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Abstract

Objectives: To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to
identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans.

Methods: We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and
different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene
chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression)
was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and
(2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each
experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to
predict the development of lung injury in human lung transplant recipients.

Results: Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models
were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI).
Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with
differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung
injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy
based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by
using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis.

Conclusion: Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of
‘‘injury’’ gene predictors that can classify lung injury samples and identify patients at risk for clinically relevant lung injury
complications.
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Introduction

Acute lung injury (ALI) and acute respiratory distress syndrome

(ARDS) are associated with significant morbidity and mortality

(30–50%) [1]–[3]. Despite advances in supportive care, no

therapies have shown benefit in large randomized clinical trials,

other than the use of lung protective mechanical ventilation (MV)

strategies. Exposure to repetitive cyclic stretch (CS) and/or over-

inflation exacerbates injury. Reducing tidal volume (VT) improves

survival. One reason for the lack of positive clinical trials may

relate to our incomplete understanding of the pathogenesis of this

syndrome. The paucity of ALI tissues for diagnostic and

pathological studies, the high rate of intra-observer variability

and the discrepancies between clinical and autopsy findings make

it difficult to select patients for ongoing clinical trials and/or to

identify clinically relevant classifiers of subgroups of patients for

therapy. Moreover, interpreting mechanistic data from cell and

animal models in the context of patients is a challenge.

Accordingly, there is an urgent need to translate biologically

relevant information to patients with lung injury.
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To identify biomarkers [4], many studies have looked at the use

of a-priori defined markers in pulmonary oedema fluid [5]–[7],

blood [8]–[14] and urine [15]–[16] from ALI/ARDS patients. In

parallel, genomic approaches have offered an unprecedented

opportunity to perform ‘‘unsupervised’’ searches for novel

biomolecular markers of injury. Experiments using microarray

technology have identified individual gene expression markers of

potential diagnostic and prognostic significance [17]–[18]. Our

group has explored the global response to injury [19]–[20] and

identified the presence of injury-specific expression profiles in

comparable lung injury models. Here, genes that shared

transcription profiles were biologically related, suggesting the

information contained within expression profiles can help to

identify and inform regarding mechanisms of ALI.

While individual microarray studies can be informative in

identifying single genes [21] or significant biological pathways

[22], it is still difficult to make direct comparisons between results

obtained by different groups, since laboratory protocols, micro-

array platforms and analysis techniques differ appreciably. Most

individual studies have relatively small sample sizes, and hence

prediction models are prone to over-fitting, and are thus less

robust and less generalizable; precluding the development of

classification models that can be translated from animals to

humans. Recent studies have shown that the systematic integration

of gene expression data from multiple sources can increase

statistical power for detecting differentially expressed genes while

allowing for an assessment of heterogeneity, and may lead to more

robust, reproducible and accurate predictions [23]–[26].

We used such an approach to conduct a cross-species and cross-

platform meta-analysis of existing ALI-related microarray data.

We approached the problem of data reproducibility by using a

random-effects model to integrate the effect size of gene-specific

expression changes in each individual experiment. We demon-

strated the proof of concept by validating our approach using both

animal and human external microarray data sets publicly available

from the National Center for Biotechnology Information (NCBI)

Gene Expression Omnibus (GEO). We used molecular injury

expression profiles to classify human pulmonary cells exposed to

various injury stimuli (cyclic stretch, Lipopolysaccharide (LPS) and

tumour necrosis factor alpha (TNF-a) to their correct injury class

and prospectively classify samples from a rat model of VILI. In

addition, to demonstrate the clinical applicability of our approach,

we used the meta-analysis results to develop a molecular classifier,

a set of gene expression profiles, to detect clinically relevant lung

injury in transplant donor lungs which would predict development

of primary graft failure (PGF) in lung transplant recipients.

Results

We combined a total of 77 microarray chips across six

platforms, two species and different animal lung injury models

downloaded from NCBI/GEO and one unpublished experiment

from our group (named as Rat_UP in Table 1). Since mechanical

ventilation plays a critical immunomodulatory role in patients, we

included only studies involving ventilated animal models of ALI

(Table 1). Our goal was to determine the ‘‘effect size’’ of injury on

gene expression (i.e. differential expression). Accordingly, individ-

ual gene chips from each of the studies were classified and grouped

based on the original strategy used to induce lung injury (Table 2).

We considered two main comparisons: the one-hit model which

compared chips from animals exposed to ‘‘one-hit’’ models of

overventilation lung injury: no ventilation (NV) or minimally

injurious ventilation (low tidal volume, LV) vs. injurious ventilation

(high tidal volume, HV); and the two-hit model which compared

chips from animals exposed to ‘‘two-hit’’ models of lung injury,

lung inflammation alone (Inf) vs. MV+Inf (two-hit model).

Figure 1 shows a schematic of the experimental design of our

analyses. To compare between different microarray platforms, we

generated a master database of orthologous probesets connecting

individual platform specific probe identifiers (ID) to the Affymetrix

Human U133 Plus 2.0 chip (See Materials and Methods). A total

of 39,570 ortholog ESTs were included in the analysis (Table S1).

Meta-analysis of ALI-related models of lung injury
For each comparison of the ‘‘one-hit’’ and ‘‘two-hit’’ models,

the effect size (change in gene expression) was determined by the

standardized mean difference for each gene in each individual

experiment. We integrated the effect size across experiments using

a random effects model [27]. The statistical significance of an

overall change in gene expression across studies was provided by

calculating the p-value corresponding to this z-statistic, and then

estimating the false discovery rates (FDR) for each significance

level. This takes into account the number of tests performed and

corrects for multiple comparisons (adjusted p-value). We consid-

ered expressed sequence tags (ESTs) with an FDR#0.1 to be

differentially altered in each comparison. Despite large changes in

expression (effect size) many genes were excluded on the basis of a

high FDR (Figure 2a). A total of 690 and 1695 ESTs probe sets

corresponding to 299 and 723 unique genes were identified as

significantly changed for the one- and two-hit model comparisons

respectively (Tables S2 and S3). The overlap between differen-

tially regulated genes in the two models is shown in Figure 2b.

Tables 3 and 4 show the top 20 genes identified as significantly

changed in the one- and two-hit models of lung injury. Thirty

percent of all significant genes identified by the meta-analysis were

not found to be differentially expressed when the individual studies

were analyzed separately using SAM (significant analysis of

microarray) (Figure 2c). This meta-analysis approach clearly

identifies genes demonstrating consistent differential expression

signals across studies. For example, among the top 20 genes, many

of them show very stable expression patterns across the studies for

either the one-hit model (Figure S1a or the two-hit model

(Figure S1b). This strongly suggests that lung injury expression

profiles of the most significant altered genes are most likely to be

echoed across multiple platforms and species. It should be also

noted that if a particular gene behaves completely differently in

another species, it would (presumably) not rank highly in our

meta-analysis frameworks.

Functional enrichment analysis for differentially
regulated genes

To assess the biological plausibility of the gene lists identified,

we performed functional enrichment analysis in Ingenuity

Knowledge Base (IngenuityH Systems, www.ingenuity.com) for

each gene-list separately (Table 5). The top functional enrichment

for the one-hit comparison was for genes involved in develop-

mental pathways. Of note, the one hit list was enriched for 11

genes encoding developmentally related transcription factors:

Homeobox (B5, A5, B6, A3, D10), Iroquois 3 (Irx3), myeloid

ecotropic viral integration site 1 homolog and site 1 homolog 2

(meis1 and meis2), pre-b-cell-leukemia transcription factor 2

(PBX2), lag1 longevity assurance homolog 4 (LASS4, s. cerevisiae),

and pou domain, class 6, transcription factor 1 (POU6F1). In

contrast, the two-hit list was enriched for genes involved in cellular

motility, tetraspanin domain containing proteins (tetraspanin 3, 6,

7, 17, CD81 and CD9) and leukocyte related antigens (CD9/

CD37/CD63). Both gene lists were enriched for genes involved in

various canonical pathways previously implicated in VILI

Microarray Meta-Analysis in ALI
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Figure 1. Flowchart of microarray meta-analysis and validation procedure. Differentially expressed genes were identified by meta-analysis
of rat and mouse microarray expression data based on one-hit and two-hit animal lung injury models. Top genes were validated in an external data
base on mouse model of VILI and in human cells exposed to cyclic stretch alone or in the presence of specific inflammatory mediators. Genes
differentially expressed in one-hit model and two-hit models were used to build classifiers in donor lungs and predict lung injury and likelihood of
primary graft failure in patients following lung transplantation.
doi:10.1371/journal.pone.0045506.g001
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Table 1. Summary of experiments included in microarray meta-analysis.

Experiments Species Platforms Number of Chips GEO Series Number Injury mechanisms

GSE2411 Mouse Affymetrix MOE430A 6 GSM45427 – 32 NV

6 GSM45433 – 8 MV

6 GSM45439 – 44 LPS

6 GSM45445 – 50 MV+LPS

GSE2368 Rat Affymetrix RG-U34A 2 GSM44768 – 9 NV

2 GSM44770 – 1 MV

GSE2368 Mouse Affymetrix MG-U74A 2 GSM44772 – 3 NV

2 GSM44774 – 5 MV

Rat_UP* Rat Affymetrix RG-U34A 2 UP MV

2 UP NV

2 UP HV+AA

2 UP MV+AA

2 UP AA

GSE2635 Mouse Codelink Uniset Mouse-1
10 k

3 GSM50728–30 LV

3 GSM50734–6 HV

GSE4215 Mouse Codelink Uniset Mouse-1
10 k, 20 k

7 GSM96191–4 GSM96233 –6 LV

5 GSM96195–7 GSM96237–41 LPS

6 GSM96198–9 GSM96232 GSM96242–4 HV

5 GSM96245–9 HV+LPS

GSE7041 Rat Affymetrix RAE230V2 3 GSM162917–9 NV

3 GSM162923–5 HV

Publicly available data were downloaded from NCBI GEO, and mechanism of injury used for animal hybridized to individual chips: Non-ventilated (NV), Mechanical
ventilation (MV), high tidal volume (HV), low tidal volume (LV), lipopolysaccharide (LPS), acid aspiration (AA), and Unpublished (UP).
*Rat-UP: Unpublished rat gene expression data generated in this study.
doi:10.1371/journal.pone.0045506.t001

Table 2. Group assignment of microarray chips.

Experiments Platforms
Control group (non-or very mild
lung injury samples) Case group (lung injury samples)

One-hit model of lung injury

GSE2411 Affymetrix MOE430A NV (6 chips) MV (6 chips)

GSE2368 Affymetrix RG-U34A NV (2 chips) MV (2 chips)

GSE2368 Affymetrix MG-U74A NV (2 chips) MV (2 chips)

Rat-UP Affymetrix RG-U34A NV (2 chips) MV (2 chips)

GSE2635 Codelink Uniset Mouse-1 10 k LV (3 chips) HV (3 chips)

GSE4215 Codelink Uniset Mouse-1 10 k LV (3 chips) HV (3 chips)

GSE4215 Codelink Uniset Mouse-1 20 k LV (4 chips) HV (3 chips)

GSE7041 Affymetrix RAE230V2 NV (3 chips) HV (3 chips)

Two-hit model of lung injury

GSE2411 Affymetrix MOE430A LPS (6 chips) MV+LPS (6 chips)

Rat-UP Affymetrix RG-U34A AA (2 chips) HV+AA (2 chips)

MV+AA (2 chips)

GSE4215 Codelink Uniset Mouse-1 20 k LPS (5 chips) HV+LPS (5 chips)

All microarray chips were assigned, depending on the model of lung injury, to either of two comparisons: One-hit vs. Two-hit models of VILI. Microarray chips included
in the meta-analysis (see Table 1) were classified according to the treatment strategies used to induce lung injury. For each comparison we determined the chips that
would serve as either control or treatment based on the research question of interest. Non-ventilated (NV), mechanical ventilation (MV), high tidal volume (HV), low tidal
volume (LV), lipopolysaccharide (LPS), and acid aspiration (AA).
doi:10.1371/journal.pone.0045506.t002
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including ‘NF-kB signalling’, ‘IL-10 signalling’, ‘IL-6 signalling’

and ‘NRF-2 mediated oxidative stress response’ (Table 6).
Validation of meta-analysis results

Validation using an External Microarray Data Set

(Animal Models of ALI and VILI). We validated our gene

Figure 2. Identification of Acute Lung Injury Profiles. (a) Relationship between adjusted pvalue and mean effect size (MSE). (b)
Overlap of significantly expressed genes (FDR#0.1) between one-hit and two-hit models of VILI. Significantly altered probesets were
matched between one-hit and two-hit models of VILI and collapsed to their corresponding genes using the annotation file for the Affymetrix U133
Plus 2.0 chip. (c) Identification frequency of significantly expressed genes from one-hit and two-hit models of VILI. Significantly
expressed genes (FDR#0.1) in the individual experiments were chosen using two-class unpaired SAM. Rat and mouse datasets from GSE2368 were
considered one experiment, and normalized data provided in supplementary data was used for analysis. The frequency of the significantly expressed
genes from meta-analysis of one-hit and two-hit models of VILI were evaluated by counting the times these genes were also found significantly
expressed in individual experiment. Note: ‘‘All’’ means all the experiments used in meta-analysis; ‘‘None’’ means genes only found in meta-analysis
but not in individual experiments.
doi:10.1371/journal.pone.0045506.g002
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Table 3. Top 20 genes identified by the microarray meta-analysis as differentially expressed in the one-hit model of VILI.

Gene Symbol MES* Adjusted p-value No. of Exp** Gene Title

TIPARP 4.74 0.00034 3 TCDD-inducible poly(ADP-ribose) polymerase

HK2 2.03 0.00045 8 Hexokinase 2

GADD45A 3.63 0.00139 8 Growth arrest and DNA-damage-inducible

CCRN4L 2.59 0.00203 6 CCR4 carbon catabolite repression 4-like (S. cerevisiae)

HOXB5 21.97 0.00203 6 Homeobox B5

DLG3 21.67 0.00203 8 Discs

IRX3 21.97 0.00203 6 Iroquois homeobox protein 3

D4ST1 22.16 0.00250 5 Dermatan 4 sulfotransferase 1

CD79A 22.06 0.00251 5 CD79a molecule

CREM 3.01 0.00254 8 cAMP responsive element modulator

HSPB8 1.85 0.00254 6 Heat shock 22 kDa protein 8

CLDN7 1.58 0.00325 8 Claudin 7

ADCY6 21.59 0.00359 8 Adenylate cyclase 6

SERTAD1 1.74 0.00359 6 SERTA domain containing 1

UBE2D3 1.75 0.00374 8 Ubiquitin-conjugating enzyme E2D 3 (UBC4/5 homolog)

ACTG1 1.70 0.03740 8 Actin, gamma 1

MCAM 1.70 0.00374 6 Melanoma cell adhesion molecule

TNFSF9 1.94 0.00374 5 tumor necrosis factor (ligand) superfamily

RBM17 1.77 0.00374 6 RNA binding motif protein 17

ST3GAL1 1.85 0.00398 5 ST3 beta-galactoside alpha-2

*MSE: mean effect size.
**The number of experiments the gene found.
doi:10.1371/journal.pone.0045506.t003

Table 4. Top 20 genes identified by the microarray meta-analysis as differentially expressed in two-hit model of VILI.

Gene Symbol MES Adjusted p-value No. of Exp** Gene Title

CSAD 24.56 0.00044 3 Cysteine sulfinic acid decarboxylase

PRX 24.12 0.00044 3 Periaxin

TSPAN3 23.84 0.00071 3 Tetraspanin 3

PCCA 23.60 0.00111 3 Propionyl Coenzyme A carboxylase

FAH 23.42 0.00143 3 Fumarylacetoacetate hydrolase

GSTA4 5.24 0.00143 3 Glutathione S-transferase A4

PLK2 3.24 0.00164 2 Polo-like kinase 2 (Drosophila)

ADORA2B 23.25 0.00179 3 Adenosine A2b receptor

CD81 24.66 0.00180 3 CD81 molecule

CBR4 23.01 0.00250 2 Carbonyl reductase 4

NDUFAF3 24.66 0.00250 3 NADH dehydrogenase (ubiquinone)

WBP1 3.01 0.00250 2 WW domain binding protein 1

BTG3 24.45 0.00260 3 BTG family protein 3

PLVAP 22.91 0.00260 2 Plasmalemma vesicle associated protein

PMP22 22.86 0.00327 3 Peripheral myelin protein 22

NAGLU 24.56 0.00473 1 N-acetylglucosaminidase

TENC1 24.12 0.00473 3 Tensin like C1 domain containing phosphatase (tensin 2)

KCNJ8 24.42 0.00489 3 Potassium inwardly-rectifying channel

LAMB1 4.42 0.0082367 3 Laminin

CAV1 4.59 0.0082367 3 Caveolin 1

doi:10.1371/journal.pone.0045506.t004
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lists using an external microarray data set that was not part of the

meta-analysis. For this purpose, we ranked the genes identified in

the one-hit model meta-analysis by adjusted p-value and

empirically used the top 20 genes to classify an external data set

of 10 whole lung (mice) injury samples down loaded from NCBI

GEO (GSE11434 [28], Table 7). Normalized intensity values for

individual gene probe sets were matched to our ortholog ID file

(See Materials and Methods). Unsupervised hierarchical clustering

correctly assigned all individual chips into their specific treatment

groups (LV vs. HV ventilation) with 100% accuracy (Figure 3a).

The distribution of prediction accuracies based on 1000 random

sets of 20 genes with similar size is shown in (Figure S2a) and

none of the 1000 random sets gave 100% accuracy.

Prospective Validation using Rat Model of Acute Lung

plus VILI. To prospectively validate the top genes identified by

the meta-analysis, we conducted new experiments in the lab using

a well established clinically relevant model of pneumonia exposed

to injurious or non-injurious MV. Sprague Dawley rats were

randomized to intra-tracheal instillation of Klebsiella pneumoniae or

equal volume saline. After 24 hrs rats were re-randomized to receive

MV with either non-injurious LV (6 ml/kg and 5 cm H2O of

PEEP) or injurious HV (12 ml/kg without PEEP) ventilation for

3 h [13]–[][15]. At the completion of the experiment, total RNA

was extracted from whole lungs and the expression of the top 20

genes identified through the meta-analysis (one-hit model in

Figure 3b and two-hit model in Figure 3c) were successfully

confirmed prospectively by qRT-PCR.

Validation in Human Lung Cell Line and Primary

Pulmonary Cells. Our lab has previously profiled differential

gene expression in human bronchial small airway epithelial cells

(BEAS2b) in response to cyclic stretch alone, or in combination

with two distinct inflammatory insults - lipopolysaccharide (LPS)

or tumour necrosis factor alpha (TNFa) (GSE16650 [29]). An

identical experimental design (one-hit, cyclic stretch alone and

two-hit, cyclic stretch plus inflammation induced with either LPS

or TNF-a) has been performed in primary small airway epithelial

Table 5. Predicted functional enrichment for genes identified by the one-hit and two-hit models of VILI.

One-hit Model Two-hit Model

Term No. of Genes P-value Term No. of Genes P-value

Development 95 9.27E-14 Cellular Movement 79 6.47E-9

Cell Death 87 3.90E-13 Amino Acid Metabolism 58 9.55E-7

Immunological Disease 44 3.62E-9 Small Molecule Biochemistry 72 9.55E-7

Connective Tissue Disorders 29 6.98E-9 Cellular Growth and Proliferation 121 2.79E-6

Inflammatory Disease 40 6.98E-9 Cell Signalling 136 5.23E-6

Skeletal and Muscular Disorders 30 6.98E-9 Connective Tissue Development and
Function

34 5.46E-6

Cellular Movement 49 3.45E-8 Drug Metabolism 17 6.84E-6

Hematological System Development and
Function

37 3.45E-8 Cancer 114 7.18E-6

Immune Response 43 3.45E-8 Cell-To-Cell Signaling and Interaction 64 1.06E-5

Cancer 101 8.05E-8 Cellular Compromise 23 1.06E-5

Functional specific enrichment amongst differentially expressed genes identified using Ingenuity Pathway Analysis. Differential genes from one-hit and two-hit models
were analysed separately.
doi:10.1371/journal.pone.0045506.t005

Table 6. Top 10 canonical pathways enriched in one-hit and two-hit models of VILI.

One-hit Model Two-hit Model

Term No. of Genes P-value Term No. of Genes P-value

Starch and Sucrose Metabolism 6 4.57E-5 LPS/IL-1 Mediated Inhibition of RXR Function 17 1.23E-6

NF-kB Signaling 8 5.50E-5 NRF2-mediated Oxidative Stress Response 15 1.35E-6

VEGF Signaling 6 9.33E-5 Integrin Signaling 18 6.16E-6

IL-10 Signaling 5 1.70E-4 Aryl Hydrocarbon Receptor Signaling 13 1.15E-5

Hepatic Cholestasis 7 2.40E-4 b-alanine Metabolism 10 4.47E-5

Galactose Metabolism 4 3.39E-4 Alanine and Aspartate Metabolism 9 4.47E-5

Integrin Signaling 8 4.57E-4 Xenobiotic Metabolism Signaling 17 6.03E-5

Toll-like Receptor Signaling 4 4.68E-4 Glutathione Metabolism 10 6.61E-5

IL-6 Signaling 5 8.13E-4 Butanoate Metabolism 10 1.55E-4

Hepatic Fibrosis/Hepatic Stellate Cell Activation 6 8.91E-4 Valine, Leucine and Isoleucine Degradation 9 8.91E-4

Canonical pathway specific enrichment amongst differentially expressed genes identified using Ingenuity Pathway Analysis. Differential genes from the one-hit and
two-hit models were analysed separately.
doi:10.1371/journal.pone.0045506.t006
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cells (SAEC, unpublished data from our lab named as Human_UP

in Table 7). We performed unsupervised clustering of gene

expression data from both BEAS2b and SAEC using the top 20

genes from the meta-analysis. The gene list generated by the one-

hit model comparison correctly grouped cells that had been

exposed to cyclic stretch with 100% accuracy (Figure 4a). The

distribution of prediction accuracies based on 1000 random sets of

20 genes with similar size is shown in (Figure S2b), and again,

none of the 1000 random gene sets demonstrated 100% prediction

accuracy. The top 20 genes from the two-hit model (Figure 4b)

correctly classified chips from cells exposed to two-hits (cyclic

stretch plus LPS or TNFa) but classified the TNFa alone group

with the two-hit chips. The dendogram suggests TNF-a is a

powerful transcriptional stimulus generating greater transcription-

al similarity than that between other competing injury stimuli.

We have demonstrated that selecting top differentially-ex-

pressed genes via meta-analysis leads to a replicable set able to

classify both human and rat cells to the correct injury model. In

contrast, we also performed computational validation using the top

20 genes selected from the one-hit model in a single study

(GSE2411, Table 2), one of the studies in the meta-analysis.

These genes were used to classify lung injury samples from the

same independent microarray experiment that was used above,

(GSE11434, Table 7) (Figure S3a), and also to classify human

bronchial epithelial distal airway small cells from the (BEAS2b)

microarray experiment (GSE16650, Table 7), which was also

used above (Figure S3b). The top 20 genes from the differential

analysis of the individual study used in meta-analysis can identify

group assignment correctly for all independent animal samples

(Figure S3a), but cannot classify the human samples correctly

(Figure S3b). Therefore, we suggest that the top genes selected

from the meta-analysis approach have better power to predict

human lung injury samples than those selected from a single study.

For other single studies in Table 2, we did not perform the above

analysis because they have too small sample size [2]–[][4] to be

analysed along.

Developing a molecular classifier of clinically relevant ALI
To determine whether our approach in developing a ‘gene-

gene’ meta-analysis could generate clinically informative data that

could be translated to humans, we used genes from the meta-

analysis to classify human samples from patients who we thought

could have lung injury. Frozen lung tissue samples from ALI/

ARDS patients are very difficult to obtain. We used available gene

expression data generated from transplanted donor lungs. The

microarray chips were downloaded from NCBI GEO (GSE8021

[30] in Table 7). In this experiment, total RNA from 50 donor

lungs were collected and hybridized to Affymetrix Human U133

Plus 2.0 chips. Gene expression profiles from donors were used to

predict the advent of primary graft failure (PGF) in transplant

recipients. PGF is a devastating form of ALI that mimics ARDS

clinically. In addition, most donors receive short periods (usually

days) of MV. Probe set IDs were matched to our ortholog database

as described. We hypothesized that if the differentially expressed

genes identified by the meta-analysis were truly representative of

an acute ‘‘injury’’ profile, then this profile would be ‘‘transplanted’’

to the recipients and be associated with the development of PGF.

More importantly, healthy patients, who do not develop PGF

should not develop a transcriptional profile consistent with ALI.

We used a supervised misclassification-penalized posteriors

(MiPP) [31] classification algorithm to develop a molecular

predictor to classify clinically relevant ALI (See Materials and

Methods for detail). As a first step, we evaluated the ability of the

two differential gene lists from meta-analysis (Table S2 for one-hit

model and Table S3 for two-hit model) to predict PGF. We split

the dataset into a training group (33 samples) and a test group (17

samples) and used the MiPP algorithm to sequentially select genes

one at a time using linear discriminant analysis (LDA) and 5-fold

Figure 3. Validation using external animal lung injury samples. (a) Clustering of gene expression data of animal lung injury samples using
top genes differentially expressed in one-hit model (NV or LV vs. HV). Top 20 genes were selected from one-hit model as ranked by lowest FDR to
classify lung injury samples from an independent microarray experiment, not included in the meta-analysis. These genes were selected by mapping
all differential genes with FDR, = 0.1 from the one-hit model to the external data set (GSE11434, Table 7). Unsupervised hierarchical clustering was
used to cluster the data (Red, up-regulated in HV; green, down-regulated in HV). The top 20 genes from the meta-analysis identified group assignment
correctly for all samples. Selected top genes identified in the one-hit model (b) and two-hit model (c) were confirmed by qRT-PCR in a rat model of
lung injury.
doi:10.1371/journal.pone.0045506.g003

Table 7. Summary of studies used for validation.

Experiments Species Platform # of Chips Experiment Details

GSE11434 Mouse ffymetrix MOE430V2 10 Mice were anaesthetized. Saline (0.25 mL) was given every hour ip. Mice were
ventilated with an initial peak airway pressure of 20 cmH2O approximating a
tidal volume of 20 mL/kg and without end-expiratory pressure. Ventilation was
continued for 3 h. Tidal volume was not adjusted. Control mice were treated
identically, but were not mechanically ventilated (i.e. breathed spontaneously).
There were 5 biological replicates in each group.

GSE16650 Human Affymetrix U133plus2 12 Bronchial epithelial distal airway small cells (BEAS2b) were randomized to 6
treatment groups (i) static control, (ii) cyclic stretch (22% elongation, 30 cycles/
min), LPS (1 mg/mL), TNF (20 ng/mL), LPS+cyclic stretch and TNF+cyclic stretch

Human_UP* Human ffymetrix U133plus2 12 Small Airway Epithelial Cells (SAEC) were randomized to 6 treatment groups (i)
static control, (ii) cyclic stretch (22% elongation, 30 cycles/min), LPS (1 mg/mL),
TNF (20 ng/mL), LPS+cyclic stretch and TNF+cyclic stretch

GSE8021 Human ffymetrix U133A 2.0 50 50 human donor lung samples were divided into two groups - those that
developed PGD after transplantation (PGD positive) and those that did not
(PGD negative)

*Human-UP: Unpublished human gene expression data generated in this study.
doi:10.1371/journal.pone.0045506.t007
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cross-validation in the training group. Through 20 randomly

partitions of the 50 samples into training and test groups,

differentially regulated genes from the two-hit model were able

to predict PGF with an average accuracy of 82.4% in the training

group and 71.3% in the test group. In contrast, genes from the

one-hit model predicted PGF with an average accuracy of 88.9%

in the training group and 77.6% in the test group. Therefore, both

of our selected gene lists gave fairly good predictions of PGF.

However, we also found that the gene list obtained from the one-

hit model was slightly more informative in accurately classifying

patients with and without PGF

We further performed a five-fold cross-validation on the full 50-

sample dataset using the differential genes identified from meta-

analysis in the one-hit model (Table S2). Figure 5 shows the

receiver operating characteristic (ROC) and the area under the

curve (AUC) of the prediction model with an optimal set of 15-

genes chosen in the MiPP classification procedure (See Materials

and Methods). The analysis procedure is named as Meta-MiPP.

The accuracy was 86% with a sensitivity of 75% and a specificity

of 91.2% for the 50-sample dataset, compared to 57.7% using P:F

ratios (the ratio of arterial oxygen concentration to the fraction of

inspired oxygen) alone to predict PGF. The change in gene

expression profile of 6 genes used in all of the 5-fold cross-

validation experiments was determined by qRT-PCR in lung

tissues from rats used in the prospective Klebsiella pneumonia plus

VILI (Figure 6).

We also performed a five-fold cross-validation on the full 50-

sample dataset using the top 690 differential probesets identified

from the individual study with the largest sample size (GSE2411,

Table 2) in the one-hit model. We also used the MiPP

classification procedure. The analysis procedure is named as

Individual-MiPP. Its receiver operating characteristic (ROC), and

the area under the curve (AUC) of the prediction model with an

optimal set of 25-genes is also shown in Figure 5. Comparing

with the performance of the MiPP predictor built on 15-genes

optimally selected from the differential gene list in one-hit model

(Table S2), the performance of the MiPP classifier built on 25-

genes optimally chosen from the differential gene list in the single

study is worse (accuracy 72%, sensitivity 50%, specificity 82%).

We also compare classification performance using a second

predictive model, the k-top scoring pair (k-TSP) classification

algorithm [32]. To make a fair comparison, we used the same 690

probesets in Table S2 used in Meta-MiPP and the same top 690

differential probesets identified from the individual study with the

largest sample size (GSE2411, Table 2) in the one-hit model and

used in Individual-MiPP. The k-TSP algorithm based on the two

gene lists are named as Meta_k-TSP and Individual_k-TSP,

respectively. The five-fold cross-validation procedure identified the

optimal k to be 9 and 2 (or 9-gene pairs and 2-gene pairs) for

Meta_k-TSP and Individual_k-TSP, respectively. As shown in

Figure 5, Meta_k-TSP classifier has a larger AUC value than

Individual_k-TSP, suggesting the gene signatures identified from

our meta-analysis framework has improved classification perfor-

mance over those identified from individual study. It should be

noted that the major focus of our study is on integrating

microarray data sets across platforms and species to identify

biomarkers for predicting development of primary graft failure in

recipients, rather than using gene signatures identified from

individual studies. We used existing classification methods (MiPP

and k-top scoring pairs) to perform the prediction. In this sense, we

are not claiming one classification method (such as MiPP) is better

than another method (such as k-top scoring pair).

Discussion

Whole genome profiling using microarray technology has

emerged as an ‘unsupervised’ strategy to identify potential

candidate ‘‘disease’’ informative genes. Differential expression of

genes in response to a particular stimulus is used as an indicator of

molecular phenotype(s). An extension of this method relies on the

hypothesis that co-expression of genes in response to a specific

stimulus - across species - could also be exploited. In the case of

Figure 4. Validation using human pulmonary cells exposed to
cyclic stretch with or without combined exposure with two
inflammatory insults. Top 20 significantly expressed genes from one-
hit model or BEAS2b (a) and two-hit model or SAEC (b) were mapped to
the external gene expression data of human pulmonary cells.
Unsupervised hierarchical clustering was used to cluster the data
(Red, up-regulated in HV; green, down-regulated in HV). The top 20
genes from the meta-analysis identified group assignment correctly for
all samples.
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lung injury, this commonality might relate to unsuspected

evolutionarily conserved responses to lung injury. In this study,

we provide a method for gene-by-gene comparison and analysis of

microarray datasets originating from multiple species and injury

models of ALI. Our main goal was to capitalize on existing

electronic data, identify biologically and statistically robust ways to

integrate critical information contained in microarray studies, and

demonstrate that integration of experimental data can be a

valuable method to identify biologically relevant signatures of lung

injury that may have an impact on patient care. Our results show

that the genes selected from our meta-analysis have potential

clinical application in developing a predictor model for lung

injury.

A key biological concept used in this study to integrate data

from different experiments relies on the idea that an individual

‘‘disease phenotype’’ (lung injury) is comprised of the sum of cell

and organ-specific, developmental stage, and metabolism related

changes in gene expression. Genome-wide gene regulatory

networks govern this behaviour. Theoretical studies of complex

networks suggest that these can exhibit ordered (stable) dynamics,

raising the possibility that molecular phenotypes of illness may

represent high-dimensional attractor states that can be identified

by whole genome analysis of expression patterns. To demonstrate

proof of concept, we show that the relevant biological pathways

predicted by the meta-analysis include those previously implicated

in ALI and VILI, such as NF-kB and IL-6 signalling, lending

support to the validity of our meta-analysis model [33]. We also

identified many functional groups related to tissue development

and cellular growth, two classifications which are well-linked to the

pathogenesis of lung injury. Here, we note that many genes from

the homeobox family, including HOXA5, HOXB5, and HOXB6,

which have not been implicated in the tissue remodelling process

of lung injury, were found significantly down-regulated in our

study. In particular, other studies have shown that HOXA5 has

normal expression levels in adult human lungs, and hypothesize

that it plays a prominent role in postnatal lung homeostasis.

HOXA52/2 mice exhibit respiratory distress syndrome-like

symptoms, and show decreased expression levels of lung surfac-

tant-related proteins [34], suggesting that down-regulation of

homeobox genes may be involved in the pathogenesis of VILI, and

are intriguing subjects for the future study of lung injury.

Various groups [35]–[36], including our own [20], have

hypothesized that acute injury profiles are ‘‘echoed’’ across species

and models. The unique aspect of our study is the methodology

Figure 5. Comparison of classification strategies. The receiver operating characteristic (ROC) of PGF and GOOD samples using four
classification strategies: (a) Meta_MiPP: Starting from the 690 significant probesets (FDR, = 0.1) selected by meta-analysis we proposed in the
study. An optimal 15_gene list from the 690 probesets was selected from MiPP classifier. ROC curve is drawn based on the five-fold cross-validation of
the 50 human donor lung samples (GSE8021, Table 7) using the 15-gene prediction model. (b) Individual_MiPP: Top 690 probesets were selected
from one-hit model in an individual study (GSE2411, Table 2) based on effect size. The reason for selecting this study is that it has the largest sample
size. The performance of the MiPP classifier built on 25-genes optimally chosen from the 690 gene list in the single study is evaluated by ROC using
five-fold cross-validation. (3) Meta_k-TSP: Starting from the 690 significant probesets selected by meta-analysis, then an optimal 9_gene pairs from
the 690 probesets was selected from k-TSP classifier. The k (k = 9) and ROC curve are based on the five-fold cross-validation. (4) Individual_k-TSP:
Top 690 probesets were selected from one-hit model in an individual study (GSE2411, Table 2). An optimal 1_gene pairs from the 690 probesets was
selected from k-TSP classifier. The k (k = 1) and ROC curve are based on the five-fold cross-validation.
doi:10.1371/journal.pone.0045506.g005
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used to detect such profiles. Our approach substantially increases

sample size, reducing the effects of noise, thereby allowing

identification of biologically meaningful genes and patterns with

a higher statistical level of confidence. To demonstrate the validity

of our methodology, we used genes identified by the meta-analysis

to classify lung injury samples from both animals and human cells.

Two important observations were made: First, genes selected from

the meta-analysis could identify injury phenotypes with a

probability significantly better than random chance alone; and

second, the ‘‘one-hit’’ gene list was able to correctly classify

samples in all validation models more consistently and accurately.

One potential explanation for this is that while the appearance of

inflammation-related expression profiles may be transient because

of fluctuations in cellular and humoral mediators, the effects of

cyclic mechanical forces on lung parenchyma are more consistent

and repetitive. This allowed us to detect similar response profiles in

a human pulmonary cell line, primary lung cells, animals and

humans exposed to cyclic stretch.

We chose to demonstrate the performance of our model on

human lung transplant patients with PGF because this complica-

tion can manifest with symptoms similar to ARDS and (contrary

to ARDS) microarray data from lung tissues are available. We

only had access to lungs that were actually transplanted. Severely

injured lungs were not included in the study because they are

rejected based on clinical profiles. This biased our study towards a

more ‘‘benign’’ profile - thus likely leading to less pronounced

molecular differences (effect-size) between donor lungs that may or

may not develop PGF down the road. Another important

limitation is that we did not have access to the ventilation history

of patients. We contacted the authors to obtain details about

ventilation protocols but this information had not been recorded.

Notwithstanding, we were able to predict development of PGF in

lung transplant recipients based upon injury profiles within lungs

Figure 6. Validation of the genes used in the prediction model by qRT-PCR. qRT-PCR of selected genes. The gene expression was
normalized against GAPDH. The changes in gene expression are expressed as fold change relative to GAPDH and the baseline sample from non-
ventilation samples. Data are presented as means6 SEMs (n = 3), * p,0.05 between non-ventilated and ventilated groups. TCDD-inducible poly(ADP-
ribose) polymerase (Tiparp); arginase, type II (Arg2), melanoma cell adhesion molecule (Mcam), plasminogen activator, urokinase receptor (Plaur),
coagulation factor III (F3, thromboplastin, tissue factor), and nuclear factor, erythroid derived 2, like 2 (Nfe2l2).
doi:10.1371/journal.pone.0045506.g006
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from transplant donors. The accuracy of our prediction was 86%

with a sensitivity of 75% and a specificity of 91.2% for the 50-

sample dataset, compared to 57.7% using P:F ratios alone. Our

data suggests an important link between lung injury (in donors)

and outcomes post-transplantation (recipients). Future prospective

studies will address the relationship between ventilation history

and development of acute injury gene expression profiles in donors

and development of PGF in recipients. Future studies will also look

at the utility of the lung injury profile generated by the meta-

analysis to classify lungs that have a ‘‘severe’’ injury profile and

should therefore be excluded from transplantation.

In our study, the MiPP gene signatures include 15 genes:

TMEM134, PIGQ, CH25H, ARPC3, MCAM, TIPARP, F3,

AP4S1, C14orf133, PLAUR, NFE2L2, CYR61, ARG2,

TMEM183A and GLRX. A number of these genes have been

found to be ‘biologically’ relevant in various in-vitro and in vivo

models of sepsis and ALI/ARDS. TIPARP, a member of the

PARP family of genes, is responsible for maintaining genomic

stability by sensing and repairing DNA damage. In the present

study, TIPARP expression was significantly up-regulated in lung

tissues from rats exposed to HV, supporting the importance of the

PARP family of genes in DNA repair and suggesting a novel role

for TIPARP in the development of biotrauma. The master

transcription factor - nuclear respiratory factor-2 (Nrf2 or

NFE2L2) binds to the antioxidant response element on a variety

of anti-oxidant related genes thereby coordinating the response to

oxidative stress. Nrf2 deficient mice are more sensitive to ALI and

VILI. In patients, mutations in Nrf2 are associated with

susceptibility to ALI/ARDS [37]. Plasminogen activator urokinase

receptor (PLAUR) and tissue factor (F3, coagulation factor III, or

thromboplastin) are up-regulated at the mRNA and protein level

in LPS and cyclic stretch induced lung injury [38]–[39]. A series of

clinical studies in humans have evaluated the clinical utility of anti-

tissue factor treatment for sepsis and ALI/ARDS [40]. In contrast,

although multiple studies have found the anti-oxidant gene,

glutaredoxin (GLRX), to be implicated in lung injury, mutations

in this gene have not resulted in susceptibility to lung injury [41].

Arginase catalyzes the hydrolysis of arginine to ornithine and urea

– it is a fundamental enzyme in nitric oxide metabolism. At least

two isoforms of mammalian arginase exists (types I and II) which

differ in their function and localization. The type II isoform is

located in the mitochondria and is expressed in extra-hepatic

tissues. Arginase 2 (ARG2) variations are known to be associated

with asthma, asthma severity and beta2 agonist and steroid

response [42]. The matri-cellular proteins cysteine-rich, angio-

genic-inducer, 61 (CYR61) has been implicated as a potential

biomarker for ALI/ARDS/VILI and Fas-induced lung fibrosis.

Moreover, this gene is regulated in sepsis-induced multiple organ

failure [43]. Melanoma cell adhesion molecule (MCAM) is a

critical molecule involved in adhesion, cellular migration, metas-

tasis and trafficking. Although the gene for MCAM has been

found to be upregulated in most models of lung stretch (animal

and cell based), to date no studies have looked at its role in lung

injury [20]. N-acetylglucosaminyl transferase component Gpi1

(PIGQ) is involved in the first step in glycosylphosphatidylinositol

(GPI)-anchor biosynthesis. The GPI-anchor is a glycolipid found

on many blood cells and serves to anchor proteins to the cell

surface. ARPC3 (actin related protein 2/3 complex, subunit 3)

encodes one of seven subunits of the human Arp2/3 protein

complex - a key regulator of the actin cytoskeleton. The Arp2/3

protein complex has been implicated in the control of actin

polymerization in cells and is conserved through evolution.

C14orf133 encodes for a vacuolar protein sorting-associated

protein 33B (VPS33B) interacting protein. This is a known

apical-basolateral polarity regulator that plays a role in lysosomal

trafficking. The gene product may play a role in epithelial

polarization through stabilization of apical membrane protein

content, and although the role of this gene has not been explored it

is biologically plausible that it may play a role in ALI/ARDS. In

contrast, the remaining genes are not known to play a role in ALI/

ARDS and represent novel genes identified by the meta-analysis.

Two of the genes identified, TMEM134 and TMEM183A, are

members of a family of hypothetical transmembrane proteins,

none of which have any known function.

Traditionally, meta-analyses of microarray datasets are used to

take advantage of an increased sample size, allowing for the

identification of a more statistically robust set of genes altered

between treatment and control conditions. In this study, we

expand on this principle by conducting a gene-by-gene compar-

ison of data from multiple microarray platforms that also leverages

information from multiple species. Since in vivo studies of ALI and

other clinical complications are normally conducted in model

organisms, applying the biological results to human settings can be

challenging. A cross-species meta-analysis as performed here will

preferentially select against genes differentially expressed in only

one species, and instead prefer an evolutionarily conserved set of

genes that can better translate to clinical settings. As well, we

incorporate data taken from a variety of injury models. Notably,

studies GSE2411, GSE2368, and GSE7041 tested an in vivo model

of positive pressure ventilation, whilst GSE2635 and GSE4215

applied an ex vivo model with negative pressure ventilation.

Inclusion of the ex vivo model lessens the signal contributions of

non-epithelial cells such as neutrophils, contributing to a more

specific set of genes identified.

It is worth noting that there will be many differences between

data sets when integrating microarray data sets. In addition to the

usual batch and lab effects, there will also be differences by

platform and species. Raw gene expression levels may not be

comparable across studies. Our meta-analysis was careful to

combine standardized effect sizes, and we assume therefore that

the standardized effects have generalized interpretability. Ideally,

it would be possible to measure expression in a standardized way

across many studies, however this information and such data sets

were not available. It would be interesting to investigate if a meta-

analytic gene selection strategy performs even better when

platform and laboratory effects are known and controlled.

Ours is the first study to formally conduct a gene-gene meta-

analysis of ALI related microarray data. Similar studies reviewing

the effects of VILI across species were conducted by Wurfel and

Grigoryev et al. [35]–[36]. However, we note that Wurfel’s review

incorporates only four independent VILI-related experiments and

more importantly, genes were classified as differentially expressed

only if they were significantly altered in at least two of the

substituent experiments. Instead, our methodology integrates all

gene expression values within all studies before calculating the

mean effect sizes and FDR. Thus, our method is able to identify

genes with small but consistent differential expression, while

Wurfel’s approach can only filter an existing set of significant

genes. Grigoryev et al.’s study is similar in that it attempts to

identify VILI-related genes orthologous between mice and rats.

However Grigoryev et al. evaluates data from species separately

before choosing genes commonly up or down-regulated in both

datasets whereas our methodology integrates all datasets together

when calculating mean effect sizes and FDR, allowing for

identification of more robust biomarkers. As well, our meta-

analysis is unique in that in our approach we vastly increase the

sample size tested from 8 microarray chips to 77.
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In this study we made the choice to not weight experiments

based on sample size. This choice was made in order to give equal

treatment to the different experimental protocols used in

constituent studies, and not bias results towards one specific

experiment. However, we noticed that the consequent incorpora-

tion of an extra dataset with no replicates worsened the meta-

analysis results due to the addition of extra noise. Therefore, the

quality of output from the meta-analysis will depend upon the

sample sizes of constituent experiments, and care must be taken in

future experiments to filter experiments for data quality. As well,

the integrative nature of our meta-analysis invites some difficulties

when choosing datasets to include. We attempted to evaluate the

time-dependent biological response to VILI, but lacked sufficient

data points to do so and hence, biologically interesting genes with

a time-dependant pattern of expression were likely lost in the

analysis. As more microarray data sets are uploaded into public

repositories we expect time-series analyses to become more

feasible.

Our one-hit model investigates the global effects of injurious

HV on pulmonary gene expression. Two-hit model emulates the

clinical situation where a patient is admitted with a pre-existing

lung injury (i.e. pneumonia/acid aspiration) and is then ventilated;

therefore it explores the combined effects of ventilation and

inflammatory injury. Conceptually it is possible to imagine how

this approach may yield important information that may enable

clinicians to differentiate different forms of lung injury and tailor

appropriate treatment strategies. In the future, prospective

validation and refining of molecular markers of lung injury may

yield important clues as to the pathogenesis, prognosis and clinical

response to therapy in patients with ALI.

Conclusions

We have developed a novel procedure for the meta-analysis of

microarray data originating from multiple species and platforms.

The results presented here demonstrate that this approach can

yield biologically relevant data, thus identifying interesting

candidate genes for future research, and is relevant to other

external datasets, suggesting the results are not study-specific. In

addition, this methodology can be generalized to other diseases

and can be applied to the extensive data stored in online

microarray repositories, thus allowing for in-depth re-analyses of

previously published microarray experiments which are capable of

identifying biologically interesting, but previously excluded genes.

The promise of ‘‘fast’’ genomic solutions to major clinical

problems has by enlarge gone unfulfilled in the field of ALI and

ARDS. The challenge however is to build on knowledge acquired,

using innovative approaches, and push limits of the technology

with a clear sense of purpose – improved patient care.

Materials and Methods

Studies included in the meta-analysis
Animal and human studies of VILI using microarrays/gene

chips published available on the National Center for Biotechnol-

ogy Information (NCBI) Gene Expression Omnibus (GEO)

database (http://www.ncbi.nlm.nih.gov/geo/) were reviewed for

inclusion and obtained from our own lab. We included five

publicly available studies (GSE2411, GSE4215, GSE2635,

GSE2368, GSE7041), representing seven separate experiments

for the meta-analysis. As well, we included microarray data from

an additional unpublished study with 12 chips from our own

group, bringing the final number of chips used in the meta-analysis

to 77. The basic criteria to include the experiments in our meta-

analysis are that (1) experiments were performed to compare

differential expression in whole lung tissues; (2) the ventilation time

was in a 2–5 hour window; (3) multiple biological replicates are

available within groups. A summary of the studies included in the

meta-analysis is shown in Table 1.

Pre-processing raw gene expression data
For all studies using Affymetrix chips we downloaded the raw

data files (.cel files). The affy Bioconductor R package was used to

preprocess all raw data files. Extraction of probe level data,

background correction, normalization using robust multi-array

average (RMA) algorithm [44] was performed for each individual

experiment to summarize probeset-levels of expression. Because

the data using Codelink chips came from the same laboratory and

were analyzed similarly we were able to use the normalized data

files downloaded from NCBI GEO directly.

Construction of Ortholog Database
To standardize the annotation data between species and

microarray platforms, probes from each chip used in the meta-

analysis were matched to the human Affymetrix U133 Plus 2.0

microarray chip. Probe sets were matched based on probe

sequences identity as available from the annotation and probe

sequence files downloaded from Affymetrix (http://www.

affymetrix.com/index.affx) and Applied Biosystems Arrays

(http://docs.appliedbiosystems.com/pebiodocs/00113304.pdf),

using Resourcerer [45] (http://compbio.dfci.harvard.edu/tgi/),

Madgene (http://www.madtools.org), or by Basic Local Align-

ment Search Tool (BLAST) search. In Resourcerer and Madgene,

expressed sequence tags (ESTs) are identified using the Eukaryotic

Gene Ortholog (EGO) database (http://compbio.dfci.harvard.

edu/tgi/ego/). Sequence similarities are identified by stringent

pair-wise comparison between tentative consensus sequences

available from the Institute for Genomic Research (TIGR) Gene

Indices (http://www.tigr.org/tdb/tgi). BLAST finds regions of

similarity between biological sequences (http://blast.ncbi.nlm.nih.

gov/Blast.cgi). We searched them using the nucleotide database

query for sequence similarities between ESTs. TIGR Orthologous

Gene Alignment (TOGA; http://www.tigr.org/tdb/toga/toga.

shtml) database was used to provide a cross-reference between

fully and partially sequenced eukaryotic transcribed sequences. To

identify functional orthologs we further manually curated the

ortholog database by searching HUGO Gene Nomenclature

Committee (HGNC) Comparison of Orthology Predictions

(http://www.genenames.org/cgi-bin/hcop.pl), National Center

for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.

gov/sites/entrez?db = pubmed), SOURCE (http://source.

stanford.edu/cgi-bin/source/sourceSearch), EGO and TOGA

using ortholog group number, gene name, TIGR accession

number, Entrez gene IDs, Gene Accession number, Unigene

cluster ID and Locus Link ID. JMP Statistical Discovery Software

(http://www.jmp.com/) was used to generate a master data base

containing all relevant probe specific annotation. The final

ortholog database aggregating seven microarray platforms linked

to 39,791 of 54,681 unique probes on the U133 Plus 2.0 platform.

The master database file used in meta-analysis is available as

supplementary material in Table S1.

Classification and grouping of chips
Individual gene chips were classified and grouped based on the

strategy used to induce lung injury [33]:

1) No Mechanical Ventilation (NV) – spontaneous breathing

or sham animals (surgical procedures but no lung injury)
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2) Inflammatory lung injury alone (Inf) – treatment with

lipopolysaccharide (LPS, inhaled or intravenous) or hydro-

chloric acid (acid aspiration, AA) alone

3) One-hit (MV injury alone): injurious MV (HV, high tidal

volume $15 ml/kg and/or b.1) or protective MV (LV, low

tidal volume #12 ml/kg and/or b = 1)

4) Two-hit (inflammatory and MV injury): combined inflam-

matory and ventilation injury. For all studied using two-hit

models the first hit was treatment with LPS or AA and the

second was MV (HV or LV).

Table 2 shows how chips were grouped into injury phenotypes

of interest for the meta-analysis comparisons.

Meta-analysis procedure
We used a random effects model to interpret changes in gene

expression when comparing groups of chips in the experimental

versus the control samples. The effect size was measured using the

standardized mean difference for each gene in each individual

experiment. We integrated the effect size across experiments using

the random effect model. This allows for both within-experiment

sampling error (variance) and between-studies variation to be

included in the assessment of the uncertainty (confidence interval)

of the results of a meta-analysis, thus selecting for genes with

consistent patterns of expression across species, platforms and

studies. A test statistic to evaluate the treatment effect is

represented by the z score. The statistical significance of a change

in gene expression is provided by calculating the p-value

corresponding to this z-statistic, and then estimating the false

discovery rates (FDR) for each significance level. This takes into

account the number of tests performed and corrects for multiple

comparisons. We considered ESTs with an FDR#0.1 to be

significantly altered.

We measured effect size yig for gene g (assume gene and probe

set are interchangeable terms here) in individual experiment i

using the standardized mean difference [46], given by

yig~(�xxigt{�xxigc)
.

S
pool
ig

ð1Þ

where �xxigt and �xxigc are the sample means of gene expression values

for gene g in group t (e.g. treatment) and group c (e.g. control) of

experiment i, respectively. S
pool
ig is the pooled standard deviation.

The estimated variance s2
ig of the unbiased effect size yig is given

by [46]:

s2
ig~(1=nitz1=nic)zy2

ig(2(nitznic)){1, ð2Þ

For a experiment with n(n~ntznc) samples, an approximately

unbiased estimate of yig is given by y�ig~yig{3yig=(4n{9).

To integrative analysis of effect sizes across studies using the

random effects model, we suppose the effect size yig is estimated

for gene g in experiment i (see Table 1), i = 1,…, Ig. Ig represents

the number of experiments for the gene g. Igv~I , here I is the

total number of experiments used in our meta-analysis (It should

be noted that a probe set g on the U133 Plus 2.0 platform may be

found in different number of experiments). We follow Choi et al.

[27] to place the estimated y
_

ig into a hierarchical model and to test

for differences between groups:

yig~higzeig , eig*N(0,s2
ig)

hig~mgzdig , dig*N(0,t2
g),

(
ð3Þ

where t2
g is the between-experiment variability of gene g, mg means

the average measure of differential expression across the I

experiments for gene g, which can be also called as mean effect

size (MSE). Here, t2
g and mg are gene-specific while s2

ig and yig are

gene and experiment-specific. s2
ig is the effect size variance of gene

g, measuring the sampling error for the ith experiment. Using a

random effects model [27], the meta-analysis estimate for mg can

be calculated as:

m̂mg~

PIg
i~1 wiyigPIg

i~1 wi

ð4Þ

where the weights are given by wi~(s2
igzt2){1 and t2 is the

between-experiment) variability. The variance of this estimator is

obtained by

Var(m̂mg)~
1PIg

i~1 wi

ð5Þ

A test statistic to evaluate the treatment effect of gene g across all I

experiments can then be computed as

zg~
m̂mgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(m̂mg)
p ð6Þ

We evaluated the statistical significance of a gene g by calculating

the p-value corresponding to the z-statistic, and then estimated the

false discovery rates (FDR) for each significance level, to take into

account the number of tests performed [47]–[48].

Validation of genes identified by meta-analysis
Validation using External Microarray Data

Sets. Independent datasets from one mouse and two human

in-vitro cell-based studies were used to validate the results from

our microarray meta-analysis (Table 7). (a) Animal Model of HV

induced lung injury: The data was downloaded from GEO

(GSE11434), which compared HV ventilation versus NV. Overall

design mice were anesthetized with isoflurane followed by

ketamine/xylaxine. Saline (0.25 ml) was given every hour ip. A

tracheotomy tube was placed and the mice were ventilated with an

initial peak airway pressure of 20 cmH2O approximating a tidal

volume of 20 ml/kg and without end-expiratory pressure.

Ventilation was continued for 3 h. Control mice were treated

identically, but were not mechanically ventilated (i.e. breathed

spontaneously). There were 5 biological replicates in each group.

(b) Human cyclic cell stretch data: First, human Bronchial

Epithelial Cells (Beas-B2, GSE16650) cells grown on silicon elastic

plates coated with Type I collagen (Flexercell International,

McKeesport, PA) were exposed to six regiments for 4 h: 1) control

(control); 2) mechanical stretch (25 PKa, 30 cycles per min

(stretch); 3) LPS (1 mcg/ml, LPS); 4) TNF-a (20 ng/ml, TNF); 5)

mechanical stretch plus LPS (LPS+S) and 6) mechanical stretch

plus TNF-a (TNF+S). Total RNA (duplicate experiments) was

extracted using TRIZOL reagent (as per manufactures specifica-

tions) and purified using Qiagen mRNA purification Kit (as per

manufacturers specifications). mRNA was hybridized to Affyme-
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trix Human U133plus2.0 chips [29]. Second, identical experi-

ments carried out using primary Small Airway Epithelial Cells

(SAEC, CC-2547, Human_UP in Table 7) purchased from

Clonetics (/www.lonzabio.com). (c) Human transplant dataset:

microarray data from fifty human lung transplant patients was

obtained from GSE8021. In this study, total RNA from 50 donor

lung samples were divided into two groups - those that developed

PGD after transplantation (PGD positive) and those that did not

(PGD negative). PGD was defined as T0 Grade III dysfunction

according to International Society for Heart and Lung Trans-

plantation criteria, that is, a ratio (referred to as the P/F ratio) of

partial pressure of arterial oxygen (PaO2) to fraction of inspired

oxygen (FiO2) less than 200 in the first arterial blood gas in the

intensive care unit after transplantation (generally 4–6 hours after

actual reperfusion). Total RNA from lungs were hybridized to

Affymetrix GeneChip Human Genome U133A 2.0 Array.

Normalized intensity values for individual gene probe sets were

matched to our ortholog ID file. We ranked genes identified in the

one- or two-hit model meta-analysis by adjusted p-value and

empirically used the top 20 genes to classify the external data sets.

Unsupervised hierarchical clustering was used to classify samples.

Prospective validation in rat two-hit model of lung

injury. All experiments were approved by the Institutional

Animal Care and Use Committee at Saint Michael’s Hospital and

performed in compliance with the Principles of Laboratory Care

formulated by the Canadian Council and Animal Care. Male

Sprague Dawley rats (n = 60; 300 to 350 g; Charles River Inc,

Montreal, Quebec, Canada) were randomized to pneumonia by

receiving intratracheal instillation with Klebsiella pneumoniae or equal

volume saline. After 24 hrs rats were subsequently re-randomized

to receive MV with either LV 6 ml/kg and 5 cm H2O of PEEP or

HV 12 ml/kg without PEEP for 3 h as previously described13–15.

Rats were anesthetized with ketamine hydrochloride (80 mg/kg,

Ayerst Veterinary Laboratories, Guelph, Canada) and xylazine

(8 mg/kg, Bayer, Toronto, Canada) administered intraperitone-

ally (IP). After tracheostomy a 14-gauge catheter was inserted into

the trachea. The right carotid artery was cannulated with a 24-

gauge angiocath (Becton Dickinson, Franklin Lakes, NJ) for

measuring MAP, blood withdrawal and resuscitation. The tail vein

was catheterized with a 22-gauge Angiocath (Becton Dickinson)

for continuing infusion of ketamine hydrochloride (20 mg/kg/h),

xylazine (4 mg/kg/h) and pancuronium (0.3 mg/kg/h). At the

completion of the experiment rats were sacrificed, lung tissues

were snap frozen. Total RNA was extracted for qRT-PCR.

Expression of selected gene(s) was normalized to glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), 18S ribosomal subunit (18S)

and beta-actin (b-actin).

Classification Algorithms
The misclassification-penalized posterior (MiPP) [31] classifier

was used to classify human lung injury samples into specific injury

phenotypes based on results from the meta-analysis. MiPP uses a

posterior probability of correct classification to judge the likelihood

that a sample belongs in a given class. To build the classifier, MiPP

sequentially selects genes one at a time using Linear Discriminant

Analysis (LDA) to maximize the MiPP score. It adjusts the MiPP

score by adding the posterior probabilities for classification of each

sample in the training set and subtracting by 1 for each

misclassification. Thus, for each number of genes, the MiPP

algorithm chooses the optimal set of genes and builds a predictor

based on the training dataset.

The k-top scoring pair (k-TSP) method [32] is an extension of

top scoring pair (TSPs) algorithm [49], which was also used to

classify the 50 human samples into one of the two classes (PGF and

Good). The algorithm is a rank-based method and uses k-pair of

genes for classification. The k is decided by five-fold cross-

validation. It is more robust to variation in technical factors or

normalization than classifiers based on expression levels of

individual genes. We used ktspair R package (http://cran.r-

project.org/web/packages/TSP/index.html) to perform the anal-

ysis. The ROC curves were generated based on the offset method

implemented in the package [32].

Supporting Information

Figure S1 Heat maps of estimated effect sizes of top
genes from one-hit model (a) and two-hit model (b). For

the top 20 genes shown in Figure 4a and Figure 4b, we showed

heat maps of the estimated effect sizes of 8 of the 20 genes from

one-hit model in 8 studies (a) (note: only 8 of the 20 genes have

expression profiles in multiple platforms and species) and of 15

genes from two-hit model in 3 studies (b). The maps indicate the

estimated effect sizes of the same gene have the same direction

across multiple platforms and species.

(TIF)

Figure S2 Distribution of clustering accuracies based
on 1000 random gene sets. (a) 20 random genes were selected

from independent animal lung injury microarray experiment

(GSE11434, Table 7), which were used to cluster gene expression

data of animal lung injury samples in one-hit model (NV or LV vs.

HV) and clustering accuracy was calculated. The procedure was

repeated 1000 times. (b) 20 random genes were selected from

independent human microarray experiment (GSE16650,

Table 7), which were used to cluster gene expression data of

human bronchial epithelial distal airway small cells (BEAS2b)

samples in one-hit model and clustering accuracy was calculated.

The procedure was repeated 1000 times.

(TIF)

Figure S3 Clustering of gene expression data of inde-
pendent animal and human samples based on top genes
selected from individual study. Top 20 genes were selected

from one-hit model in an individual study (GSE2411, Table 2;

The reason for selecting this study is that it has the largest sample

size) based on effect size. These genes were used to classify lung

injury samples from an independent microarray experiment, not

included in the meta-analysis (GSE11434, Table 7) (a) and an

independent human bronchial epithelial distal airway small cells

(BEAS2b) microarray experiment (GSE16650, Table 7) (b). The

top 20 genes from the differential analysis of the individual study

used in meta-analysis identified group assignment correctly for all

independent animal samples (a), but can not identify group

assignment correctly for independent human samples (b).

(TIF)

Table S1 Orthologue Data Base.

(TXT)

Table S2 Differentially expressed genes selected in one-
hit model at FDR, = 0.1.

(CSV)

Table S3 Differentially expressed genes selected in two-
hit model at FDR, = 0.1.

(CSV)
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