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Abstract

Animal embryonic stem cells (ESCs) provide powerful tool for studies of early embryonic development, gene targeting,
cloning, and regenerative medicine. However, the majority of attempts to establish ESC lines from large animals, especially
ungulate mammals have failed. Recently, another type of pluripotent stem cells, known as induced pluripotent stem cells
(iPSCs), have been successfully generated from mouse, human, monkey, rat and pig. In this study we show sheep fibroblasts
can be reprogrammed to pluripotency by defined factors using a drug-inducible system. Sheep iPSCs derived in this fashion
have a normal karyotype, exhibit morphological features similar to those of human ESCs and express AP, Oct4, Sox2, Nanog
and the cell surface marker SSEA-4. Pluripotency of these cells was further confirmed by embryoid body (EB) and teratoma
formation assays which generated derivatives of all three germ layers. Our results also show that the substitution of
knockout serum replacement (KSR) with fetal bovine serum in culture improves the reprogramming efficiency of sheep
iPSCs. Generation of sheep iPSCs places sheep on the front lines of large animal preclinical trials and experiments involving
modification of animal genomes.
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Introduction

ESC lines, derived from the inner cell mass (ICM) of a blastocyst,

can divide indefinitely and are capable of creating all cell types of an

adult animal [1]. Isolation of ESC lines from domesticated large

animals and ungulate mammals has the potential to enable the

precise genetic engineering of livestock for improved production

traits, disease resistance and biopharming. Because of their potential

use for targeted gene manipulation, isolation of ESCs in livestock

may overcome current limitations upon efficient gene transfer by

providing an abundance of pluripotent stem cells to be genetically

manipulated through the use of conventional recombinant DNA

techniques. Unfortunately, genetic alteration in domestic animals

has proven to be extremely difficult outside of murine models [2,3].

The capability to establish pluripotent stem cell lines from large

animals is therefore crucial to applications of gene targeting

technologies in domestic livestock and non-rodent models.

Domestic sheep are one of the earliest animals to have been

domesticated for agricultural purposes. The establishment of sheep

ESCs would useful in a number of applications, such as the

production of genetically targeted sheep with desired traits and the

improvement of somatic cell nuclear transfer efficiency by generation

of pluripotent stem cells [4,5]. More importantly, sheep ESC

technology offers an excellent large animal model for human stem

cell research because sheep share more phylogenetic characteristics

with humans than rodents [6]. Several articles have reported the

derivation of ESC-like cells from the ICM of sheep blastocysts [6,7].

However, the cells derived in these studies do not meet the full

criteria to qualify as stable and pluripotent ESCs because they are

unable to be maintained in an undifferentiated state beyond two

passages in culture. Recently, mouse and human somatic cells have

been reprogrammed in vitro to induced pluripotent stem cells (iPSCs)

by ectopic expression of defined transcription factors. These iPSCs

are similar to ESCs in terms of gene expression, pluripotency and

epigenetic status, and hold great potential for use in regenerative

medicine and in vitro disease modeling [8–16]. More recently, iPSCs

have also been successfully generated from other animals such as

monkeys [17], rats [18] and pigs [19–21]. In this paper, we report

the first generation of iPSCs from sheep somatic cells using a drug-

inducible expression system of murine-derived pluripotency factors.

Materials and Methods

Cell culture
Sheep fibroblasts used in this report were obtained from a

Mongolian sheep fetus at day 40 of gestation. The isolation of

sheep fetal fibroblasts (SFFs) was done as previously described

[22]. Briefly, an explanted sheep fetus was dissociated manually

and then treated with 0.25% trypsin-EDTA (HyClone, Logan,

UT, USA). Primary cultures were grown on tissue culture plates

coated with 0.1% gelatin (Sigma, St Louis, MO, USA) until the

first passage, after which standard tissue culture plates were used.
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Cells were cultured using Dulbecco’s modified Eagle’s medium

(DMEM, HyClone) supplemented with 10% fetal bovine serum

(FBS, Invitrogen, Carlsbad, CA, USA). SFFs were passaged upon

reaching 95% confluence with 0.25% trypsin-EDTA and infected

with reprogramming virus between passages 3 and 5. 293T cells

(ATCC, Manassas, VA, USA) were maintained in the same

medium. Sheep iPSCs were maintained in ESC medium com-

posed of Knock-out DMEM (Gibco-BRL, Grand Island, NY)

supplemented with 20% Serum Replacement (SR, Gibco) or FBS,

0.1 mM b-mercaptoethanol (Gibco), 1% nonessential amino acids

(Hyclone), 2 mM glutamine (Hyclone), and 4 ng/ml hFGF2

(Peprotech, London, UK). Sheep iPSCs were passaged by enzyma-

tic dissociation using 1 mg/ml collagenase IV(Gibco)and main-

tained on feeder layers of mouse embryonic fibroblasts (MEF) that

were mitotically inactivated by mitomycin C (Sigma). Permission

to handle all animal samples was granted by Peking University

Health Science Center Ethical Committee (PKU20103088).

Lentivirus production and infection
293T cells were plated at 66106 cells per 100 mm dish and

incubated overnight. The generation and structure of doxycycline-

controlled Tet-on-inducible lentiviruses expressing mouse-derived

Oct4, Sox2, c-Myc and Klf4 has been described in previous reports

[23,24]. The c-DNA for GFP was cloned into the EcoRI sites of the

same vector backbone (FUW-tetO). Expression of reverse tetracy-

cline transactivator (rtTA) was driven by a constitutively active

human ubiquitin C promoter alpha promoter in the FUW lentiviral

backbone (FUW-M2rtTA). To produce lentiviral particles used to

stably reprogram fibroblasts into iPSCs, 293T cells were transfected

with a mixture of viral plasmid and packaging constructs expressing

the viral packaging functions and the VSV-G protein with

Lipofectamine 2000 (Invitrogen). Viral supernatant was harvested

at 24 and 48 hours after transfection. A total of 30 ml of

supernatant was typically harvested per virus. Viral supernatant

was filtered through a 0.45 mm syringe filter (Millipore, Billerica,

MA, USA), and loaded into a AmcionHUltra-15 Centrifugal Filter

(Millipore) for concentration. Viral supernatant was concentrated

approximately 100-fold by centrifugation at 6000 rpm for 20 min at

4uC. Viral concentrates were stored at 280uC. Infections were

carried out on 35 mm tissue culture plates in 1 ml of medium

containing 5 mg/ml polybrene (Sigma) with 5–10 ml of each viral

concentrate. SFFs were infected at a density of 56104 cells/plate,

and the medium was replaced 24 hrs after infection. Infection was

repeated two times. Cells were subsequently dissociated by trypsin

Figure 1. Doxycycline (Dox) controlled Tet-on-inducible lentiviral system for induction of pluripotency in sheep fetal fibroblasts
(SFFs). (A) Expression of GFP in SFFs is not observed when Dox is absent from the culture medium. Addition of Dox (2 mg/ml) to the culture medium
induces expression of GFP 48 hour after treatment. (B) The time schedule for sheep iPSCs induction. Scale bars: = 50 mm.
doi:10.1371/journal.pone.0015947.g001
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and transferred to plates coated with MEF feeders. To induce

reprogramming, culture medium was replaced by ESC medium

supplemented with 2 mg/ml doxycycline (Dox).

RNA isolation and reverse transcription
Total RNA was purified with an RNeasy Mini Kit (Qiagen,

Valencia, CA, USA) as per the manufacturer’s instructions.

Approximately 1 mg of total RNA from each sample was used

for Oligo(dT)20 – primed reverse transcription (SuperScript TM

III First-Strand Synthesis System for RT-PCR, Invitrogen). PCR

products were resolved on (1.5%) agarose gels and visualized by

ethidium bromide staining. Images were taken using a gel imaging

system (Bio-Rad). The primer sequences employed are displayed

in Supplementary Table S1.

Alkaline phosphatase staining and
immunocytochemistry

Alkaline phosphatase (AP) staining was performed using the

Alkaline phosphatase kit (Roche Applied Science, Mannheim,

Germany) according to the manufacturer’s instructions. For

immunocytochemistry, cells were fixed with 4% paraformaldehyde

for 10 min at room temperature. After washing with PBS, cells were

treated with PBS containing 10% normal bovine serum albumin

(Sigma) and 0.1% Triton X-100 for 30 min at room temperature,

then incubated with primary antibodies at 4uC overnight. Primary

antibodies included SSEA-1 (1:100, Santa Cruz Biotechnology,

Santa Cruz, CA, USA), SSEA-3 (1:100, Santa Cruz), SSEA-4 (1:100,

Chemicon, Temecula, CA, USA), Tra-1-60 (1:100, Chemicon), Tra-

1-81 (1:100, Chemicon), Nanog (1:100, Abcam, Cambridge, UK),

Oct4 (1:100, Santa Cruz), Sox2 (1:100, Chemicon), b III-Tubulin

(1:100, Chemicon), Desmin (1:100, Santa Cruz), Cytokeratin (1:100,

Santa Cruz). Normal mouse or rabbit serum was used as a negative

control. Localization of antigens was visualized with anti-rabbit or

anti-mouse IgG secondary antibodies conjugated with fluorescein

(Santa Cruz). Nuclei were counterstained with DAPI.

In vitro differentiation
Spontaneous differentiation of sheep iPSCs through EB

formation was carried out as previously described [10,11]. Briefly,

sheep iPSCs were cultured in ESC media without hFGF2, hLIF

and Dox in non-tissue-culture-treated plates. After 8 days in

suspension culture, EBs were transferred to gelatin-coated plates

and cultured in differentiation medium for another 8 days.

Teratoma formation
Sheep iPSCs were harvested by collagenase IV treatment,

suspended in PBS and delivered via subcutaneous injection into

the dorsal flanks of severe combined immunodeficient (SCID)

mice. Eight weeks after injection, tumors were explanted, fixed in

4% paraformaldehyde, embedded in paraffin, and examined

histologically using hematoxylin and eosin staining.

Karyotyping
Sheep iPSCs were prepared for karyotype analysis by

incubation in medium containing 0.1 mg/ml colcemid for

5 hours. Cells were trypsinized, resuspended in 0.075 M KCl,

Figure 2. Morphological changes of SFFs undergoing reprogramming to iPSCs. (A) SFFs prior to induction of reprogramming (B) Image of
reprogrammed sheep iPSC colony colony day 14, (C) day 16, (D) day 18, (E) day 20, (F) day 25, and (G) day 30 post-transduction. (H) Image of day 30
colony post-transduction with high magnification. (I) Positive AP staining of a colony with typical human ESC morphology. Scale bars: = 50 mm.
doi:10.1371/journal.pone.0015947.g002
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incubated at 37uC for 30 min, and fixed in 3:1 methanol:acetic

acid at room temperature for 5 min. Centrifugation and fixing

steps were repeated three times. Harvested cells were stained using

a standard G-banding technique.

Results

Optimization of drug-inducible lentiviral transduction for
SFFs

Because induction of iPSCs requires use of lentivirus with high

transduction efficiencies, a drug-inducible GFP-expressing lentivi-

rus was added in all transduction experiments to monitor infection

efficiency. Over 70% of the SFFs transduced were found to

express GFP at high levels 48 hr after Dox addition (Figure 1A).

Generation of sheep iPSCs
A time table for sheep iPSC induction is shown in Figure 1B.

SFFs were transduced at a density of 56104 cells per 35 mm plate

using lentiviruses containing mouse Oct4, Sox2, c-Myc, Klf4, and

rtTA genes. Three days after transduction, the cells were

trypsinized and plated onto mitomycin C treated feeder cells

and cultured using ESC medium supplemented with 2 mg/ml Dox

(Figure 2A). Approximately fourteen days later, a few colony-like

cell aggregates composed of 5–10 cells each became visible under

bright field microscopy (Figure 2B). Over the next week, the size of

colonies gradually increased (Figure 2C–E). About day 25 post-

transduction, these colonies began to exhibit some human ESC-

like features. Colonies became more compact and flatter

(Figure 2F). By day 30, ES-cell like colonies had grown very

large, and cells within the colonies exhibited morphology similar to

that of human ES cells, with a high nucleus-to-cytoplasm ratio and

prominent nucleoli (Figure 2G, H). ESC-like colonies were picked

and mechanically dissociated into small clumps on top of new

feeder layers. AP staining was subsequently used to classify ESC-

like colonies as undifferentiated or differentiated. Large ESC-like

colonies exhibiting morphology similar to that of human ES cells

were found to stain positive for AP (Figure 2I). Cell cultures

untreated with Dox were not observed to give rise to any ESC-like

colonies (Figure 3A). To test for optimal conditions of sheep iPSC

induction and culture, ESC medium containing FBS and KSR

were both tested for capacity to maintain cells in an undifferen-

tiated state. We found that the number of AP positive colonies

generated from medium supplemented with FBS was significantly

greater than in cultures supplemented with KSR (Figure 3B).

Expression of pluripotent markers in sheep iPSCs
To confirm that colonies exhibiting ESC-like morphology

expressed proteins associated with pluripotent cells, sheep iPSC

Figure 3. Brightfield microscopy of colonies staining positive for AP following addition of Dox to culture media. Infected SFFs were
split into separate dishes and cultured in the presence or absence of Dox. (A) Representative images of Dox negative and Dox positive dishes stained
for AP at day 25. (B) Infected SFFs were split into separate dishes and cultured in ESC medium supplemented with Dox and FBS or KSR respectively.
Cell cultures were stained for AP day 25 following the initial addition of Dox.
doi:10.1371/journal.pone.0015947.g003
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colonies were stained for a number of surface and intracellular

markers associated with undifferentiation in human and mouse

cells. Immunofluorescence staining showed that colonies were

positive for Oct4, Sox2, Nanog, and SSEA-4, whereas the same

colonies were negative for SSEA-1, SSEA-3, Tra-1-60, and Tra-1-

81 (Figure 4). Human or mouse ESCs were used as positive

controls for immunostaining (Supplementary Figure S1). RT-PCR

demonstrated that murine Oct4, Sox2, Klf4 and c-Myc continued

to be expressed in sheep iPSC clones through Passage 20, and that

endogenous expression of sheep Sox2 and Nanog were activated

as well (Figure 5A). Sheep iPSCs could be well maintained beyond

20 passages in ESC medium supplemented with Dox. Following

withdrawal of Dox at passage 20, expression of all four transgenes

was quickly downregulated, and close to 90% of colonies turned

AP negative (Figure 5B).

In vitro differentiation of sheep iPSCs
To assess pluripotency of sheep iPSCs in vitro, we generated

EBs from the iPSCs using suspension culture. Sheep iPSCs were

observed to form EBs in suspension after 8 days (Figure 6A). EBs

were transferred to gelatin-coated plates and cultured for an

additional 8 days. Immunofluorescence staining showed that the

detected cells were positive for b III-Tubulin (ectoderm), Desmin

(mesoderm), and Cytokeratin (endoderm) (Figure 6B-D).

Teratoma formation and karyotype analysis from sheep
iPS cells

To test for in vivo pluripotency, sheep iPSCs were transplanted at

passage 10 into the subcutaneous flanks of SCID mice. Eight

weeks after injection, palpable tumors were observed. Histological

examination revealed the presence of derivatives of all three germ

layers within the tumor including glandular epithelium, muscle

and neural epithelium (Figure 6E-G). Karyotyping was also

conducted on iPSCs at passage 15, and revealed a normal

karyotype of 54XX (Figure 6H).

Discussion

Derivation of stable ESC lines has been reported for the mouse

[1,25], hamster [26], rhesus monkey [27], rat [28,29], and human

[30], but validated ESC lines have yet to be established in farm

animal species. There are several reasons for the reported

difficulties in deriving ESCs from large animals including difficulty

in isolating cells at the appropriate stage of embryonic develop-

ment, suboptimal culture conditions and improper cell passaging

methods. Although production of sheep ESC-like cells from early

embryos has been reported, these sheep ESC-like cells have not

been able to be maintained beyond two passages [6,7]. Induction

of pluripotency in somatic cells by defined factors has been

Figure 4. Immunofluorescence staining demonstrates that sheep iPSC colonies are positive for expression of Oct4, Sox2, and
Nanog, as well as the surface marker SSEA-4. Colonies were not observed to express SSEA-1, SSEA-3, Tra-1-60, or Tra-1-81. Scale bars: = 50 mm.
doi:10.1371/journal.pone.0015947.g004
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reported in large animals such as pig and dog [19-21,31]. Therefore,

iPSC technology offers hope for a practical method by which

pluripotent stem cells may be generated from other domestic

animals. Here, we generated pluripotent stem cells using drug-

inducible expression of defined factors in sheep fetal fibroblasts.

The Doxycycline (Dox) controlled tet-on-inducible system has

successfully been applied to generate iPSCs from mouse, human

and pig somatic cells [19,23,32]. Use of this system is a predictable

and highly reproducible platform for iPSC generation and should

facilitate the study of early molecular events leading to epigenetic

reprogramming of somatic cells [32]. In the present study, we used

the Dox controlled tet-on-inducible system to generate and

maintain stable sheep ESC-like colonies from fetal fibroblasts. As

addition of Dox to culture media was necessary for the induction

and maintenance of sheep ESC-like colonies, it is likely that the

culture conditions used in this paper are not sufficient to maintain

pluripotency in sheep iPSCs alone. Withdrawal of Dox in cultures

of stably reprogrammed iPSCs resulted in the silencing of

exogenous genes, and differentiation of cells as evidenced by a

switch from positive to negative AP staining. To culture sheep

iPSCs without use of a drug inducible system, certain growth

factors or chemical inhibitors may be required to prevent

differentiation. The challenge of optimizing culture conditions

for maintenance of pluripotency is the primary reason stable ESC

lines have yet to be established in large animals [33,34]. Cytokines

and growth factors that inhibit spontaneous differentiation in

mouse and primate ES cell lines such as LIF and bFGF do not

inhibit differentiation of pluripotent cells for many large animal

ICM and epiblast primary cultures [33–36]. In this study, sheep

iPSCs were not able to be maintained in an undifferentiated state

following withdrawal of Dox even when hLIF and hFGF was

added to the medium. Although cells were characterized by a

cobble stone patterning with large nucleoli, sheep iPSC colonies

generated from the drug-inducible system did not possess a

defined, highly refractive edge characteristic of human or mouse

ESC and iPSCs. The differences in cell morphology between

sheep iPSCs and pluripotent stem cells derived from other animals

may be due to imperfect culturing conditions. The maintenance of

sheep iPSCs under this drug-inducible system provides a useful

platform for studying the role of different cytokines and growth

factors in sheep iPSCs self-renewal. This in turn should facilitate

the optimization of culture conditions for iPSCs maintenance, and

eventual establishment of true ESCs from sheep blastocysts.

While FBS has been used for the establishment of mouse ESC

and iPSC lines in a majority of laboratories [11,25], knockout

serum replacement (KSR), which is a defined, serum-free

Figure 5. Maintenance of sheep ESC-like colonies is dependent on addition of Dox to culture medium. (A) Three representative sheep
iPSC clones (siPS1, siPS2 and siPS3) were selected for analysis of exogenous and endogenous gene expression. (B) Expression of exogenous
pluripotency transgenes declined to undetectable levels 15 days after withdrawal of Dox (left panel). The majority of iPSC colonies were observed to
turn AP negative following withdrawal of Dox.(right panel).
doi:10.1371/journal.pone.0015947.g005
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formulation, has been widely used to support the growth of human

and primate ESCs and iPSCs in culture [10,30]. Although detailed

information concerning its composition is restricted, KSR does not

contain any undefined growth factors or factors that promote

differentiation [37]. Our results showed that the replacement of

KSR with FBS in culture medium improved the reprogramming

efficiency and integrity of sheep iPSCs. These results suggest that

serum substrates in FBS may play a vital role in generation of

sheep iPSCs, and that these putative factors are not included in

KSR.

Cell surface markers provide a powerful tool for characteriza-

tion and isolation of pluripotent stem cells. Therefore, identifica-

tion of surface markers expressed on iPSCs is important for

pluripotent stem cells. SSEAs including SSEA-1 SSEA-3 SSEA-4,

have widely used as cell surface marker to monitor pluripotency of

ESCs. Dattena et al. reported that sheep ESCs express SSEA-1,

SSEA-3, and SSEA-4 [6]. In this study, sheep iPSCs showed

expression of SSEA-4, but not SSEA-1 and SSEA-3. Moreover,

our results indicate that sheep iPSCs also lack Tra-1-60 and Tra-1-

81, which are characteristic of human ESCs and iPSCs [10,30].

Figure 6. Sheep iPSCs differentiate into derivatives of all three germ layers in vitro and in vivo. (A) Sheep iPSCs form embryoid bodies in
suspension culture following withdrawal of hFGF, hLIF and Dox from culture media. Immunofluorescence staining shows differentiation of sheep
iPSCs give rise to cells expressing markers of the three germ layers: (B) b III-Tubulin, (C) Desmin, and (D) Cytokeratin. Hematoxylin and eosin staining
of teratomas derived from sheep iPSCs reveals the presence of tissues from all three germ layers: (E) glandular epithelium (endoderm), (F) muscle
(mesoderm), and (G) neural epithelium (ectoderm). (H) Sheep iPSCs at passage 15 showed a normal karyotype of 54XX. Scale bars: = 50 mm.
doi:10.1371/journal.pone.0015947.g006
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For future experiments it will be important to compare global gene

expression and epigenetic status of pluripotent cell-specific genes

between sheep ESCs, iPSCs and somatic cells targeted for

reprogramming such as fibroblasts to understand the molecular

processes behind induction of pluripotency in sheep cells.

Unfortunately, these assays will be difficult to conduct in a sheep

model without the release of more comprehensive sheep genomes

and commercial sheep gene-chips.

An important proof for the establishment of ungulate plurip-

otent stem cell lines is demonstration of pluripotency either by

differentiation into defined cell types in vitro or by teratoma

formation in vivo. These proofs have been common practice with

both mouse and primate ESC and iPSC lines [1,10,11,30]. In the

present study, pluripotency of sheep iPSCs was demonstrated by

derivation of cells of all three germ layers in EB and teratoma

formation assays. However, future work such as chimera

formation though injection of sheep iPSCs into developing

blastocysts must be performed to truly confirm that these cells

are ESC-like.

Supporting Information

Table S1 Primer sets for PCR reactions.

(DOC)

Figure S1 Positive controls for immunostaining of pluripotency

markers Oct4, Sox2, Nanog, SSEA-1, SSEA-3, SSEA-4, Tra-1-60

and Tra-1-81. Scale bars: = 50 mm.
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