as body mass index (BMI), has been observed
to affect telomere length in peripheral blood leukocyte subsets in
otherwise healthy adults [18,19,20]. The availability of these
clinical measures for the HALT-C cohort allowed for additional
analyses in this study of their interactions with the measured
peripheral blood T cell telomere lengths and telomere length
changes from screening to study month 45.

In this study the primary aim was to examine the effects of long-
term peg-IFNa therapy on TL in peripheral blood T lymphocytes
using a flowFISH (flow cytometric fluorescence in situ hybridiza-
tion) telomere length assay. Here we report significant associations
between changes in TL and treatment group, patient age, serum
HCV RNA level, body mass index (BMI) and alanine amino-
transferase (ALT) levels.

Results

FlowFISH telomere length analysis in T lymphocytes

Telomere length (TL) was measured using a modified flowFISH
assay [21]. We incorporated a pre-hybridization RNase treatment
into the telomere flowFISH assay to minimize probe binding to
telomeric RNA [22], as well as a novel set of hybridization-
compatible CD4" and CD8" markers. This approach combined
with previously described anti-CD45RA and anti-CD57 flowFISH
staining allowed for quantitative estimation of average TL and
frequency in T cell subpopulations. Inter-assay and intra assay
variations for TL estimation were additionally assessed (see
Materials and Methods).

Flow cytometry gating allowed discrimination of CD4" and
CD8" T cell subsets and estimation of TL in each subset (Fig. 1A).
Although the hybridization reduced the intensity of CD8" staining
(Figure 1A, far right panel), these two primary T cell subsets
(CD4*CD8™ versus CD4~ CD8") could be discriminated. Within
each subset, CD45RA discriminates memory (CD45RA ) T cells
from the mostly naive (CD45RA™) T cell subset and CD57 further
enhances discrimination of naive (CD45RA* CD577) T cells from
CD57% T cell effector-memory re-expressing CD45RAY (Tryga)
[23].

No significant differences in clinical characteristics existed at
baseline between the peg-IFNo and the no-therapy group (Table 1).
Also, no differences existed in TL between these two groups at
screening (Fig. SIA). However, no correlation existed between
subject age and TL in the cHCV cohort (Fig. 1B left panel) in
contrast to the expected inverse correlation of age and TL, an effect
seen in the separate cohort of 19 healthy subjects (Fig. 1B right
panel) and consistent with previous reports [24,25].

Baseline TL in T cell subsets were consistent with prior reports
[21,24]; naive (CD45RA™ CD577) T cell TLs were greater than
memory (CD45RA™ CD57 ) T cell TLs, and average TL in
CD57" subsets were shorter than their corresponding GD57~
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subsets (Fig. 1C). The percentage of CD57" cells was higher in the
CD8" T cell compartment than in the CD4" T cell compartment
(Fig. S1B), consistent with published results [23].

HCV viral load, body mass index correlated with TL at
screening

HCV viremia levels inversely correlated with TL in total CD4"
and CD8" T cells (Fig. 2A), naive T cells (Fig. 2B), and memory T
cells (Fig. 2C) at enrollment. BMI at enrollment also inversely
correlated with TL in naive CD4" and CD8" T cells (Fig. 2D).
However, there was no correlation between HCV viremia levels
and BMI (data not shown), suggesting that BMI and viremia are
independent factors associating with T cell TL in chronic HCV
infection.

Sustained IFNa therapy increased loss of telomere length

To determine whether IFN therapy affected telomere erosion,
the rate of change in TL in CD4" and CD8" T lymphocyte subsets
between screening (S00), month 21 (M21) and month 45 (M45)
was determined for both groups (Fig. 3). The average linear
regression equation-derived slopes (delta TL/year in units of
MESF) showed declining TL for all subsets. The average linear
regression slopes between SO0 and M45 show higher average TL
loss rates in the peg-IFNo treatment group across total CD4"
(Fig. 3A) and total CD8* T cells (Fig. 3D), the naive subsets
(Figs. 3B, E) and memory subsets (Figs. 3C, F), although this
difference was statistically significant only for naive CD8" T cells
(p=0.005). CD57* T cells in both CD4* CD45RA™ ™ and CD8*
CD45RA™ ™ subsets showed no difference in TL between
treatment groups (data not shown).

The mid-point (M21) samples allowed assessment of whether
the peg-IFNa effect on TL was linear over the four year study
period. Within the peg-IFNa group, TL loss was greater in the first
interval, SO0 to M21, in the naive CD8" (p=0.002), memory
CD8" (p=0.03) and naive CD4" subsets (p =0.02) compared to
the M21 to M45 interval (Fig. 4). Naive CD8" T cell TL loss was
higher in the treatment compared to control group in the first
interval (p = 0.006), but not different in the second interval. Taken
together, these analyses indicate that TL loss accelerated with peg-
IFNo treatment, but only in the first interval.

Age dependence of accelerated telomere length loss

To assess the effects of age, treatment group, and TL changes,
mixed-effects statistical analyses were performed with results
indicating a significant age-related IFN-effect on TLs (data not
shown). However, linear model fitting assumptions inherent to a
multivariate, mixed effects model were not consistent with the
non-linear TL loss data across the three time points. We then
partitioned the data set into three age categories: <50 years, 50 to
55 years, and >55 years of age at screening (Fig. 5). The 50-55 year
partition was centered on the average age of our subjects (Table 1),
with the age partition boundaries selected to roughly balance the
numbers of subjects in each partition. This age-partitioned analysis
corroborated the mixed-effects model results that accelerated TL
loss in the peg-IFNo group was seen in subjects <50 years old and
was lost with increasing age in both CD4* and CD8" naive and
memory compartments.

No difference in telomerase activity

We asked whether effects of long-term IFN therapy on
telomerase activity (TA) could explain the accelerated TL loss.
As resting peripheral blood T cells directly ex vivo express little or
no detectable TA, we analyzed TA after in vitro activation as an
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Figure 1. Telomere length (TL) measurement using modified flowFISH. (A) FlowFISH cytometry gating strategy used to assess TL in CD4*
and CD8" T cells. Singlet cells in a Go/G; (diploid DNA content) gate were further selected using a lymphocyte gate based on forward and side scatter.
Flow scatter plots of CD4" by CD8" staining with and without flowFISH hybridization are shown. TL estimates in molecules of equivalent soluble
fluorescence (MESF) in CD4* and CD8" populations. (B) Linear regression analysis of naive (CD45RA* CD577) CD4" (circles) and naive CD8" (squares)
TL at screening for cHCV subjects (n=29, left panel) and healthy, age-matched donors (n= 19, right panel) versus age at blood draw. (C) FlowFISH-
determined baseline TL estimates within total CD4" and CD8" T lymphocytes and indicated subpopulations for all 29 HALT-C subjects at screening.
Graphs are box-whisker 10-90 percentile with outliers.

doi:10.1371/journal.pone.0020922.g001
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Table 1. Patient characteristics at baseline and subsequent
group assignment.

Patient Group

statistic All IFNo therapy No therapy p value”
n 29 14 15

Age 522*+6.3 52.1*59 524*7.0 0.88
Gender (male:female) 24:5 11:3 13:2 0.65

BMI (kg/m?) 30.2+5.0 32.0*45 28.5%+5.1 0.09
Dur. infection (years)T 32.8+83 30.0+6.7 35.1+9.0 0.17

ALT (U/L) 86.3+42.8 95.9%47.0 77.4*37.9 0.30
logqoHCV (copies/mL) 6.60.46  6.7+0.5 6.4+04 0.09
Ishak fibrosis score 35+0.95 3.6*0.9 3411 0.48

Values are mean * standard deviation except gender. ALT, blood alanine
aminotransferase; BMI, body mass index.

*P-value for all IFNo. therapy to no-therapy group comparisons by Mann-
Whitney test, except gender analyzed by Fisher’s exact test.

TDuration of infection unavailable for three patients, two in IFNa-therapy and
one in no therapy.

doi:10.1371/journal.pone.0020922.t001

indication of a possible durable effect of peg-IFNa therapy (see
supporting file Methods S1 for details). No difference in TA as a
result of in vitro activation was detected between the two
treatment groups (Fig. S2).

Serum ALT-AST values inversely correlated with TL
changes in the control group

Serum alanine aminotransferase (ALT) and serum aspartate
aminotransferase (AST) values are commonly used in the clinical
setting to monitor on-going liver pathology. Here, we found TL
loss (SO0 to M45) in naive CD4" T cells and CD8" T cells
negatively correlated with the average serum ALT levels (p =0.016
and p = 0.006, respectively) during the randomization phase in the
control but not the peg-IFNa group (Fig. 6). Average AST levels
during randomization also inversely correlated with TL loss in
naive CD4" T cells and CD8* T cells (p=0.03 and p=0.006,
respectively) during the randomization phase in the control but not
the peg-IFNa group (data not shown). These ALT-AST associa-
tions with telomere loss were not seen in the memory (CD45RA™
CD577) subsets (p >0.1, data not shown).

Sustained IFNa therapy suppressed Tgyra €xpansion

Analysis of the CD57* T cell subsets indicated these CD4" and
CD8" T cell sub-populations did not incur accelerated TL loss in
the therapy group (data not shown). This result would be
consistent with previously published reports of CD57" as a marker
of a T cell with a limited replicative capacity, and thus a limited
ability to further erode telomere length [26,27]. Oligoclonal CD8*
CD57% T cell expansions have been reported as a marker for
reduced interferon therapy responses in chronic HCV patients
[28]. Thus we undertook further analyses of the changes in the
frequency of the CD57" subsets within our ¢cHCV cohort. The
CD8" CD45RA" CDA57" subset, which is primarily a well-
described Tgyra population of highly differentiated T cells [27],
initially declined in frequency (p =0.042) in the peg-IFNa group
between S00 and M21, followed by no significant change from
M21 to M45 (Fig. 7 left panel). In contrast, the control group
showed no significant change in the CD8" CD45RA™ CD57% T
cell frequency between SO0 and M21, followed by an increase
between M21 and M45 (p=0.0001; Fig. 7 right panel).
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Discussion

In subjects with cHCV infection, sustained peg-IFNo therapy
(90 ng/week) was associated with an increased rate of TL loss in
both CD4" and CGD8" T cell subsets. Additionally, based on a
single intermediate time-point, this IFNo therapy-enhanced TL
loss was fully concentrated in the initial 21 months. The
delineation of TL changes in T cell CD45RA™ ~/CD57 subsets
shows that declines in the T cell TL are not shifts in naive (long
TL) versus memory (shortened TL) T cell proportions, but true
decreases in TL with the greatest impact on the naive T cell
subsets. The lack of an accelerated TL loss effect in naive T cells in
the second interval in the peg-IFNa group suggests that a new
homeostasis is reached. Our findings are consistent with the
telomere erosion effects of increased lymphocyte turn-over in
response to a sustained lymphopenic signal as predicted from the
mathematical models of de Boer and Noest [29]. Increased T cell
turn-over would also account for our observation that sustained
peg-IFNo treatment inhibited the expansion of GD8* CD45RA™
CD57" Tgmra cells, a phenomenon observed in the control
group.

By HALT-C trial design, subjects in both groups received
combination therapy with peg-IFNa (180 pg/week) plus ribavirin
for the initial 24 weeks of the study. PBMC were not available
from other intermediate time points. Therefore, it is possible that
accelerated TL loss occurred in both groups during the initial
phase of lead-in therapy. Average TL could then have rebounded
in the control group between the end of therapy at week 24 and
month 21 whereas ongoing, lower-dose peg-IFNa therapy main-
tained the lower average TL (or suppressed a TL recovery) in the
therapy group. Consistent with this interpretation, the decline in
TL was slower during the second interval than in the earlier
mterval in the therapy group. If this interpretation is correct, it is
mmpossible to determine whether the effect of the initial therapy on
TL is attributable to the higher dose of peg-IFNa or to ribavirin.
Nevertheless, sustained peg-IFNa was clearly associated with
accelerated TL loss during the subsequent 3’2 years in com-
parison with the control group.

An important finding from our study is the correlation of
baseline T cell TL in these cHCV subjects with viremia and BMI.
It should be noted that subjects in the randomization phase of the
trial had endured HCV viremia for decades (range: 14-51 years)
and failed to achieve SVR during combination peg-IFNo-ribavirin
therapy. The absence of a negative correlation of baseline T cell
TL with age in this cohort may therefore reflect stronger impacts
of long-term viremia and the generally high levels of obesity in
these subjects.

We speculate that the negative association between serum viral
RNA levels and baseline TL reflects chronic elevated T cell activa-
tion, cell death, and proliferation due to persistent presentation of
HCV antigens in a dose-dependent manner. Alternatively, higher
circulating viral RNA levels may also drive greater endogenous
type I IFN production. A negative correlation of BMI with base-
line TL in naive T cells could also reflect chronic inflammation in
obesity [30]. Chronic inflammation as a result of obesity may lead
to decreased thymic output [31], inducing increased homeostatic
proliferation of naive T lymphocytes and thus a decrease in TL
through replicative erosion.

Another possible explanation for the lack of an age-dependent
TL association in this cohort relates to evidence that short
telomeres play a causal role in a variety of age-related diseases
[32,33,34,35]. Thus it is plausible that study inclusion criteria
biased the enrolled study population away from subjects with very
short telomeres.
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Figure 2. Screening T cell telomere lengths inversely correlated with hepatitis C viral RNA levels and BMI. (A) TL in total CD4" (gray
circles) and total CD8" (black squares) T cells from the screening (S00) time point versus screening HCV RNA levels, (B) TL in naive CD4™ (circles) and
CD8" (squares) CD45RA* CD57~ subsets versus screening HCV RNA levels, and (C) TL in memory CD4" (circles) and CD8" (squares) CD45RA™ CD57~
subset versus screening HCV RNA levels. (D) Baseline body-mass index (BMI, in kilograms per meter squared) from screening assessment inversely
correlated with naive phenotype CD4" (gray circles) and CD8" (filled squares) T cells. Correlation (r-squared) and p values are from linear regression

testing with best-fit lines as shown.
doi:10.1371/journal.pone.0020922.g002

Elevated ALT levels in cHCV are indicative of hepatocellular
inflammation and necrosis [12]. Our finding of a correlation of
serum ALT levels with naive T cell TL loss in the control group
likely reflects T cell responses to infected HCV-infected hepato-
cytes and the extended time frame over which telomere lengths
were analyzed. This relationship was possibly obscured in the peg-
IFNo group by the effects of continuous therapy. The correlation
between TL changes and ALT, which could be due to T cell
clonal exhaustion, immunosenescence, or a combination of these
and/or other immunological factors, suggests that normalization
of liver enzymes levels in the blood may coincide with a reduction
in T cell turn-over and thus reduced telomere erosion.

We hypothesized that maintenance peg-IFNo therapy would
cause increased TL loss in T cells as a result of inhibition of

@ PLoS ONE | www.plosone.org

telomerase activity [4,36]. However, we did not find a significant
difference between the peg-IFNo and control groups in telomerase
activity in PBMC stimulated in vitro. It is quite possible that using
in vitro-stimulated PBMC the telomerase assay fails to detect an
mhibitory effect of peg-IFNa therapy that existed in vivo. In any
case, a telomerase inhibition mechanism falls short in explaining
the predominance of an accelerated TL loss on naive T cells in
these older adults where thymic output of new, longer telomere
naive T' cells is thought to be neglible.

We further found a decline in the peg-IFNa effect on TL loss
with increasing age. Increasing age is associated with increased
failure rates of IFN therapy for cHCV [14]. This may suggest that
clevated TL erosion caused by peg-IFNoa is counteracted by
replicative senescence deferentially within T cell compartments.
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Figure 3. Accelerated telomere length (TL) loss in naive T cell subsets for the IFN group. Individual TL trajectories for (A) all CD4", (B) naive
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slope and y-intercept from each individual’s linear regression equation, with the average slope (*+ standard. deviation) in MESF per year of age shown

in the upper right corner.
doi:10.1371/journal.pone.0020922.g003

The delineation of TL loss effect by CD4" and CD8" T cell subset
by age group results suggest a hierarchy of age-dependent T cell
senescence in chronic HCV patients. Thus senescence may occur
in the order: memory CD4*>memory CD8">naive CD4">naive
CD8" in this cHCV setting. Further, this result of the memory
CD4" T cell compartment becoming refractory to IFN-induced
TL decreases as a marker of immunosenescence onset is consistent
with the finding by Hoare, et al. where they found TL in CD4"
CD45RO" memory T cells was a stronger predictor of SVR with
IFN therapy than TL in any other T cell subset [37].

Enhanced T cell TL loss in subjects who received long-term
peg-IFNa therapy suggests that T cells in these subjects have
reduced proliferative reserve. Subjects receiving type I IFN
therapy are known to be more susceptible to bacterial infections;
this has been attributed to neutropenia, but several studies have
shown no temporal correlation between neutrophil count and
infections [38,39]. Diminished memory T cells and proliferative
reserve related to naive T cell TL loss, as shown in this study,
could contribute to the increased susceptibility to infection and
disease while on interferon therapy. Importantly, diminished naive
T cell proliferative TL reserve incurred under sustained IFN
therapy may persist well beyond the end of therapy. Indeed, as
age-related thymic involution severely limits production of new,
long telomere, naive T cells [37], a sustained accelerated TL
erosion thus may leave a permanently degraded naive T cell
compartment. Support for this possibility comes from a recent
analysis of a subset of patients from the HALT-C cohort
prospectively followed for more than 5 years after the trial. That
study showed rates of non-liver-related death were significantly
higher (p=0.01) among patients with liver fibrosis who received

@ PLoS ONE | www.plosone.org

the 3% year peg-IFNa therapy compared to similar patients in the
control arm [40].

Although extended type I interferon therapy beyond 48 weeks
in the cHCV settings is not typically warranted, there are addi-
tional clinical settings where extended interferon therapy is utilized.
Some examples include relapsing-remitting multiple sclerosis and
melanoma [41,42]. Accordingly, as extended type I interferon is
clinically practiced, our findings suggest that additional studies of
the effects of peg-IFNo. therapy on age-related T cell senescence are
warranted.

Materials and Methods

Ethics Statement

All subjects provided written, informed consent for participation
under protocols approved by the institutional review boards of all
participating study centers and conformed to the ethical guidelines
of the 1975 Declaration of Helsinki. Specifically, the human-
derived PBMC samples used in this telomere length HALT-C
ancilliary study came from the following institutions with formal
Institutional Review Board approval obtained from all: Human
Subjects/IRB, University of Massachusetts Medical School,
Worcester, MA; Human Subjects Protection Office, University
of Connecticut Health Center, Farmington, C'T'; Biomedical IRB,
Saint Louis University, Saint Louis, MO; Institutional Review
Board, The University of Texas Southwestern Medical Center,
Dallas, TX; Institutional Review Board, University of Southern
California Health Sciences Campus, Los Angeles, CA; Institu-
tional Review Board for Human Subject Research, University of
Michigan Medical School, Ann Arbor, MI.
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Figure 4. Accelerated telomere length loss (delta TL) occurs in the first 21 months. Delta TL analysis between treatment and control
groups for (A) CD4* and (B) CD8* T cells and their naive and memory subsets for the SO0 to M21, and M21 to M45 intervals. P values from Mann-

Whitney testing. Error bars are mean = standard error.
doi:10.1371/journal.pone.0020922.g004

Subjects and study design

The HALT-C trial design has been described in detail
elsewhere [10]. Initial enrollment criteria required all subjects to
have histologically-confirmed liver fibrosis or cirrhosis (Ishak score
=3). Subjects who remained viremic after 6 months of peg-IFNa
plus ribavirin therapy were randomized either to continued
maintenance-dose (90 ug/week) peg-IFNo for an additional 3.5
years or a monitor-only control group, for a total study duration of
48 months per patient. Neither subjects nor clinicians were
blinded to treatment assignment. Peripheral blood mononuclear
cell (PBMC) samples for telomere length analysis came from a
representative subset of the HALT-C cohort consisting of 29
patients who successfully completed the 48 month randomization
phase from three time points within the study period: screening
(S00), month 21 (M21), and month 45 (M45).

PBMC samples

Subjects from each randomization group, peg-IFNo treatment
and control, were selected as matched-pairs, based on age, gender,
and Ishak fibrosis score (Table 1). Subjects for the peg-IFNo
therapy group were selected for high compliance (>80%). For TL
analysis, we were blinded to treatment group assignment, patient
characteristics, and chronological order for each patient’s PBMC
until after the completed TL data set was returned to the HALT-C
Data Coordinating Center. Patient data (Table 1) included: age at
enrollment and PBMC collections, gender, race, body mass index
(BMI) at enrollment, estimated duration of HCV infection, serum
alanine amino transferase (ALT) levels, serum HCV RNA levels,

@ PLoS ONE | www.plosone.org

and Ishak fibrosis score [15,43,44]. Additionally, PBMC from a
separate, healthy cohort of 19 subjects matching the age range of
the HALT-C subjects were collected with written, informed con-
sent under University of Massachusetts Medical School Institu-
tional Review Board-approved protocols.

Telomere length measurements

TL was measured using a modified flowFISH assay [21]. 4x10°
PBMC from each sample were stained with Alexa700-anti-hCD4
and APC-Alexa750-anti-hCD8 (eBiosciences, San Diego, CA),
treated with 1 mM suberic acid bis(3-sulfo-N-hydroxysuccinimide
ester) sodium salt crosslinker then quenched with 50 mM Tris-
HCI. Cells were fixed in 4% formaldehyde and 0.05% saponin for
25 minutes at 4°C. All samples were incubated in lithium-based
RNase buffer plus 0.05% saponin with 2 ul. RNasel (Promega,
Madison, WI) for two hours. Samples were then divided to three
probe (+) tubes and one probe (—) tube for hybridization in 70%
formamide, 150 mM lithium-chloride buffer at 82°C for 12 min-
utes. Probe (+) tubes contained Cy5-OO-(CCCTAA);-EE peptide
nucleic acid probe at 0.5 pg/mL. After overnight cooling, samples
were washed twice in 70% formamide buffer then with 2 mL PBS,
stained with PE-Cy7-anti-hCD45RA antibody and PE-anti-
hCD57, and resuspended in PBS-BSA containing 0.1 pg/mL
4',6-diamidino-2-phenylindole, dihydrochloride (DAPI).

Sample analysis
Samples were analyzed with a FACS-Aria (BD, San Jose, CA)
cytometer with performance verified prior to each assay using
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Figure 5. TL loss with therapy was lost with increasing age in a T cell subset-dependent manner. Naive CD4" (upper left plot), memory
CD4" (lower left plot), naive CD8" (upper right plot), and memory CD8" (lower right plot) T cell change in telomere length (delta TL) from screening to
month 45 from subjects in both treatment groups. Each symbol is an individual subject’s delta TL for that T cell subset. Filled symbols are IFNo
treatment group subjects, open symbols are control group subjects. Horizontal bars are mean values.

doi:10.1371/journal.pone.0020922.g005

calibration beads. A minimum of 20,000 lymphocyte-gated events
were collected for every tube. Each sample probe (—) tube mean
fluorescence intensity (MFI) was subtracted from the average MF1
of the matching three probe (+) tubes to obtain a specific MFI. A
minimum of 30 events per gated population was employed to
include a resulting MFI in an analysis; this limit only affected
CD57" subsets. Specific MFI values were converted to molecules
of equivalent soluble fluorescence (MESF) using linear calibration
beads-derived MFI to MESF linear equation. A healthy donor
PBMC sample analyzed in triplicate in four of the eight total flow
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FISH analyses provided inter-assay and intra-assay coefficients of
variation (CV). Inter-assay CV for all CD4+ and all CD8+ T cells
were 7.4% and 6.6% respectively. Intra-assay CV for all CD4"
and all CD8" T cells were 1.1% and 1.3% respectively. PBMC
samples from each subject’s three time points were run in the same
assay to minimize inter-assay variation.

Telomerase activity measurement in in vitro activated T
lymphocytes
See supporting file Methods S1.

control group
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Figure 6. Serum ALT correlates with changes in naive T cell telomere lengths in the control group. Average serum alanine
aminotransferase (ALT) levels during the randomization phase correlated with telomere length loss (delta TL) in the no-therapy control group (right-
hand panel), but not in the IFN therapy group (left-hand panel). Delta TL shown is from screening (S00) to month 45 (M45).

doi:10.1371/journal.pone.0020922.g006
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Figure 7. Sustained interferon therapy associated with suppression of CD8" CD45RA" CD57" expansions. CD45RA" CD57" subset
frequency (%) within CD8" T lymphocytes across the three time points for the peg-IFNa subjects (left panel) and the no-therapy, control subjects
(right panel). Individual lines on the plots represent values from each subject across the three time points. * p<<0.05; *** p=0.0001 by Wilcoxon

paired analysis (decr=decrease; incr=increase; ns=not significant).
doi:10.1371/journal.pone.0020922.g007

Data and statistical analysis

Although subjects within the two randomization groups were
initially selected as matched pairs, TL data from one subject was
unusable and therefore unpaired analyses were conducted. For
linear regression analyses, fitted lines, correlation values, and p
values are from linear regression testing. Statistical analyses were
performed using Prism v5.0 (Graphpad, LaJolla, CA) with p
values<<0.05 considered statically significant. All statistical tests
were two-tailed.

Supporting Information

Figure S1 Baseline telomere lengths and CD57' fre-
quencies were not different at screening between the two
groups. (A) Subject telomere lengths at screening. Each symbol is
an individual subject’s TL measured by flowFISH in that T cell
subset. P values are from unpaired ¢ test analysis. Horizontal bars
are mean values. (B) CD57" subset distribution within respective
CD4" and CD8* T cell populations from screening (S00), month
21 (M21), and month 45 (M45). Plots are box and whiskers 5-95
percentile bar graphs showing outlier values; peg-IFNa therapy
subjects shown as empty bars; control group subjects, filled bars.
RA* or RA™ indicates CD45RA* or CD45RA™ respectively, 57
indicates CD57".

JPG)

Figure S2 Induced telomerase activity in PBMC be-
tween treatment groups was not different at any time
point. Telomerase activity (I'A) was assessed in i vitro stimulated
PBMC from each of the three time points, screening (S00), month
21 (M21), and month 45 (M45), and the results analyzed between
treatment groups as shown. Statistical p values are from Mann-
Whitney non-parametric analysis. PBMC were stimulated with
plate-bound anti-CD3 plus anti-CD28 for 3 days and then tested
for TA by a commercial real-time PCR-based TRAP assay as
described in Methods S1.

JPG)

Methods S1 Telomerase activity measurement in in
vitro activated T lymphocytes.
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