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Abstract

Background: During tumor angiogenesis, endothelial cells (ECs) are engaged in a number of energy consuming biological
processes, such as proliferation, migration, and capillary formation. Since glucose uptake and metabolism are increased to
meet this energy need, the effects of the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) on in vitro and in vivo angiogenesis
were investigated.

Methodology/Principal Findings: In cell culture, 2-DG inhibited EC growth, induced cytotoxicity, blocked migration, and
inhibited actively forming but not established endothelial capillaries. Surprisingly, 2-DG was a better inhibitor of these EC
properties than two more efficacious glycolytic inhibitors, 2-fluorodeoxy-D-glucose and oxamate. As an alternative to a
glycolytic inhibitory mechanism, we considered 2-DG’s ability to interfere with endothelial N-linked glycosylation. 2-DG’s
effects were reversed by mannose, an N-linked glycosylation precursor, and at relevant concentrations 2-DG also inhibited
synthesis of the lipid linked oligosaccharide (LLO) N-glycosylation donor in a mannose-reversible manner. Inhibition of LLO
synthesis activated the unfolded protein response (UPR), which resulted in induction of GADD153/CHOP and EC apoptosis
(TUNEL assay). Thus, 2-DG’s effects on ECs appeared primarily due to inhibition of LLOs synthesis, not glycolysis. 2-DG was
then evaluated in two mouse models, inhibiting angiogenesis in both the matrigel plug assay and the LHBETATAG transgenic
retinoblastoma model.

Conclusions/Significance: In conclusion, 2-DG inhibits endothelial cell angiogenesis in vitro and in vivo, at concentrations
below those affecting tumor cells directly, most likely by interfering with N-linked glycosylation rather than glycolysis. Our
data underscore the importance of glucose metabolism on neovascularization, and demonstrate a novel approach for anti-
angiogenic strategies.
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Introduction

Angiogenesis – the process of new blood vessel growth - is

critical for several physiological and pathological processes, such as

cancer, autoimmune diseases, age related macular degeneration

and atherosclerosis, among others [1,2]. The process of tumor

angiogenesis involves activation of ECs by angiogenic growth

factors, such as vascular endothelial growth factor (VEGF), or

basic fibroblast growth factor (bFGF). These factors induce EC

proliferation, migration, and organization into new capillaries,

which require energy in the form of ATP. ATP generation in ECs

has been shown to derive mainly from glucose uptake and

utilization [3,4,5].

A common property of invasive and metastatic tumors is

upregulation of glycolysis, leading to enhanced glucose consump-

tion [6,7]. Upregulation of glycolysis in tumors is mediated by

activation of oncogenes, loss of tumor suppressors, or by adaptive

responses to hypoxia in the tumor microenvironment [8]. The

avid uptake of glucose by tumors is the foundation for functional

tumor imaging by fluoro-deoxyglucose positron emission tomog-

raphy (PET) [7,9].

Preclinical and clinical studies have suggested that activated or

pathologic endothelium is associated with enhanced glucose

uptake. VEGF and hypoxia induce EC expression of glucose

transporters and uptake [9,10,11,12]. Clinical reports show that in

conditions associated with vascular injury and inflammation,

diseased vessels have significantly increased uptake of 2-FDG

[13,14]. Moreover, in breast cancer, a positive correlation exists

between microvessel density and 2-FDG uptake in tumors [15].

Since the endothelium represents an important portion of the

tumor stroma, it has been suggested that tumor vasculature may

contribute to 2-FDG uptake in tumors [16]. Endothelial glucose
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metabolism therefore may represent a novel target for angiogen-

esis inhibition.

2-deoxy-D-Glucose (2-DG) is a sugar analog that interferes with

glycolysis and glycosylation [17,18], and has been shown to induce

in vitro and in vivo antitumor effects in combination with

chemotherapy [19,20,21,22]. Furthermore, safety and feasibility

of oral 2-DG administration has been tested in early clinical trials

in cancer patients, as a single agent [23], in combination with

chemotherapy [24], or with radiation therapy [25]. To our

knowledge, in this report, we present for the first time data that 2-

DG significantly inhibits angiogenesis in vitro and in vivo, but

surprisingly appears to do so by a mechanism not primarily

dependent upon glycolysis inhibition.

Materials and Methods

Cell lines and reagents
2-DG, 2-FDG, oxamate, mannose, and FITC-dextran were

purchased from Sigma-Aldrich (St. Louis MO). Matrigel was

obtained from BD Biosciences (Bedford, MA) and used in vitro at a

7 mg/mL and in vivo at a ,20 mg/mL concentration. The growth

factors bFGF and VEGF were purchased from R&D Systems

(Minneapolis, MN). Human umbilical vein endothelial cells

(HUVECs), human microvascular endothelial cells from lung

(HMVEC-L), EGM-2 and EGM2-MV medium were purchased

from Lonza (Walkersville, MD). EGM-2 and EGM2-MV contain

serum and the following growth factors: hEGF, VEGF, hFGF-B,

R3-IGF-1. All other cancer cell lines were purchased from the

American Type Culture Collection (ATCC). The cells were

cultured according to the supplier’s instructions. For western

blotting, anti-KDEL for GRP78 and GRP94 was purchased from

Stressgen, (Ann Arbor, MI), polyclonal anti-CHOP/GADD153

was purchased from Santa Cruz Biotechnology (Santa Cruz, CA),

and polyclonal cleaved Caspase-3 antibody was purchased from

Cell Signaling (Danvers, MA). For immunohistochemistry CD31

monoclonal antibody was purchased at BD Bioscience (Bedford,

MA).

Cell Viability and Cytotoxicity assays
A total of 56104 cells in 1 ml of appropriate medium (specific

for each cell line, see above) were seeded into each of a 12 well

plate and treated at different concentrations of drugs. Cell culture

medium contained 1 mg/ml of glucose. Cells were incubated at

37uC in 5% CO2 for different time points (24, 48, or 72 hours). At

the end of this period, cells were harvested and viability and

cytotoxicity were analyzed by Vi-Cell (Beckman Coulter, Full-

erton, CA) cell viability analyzer as previously described [21]. For

endothelial cell viability assays, cells were incubated in 1% FBS

and stimulated with bFGF (10 ng/ml), unless indicated otherwise.

Matrigel Tube Formation Assay
The matrigel tube formation was performed as previously

described [26,27]. Each well of a pre-chilled 48-well cell culture

plate was coated with 100 mL of unpolymerized Matrigel (7 mg/

mL) and incubated at 37uC in 5% CO2 for 30–45 minutes.

HUVECs were harvested with trypsin, and 46104 cells were

resuspended in 300 mL complete endothelial cell growth medium

and treated with the various agents (2-DG, 2-FDG, oxamate, and

mannose) at different concentration before plating onto the

Matrigel-coated plates. In a separate experiment to assess whether

or not 2-DG affected already formed capillaries, HUVECs were

plated in complete endothelial cell growth medium and treated

with 2-DG after tubes formed (approximately 16–18 hours later).

After approximately 24 hours of incubation at 37uC in 5% CO2,

endothelial cell tube formation was assessed with an inverted

photomicroscope (Nikon, Melville, NY). Microphotographs of the

center of each were taken at 40X magnification with the aid of

imaging-capture software (NIS-Elements from Nikon, Melville,

NY). Tube formation in the microphotographs was quantitatively

analyzed (total tube length); controls consisted of HUVECs in

complete endothelial cell medium. The experiment was done in

triplicate and the data presented represent the average of triplicate

experiments.

Migration Scratch Assay
Endothelial migration was assessed by the scratch assay, as

previously reported [28]. Briefly, a total of 16105 HUVECs were

seeded -in full endothelial growth medium- in 6-well plates and

allowed to form a monolayer overnight in a 37uC in 5% CO2

incubator. Using a p200 pipette tip, scratches were made in

triplicate in each well of the confluent monolayer. The medium

was changed and the wells were treated with different concentra-

tions of 2-DG. The control well was untreated. Microphotographs

of the scratches were taken at 0 hours right after scratching the

monolayer. Cells were allowed to migrate for 24 hours and a

second microphotograph was taken of each scratch to determine

the percent of migration of treated cells relative to the 0 hour

pictures by quantification with NIS-Elements software (Nikon,

Melville, NY). Migration was quantitated by measuring the width

of the cell free zone at the time of the scratch (0 hours) and

24 hours after the scratch. Changes in migration on treated cells

were expressed as percentage of the (untreated) controls. Values

represent the mean (+/2 SD) of triplicate scratches.

Fluorophore-assisted carbohydrate electrophoresis
(FACE)

FACE analysis was performed as previously described (22).

Briefly, cells were cultured until 90% confluent, received different

treatments, and incubated for 24 hours. After this period, cells

were harvested in methanol, and dried under vacuum. Lipid

linked oligosaccharides (LLOs) were recovered in chloroform/

methanol/water (10:10:3). The glycans were released from

pyrophosphate-linkage to dolichol by mild acid hydrolysis,

modified with the fluorophore 7-amino-1,3-naphthalenedisulfonic

acid (ANDS, Invitrogen) by reductive amination, resolved on high-

percentage polyacrylamide gels, and detected under ultraviolet

light with a Biorad Fluor-S charged-coupled device imager as

previously described (22). Individual ANDS-labeled glycans were

quantified, or alternatively scans (tracings) of all glycans in gel

lanes were generated electronically, with the Quantity-One

software supplied with the imager.

Western Blot analysis
Cells were plated with and without drug treatment for the

indicated times. At the end of the treatment periods, cells were

collected and processed as previously described [29]. Gels were

transferred to nitrocellulose membranes (Amersham, Piscataway,

NJ) and probed with anti-KDEL (Stressgen, Ann Arbor, MI) for

GRP78 and GRP94; polyclonal anti-CHOP/GADD153 (Santa

Cruz Biotechnology, Santa Cruz, CA) and polyclonal anti-cleaved

Caspase-3 (Cell Signaling, Danvers, MA). Following probing,

membranes were processed as previously described [29].

Terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) assay

HUVEC cells were plated in chamber slides (VWR) at 80 000

cells per chamber, treated with different reagents as indicated and
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incubated for 24, 48, and 72 hrs. At each time point, apoptosis was

detected with an in situ cell death detection kit (Roche Applied

Science, Indianapolis, IN), according to the manufacturer’s

protocol. Apoptosis was quantitatively analyzed by determination

of the percentage of TUNEL positive (identified by FITC) cells

over total cells (determined by DAPI), using the high content

screening Cellomics ArrayScan VTI (Thermo Fisher Scientific,

Pittsburg, PA). Eighteen fields per slide (in triplicate) were

analyzed for each condition. Results were expressed as percentage

of TUNEL positive cells (over total cells) and normalized to

control. Experiments were performed in triplicate and repeated at

least twice.

In vivo Angiogenesis (Matrigel plug) Assay
Animal protocols were reviewed and approved by the

University of Miami animal care and use committee. The

Matrigel plug assay was performed as previously described

[27,30,31,32,33] with modifications. Briefly, 500 uL of unpoly-

merized Matrigel (,20 mg/mL), either alone (negative control),

mixed with bFGF, VEGF (500 ng/ml each) and glucose (6 mM,

positive control), or mixed with bFGF, VEGF and 2-DG (6 mM,

treatment group) was injected subcutaneously at the left lower

abdominal wall of three groups of BALB/C mice (5-to 6-week old;

Jackson Laboratories, Bar Harbor, ME). At day 12, the mice were

injected intravenously through the tail vein with 200 uL of FITC-

dextran (25 mg/mL, Sigma) and sacrificed 20 minutes later.

Quantification of FITC-dextran within the plugs was achieved by

incubating the plugs in dispase reagent (Becton Dickinson)

overnight, followed by homogenization and centrifugation for 30

seconds at 13,000 r.p.m. Fluorescence readings of the supernatant

were taken at 480/520 nm using a Spectra Rainbow plate reader

(Tecan US; SLT Lab Instruments, Research Triangle Park, NC)

and compared to a standard curve of FITC-dextran. Matrigel

plugs from a second group of mice that underwent the above

treatments were excised, fixed in 4% paraformaldehyde, embed-

ded in paraffin, sectioned, and stained with H&E and CD 31 (see

below). Sections were examined by light microscopy and pictures

were taken using a Nikon TE2000-U microscope.

LHBETATAG mouse model of retinoblastoma
The LHBETATAG transgenic mouse model [34,35] was used to

evaluate the in vivo effects of systemic administration of 2-DG on

tumor angiogenesis. This transgenic model has been previously

characterized, and has histological, ultrastructural, and immuno-

histochemical characteristics identical to those in human retino-

blastoma [34,35,36]. 2-DG (500 mg/kg) was administered

through intraperitoneal injection into tumor bearing mice, starting

at 16 weeks of age, three times a week for 5 weeks (n = 5). Saline

was administered using the same method (n = 4). At 21 weeks of

age, mice were euthanized and eyes were enucleated at 21 weeks

of age and examined for analysis of tumor vasculature.

Immunohistochemistry
CD31 immunohistochemistry of matrigel plugs was performed

as published before [9]. Briefly, sections were deparaffinized and

hydrated through a series of graded alcohol steps and washed in

phosphate buffered saline. Antigen retrieval was carried out in

0.33 mg/mL protease K for 10 min at 37uC. Endogenous

peroxidase activity was quenched with 0.6% hydrogen peroxide

in methanol for 15 min. Sections were blocked in 10% rat serum

for 1 hr, then incubated with rat anti-mouse anti-CD31 antibody

(BD Bioscience Bedford, MA) overnight at 4uC. After washing, an

anti-rat biotinylated secondary antibody (ABC Elite Kit) was

applied for 30 min, washed, and developed using the Avidin/

biotin/HRP method (ABC Elite Kit, Vector Labs, Burlingame,

CA) and DAB chromogenic reaction (Vector Labs). Finally,

sections were counterstained with Gill 2 Hematoxylin (Richard-

Allan Scientific/Thermo Scientific, Waltham, MA) and mounted

with Cytoseal XYL (Richard-Allan Scientific/Thermo Scientific).

Determination of tumor vasculature in retinoblastoma samples

were performed as previously reported [35]. Tumor samples were

frozen in OCT immediately after enucleation and serially

sectioned (8 mm). Slides were fixed with methanol for 10 minutes

(220uC) before immunohistochemical analyses. Total vessels were

detected with Alexa Fluor 568 conjugated lectin (Bandeira

simplicifolia, a panendothelial binding agent; 1:1000; Invitrogen,

Carlsbad, CA). Omission of the primary antibody (secondary only)

was used as a negative control for nonspecific binding. Cell nuclei

were stained for 5 minutes with 49, 69 diamidino-2-phenylindole

(DAPI, 1:5000; Invitrogen, Carlsbad, CA). Serial cross sections of

eyes containing tumors were examined for the presence of the

above described marker with a Leica TCP SP5 laser confocal

microscope (Leica Microsystems CMS GmbH, Mannheim,

Germany). All images were digitally acquired and recompiled

(Photoshop CS; Adobe, San Jose, CA). Sections were viewed at

400X magnification. Pictures of 6 areas of the tumor (2 from the

apex, 2 from the base, and 2 from the center) were taken for

quantification. Differences in tumor microvessels between the

control and the 2-DG treated groups were analyzed by

quantification of lectin fluorescence staining (in arbitrary units)

from each picture, using the NIS-Elements image analysis software

(Nikon).

Statistical analysis
Data are presented as means and 95% confidence intervals,

unless otherwise specified. Differences in means among three or

more groups were analyzed by analysis of variance (ANOVA)

followed by Tukey-Kramer, Fisher’s or Wilcoxon rank sum test.

Means between two groups were compared by Student’s t test

analysis. Differences were considered statistically significant at

P,0.05. All statistical tests were two-sided.

Results

2-deoxy-D-glucose (2-DG) inhibits in vitro endothelial cell
growth and induces cytotoxicity

Endothelial cell activation by angiogenic growth factors is

associated with enhanced glucose transport and utilization [9,37].

To determine the effects of the glycolytic inhibitor, 2-DG, on the

different steps of the angiogenic process, HUVECs were exposed

to escalating doses of this sugar analog and in vitro growth and

cytotoxicity were assessed. 2-DG significantly inhibited bFGF

induced HUVEC growth at 72 hr in a dose dependent manner i.e.

52% and 72% inhibition at 0.06 and 0.6 mM, respectively

(p = 0.01; Fig. 1A). Cell growth was also impaired at earlier time

points (24 and 48 hours), albeit at a lower magnitude as the effects

observed at 72 hours (Fig. S1). 2-DG also induced HUVEC

cytotoxicity at 72 hours, in a dose dependent manner (Fig. 1B).

Significant endothelial cell death (38.7%) was observed starting at

doses as low as 0.6 mM of 2-DG (p = 0.02, vs. control). To assess

whether EC sensitivity to low concentrations of 2-DG was

restricted to HUVECs, cytotoxicity assays were performed on

lung derived human microvascular endothelial cells (HMVEC-L)

and similar cytotoxic effects were observed (Fig. 1C, lane 7:

HMVEC-L and lane 8: HUVEC). Both HUVECs and HMVEC-

L cells were significantly more sensitive to the cytotoxic effects of

low dose (0.6 mM) 2-DG than a panel of human cancer cells (HT-

2-DG Inhibits Angiogenesis
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29, CAKI-1, MDA-MB231, 786-0 and HT-1080), and normal

human renal epithelial cells (HREC) (Fig. 1C; p,0.001).

2-DG inhibits endothelial capillary formation and
endothelial cell migration in vitro

After demonstrating that low doses (0.6 mM) of 2-DG inhibit

EC growth and induces EC cytotoxicity, the effects of this

compound on HUVEC migration were evaluated by the

endothelial scratch assay [28]. In this assay, HUVECs were

stimulated with full endothelial growth medium which contains

2% serum and angiogenic growth factors (EGM-2, see materials

and methods). 2-DG significantly inhibited HUVEC migration at

24 hours in a dose dependent manner, with a 48% inhibition at a

2-DG concentration of 0.6 mM (Fig. 1D; p = 0.007). In contrast to

the cytotoxic effects of 2-DG observed at 72 hours, at this earlier

time point (24 hours), no significant changes in endothelial cell

viability were detected (data not shown).

HUVEC tube formation was also found to be significantly

inhibited by 2-DG in a dose dependent manner (Fig. 2A, B, C).

Quantification of total tube length showed a 17% (p = 0.008), 48%

(p = 0.005), and 59% (p = 0.0009) inhibition of tube formation in

HUVECs treated with 2-DG at 0.06 mM, 0.6 mM, and 6 mM,

respectively, compared to control. Interestingly, the inhibitory

effects of low doses of 2-DG occurred only during active HUVEC

capillary formation (Fig. 2A, B, when HUVECs were treated with

2-DG immediately after plating). However, when already

established HUVEC capillaries were exposed to 2-DG at doses

ranging from 0.06 to 6 mM, no significant capillary disruption was

observed (p = NS) (Fig. 2D, E, F).

2-DG inhibits in vitro angiogenesis more potently than
other glycolytic inhibitors and its effects are reversed by
mannose treatment

The above findings suggest that interfering with endothelial cell

glycolysis may explain the effects of 2-DG on in vitro angiogenesis.

To assess the relative potency of 2-DG as an antiangiogenic agent,

the effects of 2-DG were compared to equimolar concentrations of

2-FDG, which has previously been shown to be a better glycolytic

inhibitor than 2-DG [18], as well as oxamate (a pure glycolytic

inhibitor). 2-FDG and oxamate did not induce significant

Figure 1. 2-DG inhibits endothelial cell growth, migration, and induces endothelial cytotoxicity in vitro. HUVECs were stimulated with
bFGF (10 ng/ml), treated with different concentrations of 2-DG for 72 hours, and its effects on cell growth (A) and cytotoxicity (B) were assessed as in
materials and methods. A. 2-DG significantly inhibited bFGF induced HUVEC cell growth, with 72% inhibition by a concentration of 0.6 mM of 2-DG (*
p,0.01, vs. control (0 mM)). Results (percent of control) are presented as the average of triplicate experiments and 95% confidence intervals. B. 2-DG
induced significant cytotoxic effects on HUVECs in a dose dependent manner. ** p = 0.02; 0.6 mM 2-DG vs. control. C. HMVEC-L (lane 7) and HUVECs
(lane 8) were significantly more sensitive to the cytotoxic effects of low doses (0.6 mM) of 2-DG than cancer (lanes 1–5) and non-cancer epithelial cells
(lane 6). Lane 1: HT-29; 2: CAKI-1; 3: MDA-MB231; 4: 786-0; 5: HT-1080; 6: HREC. *** p,0.001 HUVEC and HMVEC vs. all other cell lines. Results (percent cell
death) are presented as the average of triplicate experiments and 95% confidence intervals. D. HUVEC migration was assessed by the scratch assay.
Significant inhibition of migration at 24 hours was observed, in a dose dependent manner. **** p = 0.009; 0.6 mM 2-DG vs. control. Results (percent of
control) are presented as the average and 95% confidence intervals of triplicate experiments. All experiments were repeated at least twice.
doi:10.1371/journal.pone.0013699.g001
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HUVEC cytotoxicity (p = NS), while 2-DG, as shown above, did

induce significant endothelial cell death at concentrations of 0.6, 6

and 9 mM (Fig. 3A; p,0.05). All glycolytic inhibitors interfered

with HUVEC growth, albeit the effects of 2-DG and 2-FDG were

significantly more potent than oxamate at equimolar concentra-

tions (Fig. 3B; p,0.001, 2-DG and 2-FDG vs. oxamate). Oxamate

was associated with mild to moderate (30%) inhibition of EC

growth at concentrations of 6 and 9 mM. The effects of 2-DG and

2-FDG on HUVEC growth were not significantly different

(p.0.5). When HUVEC tube formation was assayed, the

inhibitory effects of low doses (0.6 mM) of 2-DG were significantly

more potent than 2-FDG (p,0.0001) and oxamate (p,0.0001) at

equimolar concentrations (Fig. 3C). There was no statistically

significant difference between 2-FDG and oxamate on their effects

on tube formation. These findings strongly suggest that mecha-

nisms other than inhibition of endothelial cell glycolysis may

explain the cytotoxic and antiangiogenic effects of 2-DG.

In addition to interfering with glycolysis, 2-DG also interferes

with N-linked glycosylation [17,18]. Due to its similarity in

structure to mannose, 2-DG inhibits N-linked glycosylation by

competition with mannose metabolism and by fraudulent

incorporation into dolichol-pyrophosphate (lipid)–linked oligosac-

charides, which are the precursors for N-linked glycosylation

[17,18]. To ascertain whether the antiendothelial effects of low

doses of 2-DG might be predominantly due to inhibition of

glycosylation, HUVEC cytotoxicity and capillary formation assays

were performed in the presence and absence of mannose (1 mM),

a sugar previously shown to reverse the effects of 2-DG on N-

linked glycosylation in select tumor cells [17,18]. Mannose

potently reversed the 2-DG induced HUVEC cytotoxicity

(Fig. 3D) and capillary formation (Fig. 3E). Similar to the results

of figure 3, these data are inconsistent with glycolysis as the

primary relevant target of 2-DG in endothelial cells, and instead

indicate that the above effects are primarily due to interference

with endothelial N-linked glycosylation.

2-DG interferes with endothelial synthesis of lipid linked
oligosaccharides (the precursor of N-linked
glycosylation), and induces an ER unfolded protein
response and apoptosis

To directly demonstrate that 2-DG interferes with endothelial

cell N-linked glycosylation, the effects of 2-DG on endothelial lipid

linked oligosaccharide (LLO) synthesis were determined by

fluorophore assisted carbohydrate electrophoresis (FACE). This

non-radioactive method avoids the use of radioactive sugar

precursors such as [3H]-mannose, the metabolism of which could

be impaired by 2-DG treatment. As seen in figure 4A, B and C, 2-

DG significantly reduced the formation of mature LLO

(G3M9Gn2), at concentrations of 0.6 and 3 mM. Quantitative

analysis (Fig. 4B) showed that 0.6 mM and 3 mM of 2-DG

inhibited LLO formation by 70% and .80%, respectively. 2-FDG

(a weaker inhibitor of N-linked glycosylation than 2-DG [18]), at a

concentration of 0.6 mM, inhibited LLO synthesis by 40%, while

at 3 mM, it inhibited LLO synthesis by about 75% (Fig. 4B). 2-DG

interfered with the synthesis of both mature (G3M9Gn2) and

minor LLO intermediates (e.g. M9Gn2 and M5Gn2), as shown by

electronically generated tracings of the above LLOs in figure 4C.

Figure 2. 2-DG inhibits HUVEC capillary formation, but does not disrupt already established tubes. HUVECs plated on matrigel were
exposed to different concentrations of 2-DG before (upper panel) and after (lower panel) they organized into capillaries. A. Significant inhibition of
HUVEC tube formation was observed in a dose dependent manner. * p = 0.005, 0.6 mM 2-DG (C) compared with control (B). In the lower panel,
HUVEC capillaries were allowed to form overnight, before they were exposed to 2-DG. Changes in total tube length were assessed 24 hours after 2-
DG exposure. D. 2-DG did not disrupt already established HUVEC capillaries. E, F: Representative pictures of control capillary tubes (E) and tubes
treated with 0.6 mM 2-DG (F). Scale bar = 100 mm.
doi:10.1371/journal.pone.0013699.g002
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Co-treatment with mannose rescued 2-DG’s inhibition of LLO

synthesis at lower (0.6 mM), and higher (3 mM) concentrations of

2-DG, however the degree of rescue was less prominent at the

higher 2-DG concentration. Consistent with the loss of LLO, total

pools of neutral N-linked glycans were reduced by about 50% and

75% after treatments with 0.6 mM and 3 mM 2-DG, respectively

(data not shown). Together with the results of figure 3, these data

are consistent with the hypothesis that in endothelial cells, 2-DG

acts primarily as an inhibitor of the N-glycosylation pathway

rather than as an inhibitor of glycolysis.

Interference with LLO synthesis impairs N-linked glycosylation,

leading to accumulation of unfolded proteins within the endo-

plasmic reticulum (ER) and induction of an unfolded protein

response (UPR) [38]. To investigate whether our 2-DG treatments

triggered these events, HUVECs were exposed to 2-DG with and

without mannose, and induction of UPR (as measured by its

markers GRP 94 and GRP 78), as well as the activation of UPR

mediated apoptotic pathways (as assessed by CHOP/GADD 153)

were investigated by western blot. As shown in figure 5, 2-DG

induced a dose dependent increase in GRP 94 and GRP 78, the

latter being more prominent. Mannose partially reversed these

effects. These effects were more prominent in 2-DG than 2-FDG

treated HUVECs. UPR induction by 2-DG, (but not by 2-FDG),

led to significant upregulation of CHOP/GADD 153 expression,

and induction of endothelial cell apoptosis, as evidenced by

increased caspase 3 cleavage (Fig. 5). Increased levels of CHOP/

GAD D153 and cleaved caspase 3 were also found to be reversed

by mannose.

Figure 3. Differential effects of 2-DG and other glycolytic inhibitors on in vitro angiogenesis and reversal of 2-DG’s antiangiogenic
effects by mannose. HUVECs were exposed to 2-DG and the glycolytic inhibitors, 2-FDG and oxamate, and cell growth and cytotoxicity were
measured at 72 hours. A. 2-DG had significantly more potent cytotoxic effects than 2-FDG and oxamate at equimolar concentrations. * p,0.05, 2-DG
vs. 2-FDG and oxamate. B. 2-DG and 2-FDG inhibited HUVEC growth more potently than oxamate (p,0.001). The differences between the growth
inhibitory effects of 2-DG and 2-FDG were not statistically significant (p.0.5). C. HUVECs were exposed to 0.6 mM of 2-DG, 2-FDG and oxamate, and
tube formation assay was performed. Quantitative analysis of total tube length was performed as in materials and methods. 2-DG inhibited tube
formation more potently than 2-FDG and oxamate. Histogram bars represent the average (and 95% confidence intervals) total tube length (percent
of control) of triplicate experiments. ** P,0.0001, 2-DG vs. 2-FDG and oxamate. D. Co-treatment of HUVECs with 2-DG and mannose reverted the
cytotoxic effects of 2-DG. 1: Control. 2: 2-DG at 0.6 mM. 3: 2-DG (0.6 mM) and mannose (1 mM). E. Mannose rescued 2-DG’s inhibitory effects on
HUVEC tube formation. I = control, II = 2-DG (0.6 mM), III = 2-DG (0.6 mM) + mannose (1 mM), IV = mannose (1 mM). Scale bar: 100 mm.
doi:10.1371/journal.pone.0013699.g003
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To further validate the findings that 2-DG induces endothelial

cell apoptosis by the above mechanisms, apoptosis (by TUNEL

assay) was assessed in HUVECs exposed to 2-DG with and

without mannose. As shown in figure 6, treatment of HUVECs

with 2-DG at concentrations of 0.6 and 6 mM was associated with

significant induction of apoptosis, which could be detected at

24 hours (Fig. 6A) after exposure, and became prominent at 48

(Fig. 6B) and 72 (Fig. 6C) hours. As expected by the results

described above, mannose (1 mM) reversed the pro-apoptotic

effects of 2-DG at both concentrations and at all time points tested.

These results indicate that 2-DG induces HUVEC apoptosis

predominantly by interfering with endothelial N-linked glycosyl-

ation, UPR induction, and activation of UPR-mediated apoptotic

pathways.

2-DG inhibits angiogenesis in vivo
The in vivo relevance of 2-DG antiangiogenic effects was

investigated in the in vivo murine matrigel plug assay [27,33].

Mice were injected with matrigel alone without bFGF/VEGF

(negative control), matrigel with bFGF/VEGF mixed with glucose

(6 mM) ‘‘positive’’ control) or bFGF/VEGF and 2-DG (6 mM).

Twelve days after matrigel implantation, mice were injected with

FITC/dextran, plugs were removed and matrigel perfusion was

determined by measuring matrigel fluorescence. In vivo angiogen-

esis in mice with plugs mixed with bFGF/2-DG had significantly

less neovascularization, compared to the control group (Fig. 7A. I).

In vivo angiogenesis was inhibited by approximately 64% in the 2-

DG containing plugs (Fig. 7A. I, condition 3) compared to the

control group (Fig. 7A. I, condition 2). Fluorescence counts (RFU)

in the positive control group was 9047, while fluorescence in 2-DG

exposed matrigels was 3281 (p,0.0001). These differences were

observed histologically, by H&E staining (less red blood cell

containing capillaries in the 2-DG group than the positive control,

Fig. 7A. IV vs. 7A. III), as well as by CD 31 staining of

microvessels, which were markedly reduced in the 2-DG treated

groups (Fig. 7A. VII), compared to the control group (Fig. 7A. VI).

Boutrid et al. previously reported that systemic administration of

2-DG is associated with tumor delaying effects on the LHBETATAG

Figure 4. 2-DG interferes with N-linked glycosylation by inhibiting lipid-linked oligosaccharide (LLO) assembly. A. Cells were treated
with 2-DG with or without 1 mM mannose, and 2-FDG for 24 h, followed by extraction and fluorophore assisted carbohydrate electrophoresis (FACE)
of LLOs. The standard oligosaccharides used in these studies are as follows: G4 to G7, glucose oligomers; G3M9, mature oligosaccharide (G3M9Gn2);
M5, oligosaccharide intermediate (M5Gn2). 2-DG inhibited assembly of mature LLOs. Lane 1 = untreated control. Lane 2 = 0.6 mM 2-DG; lane
3 = 3 mM 2-DG; Mannose reverted 2-DG inhibitory effects on LLO synthesis (lane 4, 2-DG at 0.6 mM + mannose, 1 mM; lane 5, 2-DG 3 mM + mannose,
1 mM). 2-FDG (lane 6: 0.6 mM; lane 7: 3 mM) treatment also decreased LLO synthesis, albeit at a lesser degree than 2-DG. Lane 8: glucose oligomer
standards. B. The levels of mature LLOs were quantitated by measuring the fluorescence of G3M9Gn2-ANDS bands in each lane (arbitrary units), which
is calculated by the percentage of band intensity in treated as compared with control samples. Bars represent the averages of single determinations
in two separate experiments. C. To show minor LLO intermediates as well as the effects of mannose rescue more clearly (from figure 4A),
electronically-generated traces of M5Gn2 through G3M9Gn2 in lanes 1–5 (from panel A) are displayed.
doi:10.1371/journal.pone.0013699.g004
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Figure 5. 2-DG induces HUVEC unfolded protein response (UPR) and UPR mediated apoptosis. HUVECs were treated with 2-DG, with or
without mannose, and 2-FDG for 24 hours, and immunoblotting was performed of cell lysates. 2-DG induced upregulation of Grp 94 (first panel) and
Grp 78 (second panel) chaperone proteins and markers of the unfolded protein response. These effects were reversed by mannose (0.5 mM). CHOP/
GADD 153, a transcription factor involved in ER stress mediated apoptosis, was potently upregulated by 2-DG (0.06, 0.6, and 3 mM) and partially
reversed by mannose (third panel). CHOP/GADD 153 induction was associated with increased levels of cleaved caspase 3 in HUVECs treated by 2-DG
(fourth panel). 2-FDG (0.06, 0.6, and 3 mM) induced a mild to moderate UPR response, especially at higher concentrations. However, CHOP/GADD 153
was not significantly induced, and levels of cleaved caspase 3 were not increased. Tunicamycin was used as positive control of the induction of UPR.
doi:10.1371/journal.pone.0013699.g005

Figure 6. Induction of endothelial cell apoptosis by 2-DG and reversal by mannose. HUVEC cells in chamber slides were treated with 0.6 or
6 mM 2DG with or without 1 mM mannose and incubated for 24 (A), 48 (B), and 72 (C) hrs. Apoptosis (determined by TUNEL assay) was significantly
induced upon 2DG treatment in a dose and time dependent manner at all time points tested. The pro-apoptotic effects of 2-DG were reversed by
mannose treatment of HUVECs. Results are presented as percentage of TUNEL positive cells over total cells, normalized to untreated controls (+/2
95% CI). Experiments were performed in triplicate and repeated twice. * = p,0.05.
doi:10.1371/journal.pone.0013699.g006
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mouse model of retinoblastoma [34], with or without concomitant

use of carboplatin [20]. In this model, transgenic mice typically

develop ocular tumors with histological, ultrastructural and

immunohistochemical features identical to those of human

retinoblastoma [34]. Like the human counterparts, angiogenesis is

a prominent feature in retinoblastoma tumors in this model and

play an important role in tumor progression [20,35,39,40].

Therefore, we examined the effects of systemically (IP) administrat-

ed 2-DG on in vivo tumor angiogenesis in this model. Mice were

treated with intraperitoneal injections of 2-DG (500 mg/kg) as

described in materials and methods. At 21 weeks of age, mice were

sacrificed, retinal tumors were resected, and tumor vasculature was

analyzed. As shown in figure 7B, a significant reduction in tumor

microvessels (by lectin fluorescence staining) was observed in the

group of mice treated with 2-DG (Fig. 7B. VI, VII) as compared

with controls (Fig. 7B. III, IV). Mean fluorescence intensity (MFI) in

the control group (arbitrary units -thousands-) was 3180.2 vs. 1058

(p,0.001). The above results strongly support the findings that 2-

DG has potent in vivo antiangiogenic effects.

Discussion

Targeting pathologic neovascularization is a clinically beneficial

strategy for the treatment of cancer and angiogenesis-dependent

diseases [2,41,42]. Antiangiogenic agents that are currently FDA

approved or in clinical development, include monoclonal

antibodies or multitargeted small molecule receptor tyrosine

kinase inhibitors against VEGF and other endothelial pathways

[2]. Other strategies being explored are direct vascular targeting,

either by vascular disrupting drugs, or biological agents [2]. Here

we provide evidence that interference of EC glucose metabolism

with 2-DG may represent a new strategy for angiogenesis

inhibition in vitro and in vivo.

Endothelial growth inhibition and cytotoxicity were induced by

2-DG at concentrations (0.6 mM) that did not significantly cause

cytotoxicity in the non-endothelial tumor or non-tumor cells tested

in this study (Fig. 1C). Previous reports have demonstrated that

tumor cytotoxic concentrations of 2-DG in vitro are 4 mM and

above [21,29,43]. One possibility to explain the unusual sensitivity

Figure 7. 2-DG inhibits in vivo angiogenesis. A. Mice were injected with matrigel alone ((negative)control) or mixed with bFGF/VEGF and
glucose (6 mM) or bFGF/VEGF and 6 mM 2-DG. Twelve days later mice were injected with FITC/dextran, plugs were removed and perfusion was
determined by fluorescence. I. Matrigels mixed with bFGF/VEGF and glucose were associated with significant neovascularization (lane 2) compared to
negative controls (lane-1). 2-DG, on the other hand, significantly inhibited in vivo angiogenesis, (lane 3 vs. 2). Bars represent means and 95% CIs of 5–
6 mice per group. Matrigel plugs from additional mice were extracted for IHC analysis. Representative pictures of matrigel plugs stained with H&E (II,
III, IV) and CD31 (V, VI, VII) are presented. II, V: Negative control. III, VI: positive control; IV, VII: 2-DG. Arrows indicate microvessels. Scale bar: 20 mm. B.
The effects of 2-DG on tumor angiogenesis in vivo were evaluated in the HBETATAG model of retinoblastoma. 2-DG was administered intraperitoneally
(3 times per week, for 5 weeks) to tumor bearing mice as described in materials and methods. At the end of the treatment period, mice were
euthanized and retinal tumors were extracted for analysis of tumor vasculature (lectin staining). I: Tumors in mice treated with 2-DG had a significant
reduction of tumor microvessels (measured by quantification of lectin fluorescence) compared to saline treated mice (p,0.001). MFI = mean
fluorescence intensity. Bars represent means and 95% CIs of at least 4 independent samples per group. II–VII: Representative fluorescent pictures of
retinal tumors from mice treated with saline (II, III, IV), and with 2-DG (V, VI, VII). II, V: DAPI staining. III, VI: Lectin staining III, VII: Overlay. Arrows
indicate microvessels. Scale bar: 10 mm.
doi:10.1371/journal.pone.0013699.g007
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of EC to 2-DG comes from previous reports in which it was shown

that angiogenic growth factors (and hypoxia) significantly up

regulate EC expression of glucose transporter-1 (GLUT-1) and

glucose uptake [9,11,16,37]. Moreover, a positive correlation

between GLUT-1 expression and 2-DG sensitivity was reported

by Maher et. al, in pancreatic cancer cell lines [43]. Our findings

that 2-DG inhibits cell growth and induces cytotoxicity in

HUVECs and HMVECs (Fig. 1C) at 72 hours, upon stimulation

with bFGF alone (Fig. 1A, C), or with multiple angiogenic growth

factors –such as VEGF, bFGF, IGF, etc, included in full

endothelial growth medium (Fig. 1D; Figs. 2A, B, C; Figs. 3C,

E), hold promise that the antiendothelial effects of this sugar

analog may not be overcome by overexpression of alternative

angiogenic pathways, a recognized mechanism of adaptive

resistance to targeted (e.g. anti-VEGF) antiangiogenic agents [44].

In vitro antiangiogenic effects were also observed in endothelial cells

exposed to 2-DG at earlier time points (24 hours or less), by the

demonstration of inhibition of EC migration (Fig. 1D) and capillary

formation (Fig. 2). Importantly, the finding that 2-DG inhibited

predominantly actively forming, but not already established EC capillaries

indicate that this sugar analog may preferentially disrupt endothelial

cells during active angiogenesis. These findings suggest that 2-DG has

the potential to act as a true antiangiogenic (preventing new vessel

formation), rather than a vascular disrupting agent, and that its

inhibitory effects occur at concentrations that may be clinically

achievable [24]. The potent antiangiogenic effects observed in vitro also

occur in vivo, as demonstrated in a murine angiogenesis model (matrigel

plug assay, Fig. 7A) as well as in a transgenic model of retinoblastoma,

where significant inhibition of tumor microvessels was observed, after

systemic 2-DG administration (Fig. 7B). Lack of serious side effects of

orally administered 2-DG has been reported by Raez et al. in a human

phase I clinical trial of this agent in combination with taxotere, where

no vascular serious adverse events related to 2-DG were observed [24].

Mohanti et al. also demonstrated safety and feasibility of the

combination of oral 2-DG and radiation therapy in patients with

supratentorial gliomas [25]. Recently, Stein et al. reported safety and

feasibility results of 2-DG administration in subjects with advanced

prostate cancer [23]. Pharmacokinetic data from the study by Stein et

al. suggest that at the doses of 2-DG administered to patients, plasma

concentrations of 2-DG may reach from 0.4 to 0.7 mM, which are

very close to the ‘‘antiangiogenic’’ concentrations of this agent

described in our study. These data support the concept that 2-DG

may have the potential to target not only the tumor cell compartment,

but also the tumor endothelium, and may significantly enhance the

activity of other forms of anticancer therapy.

In microvascular endothelial cells, almost all the energy (ATP)

derived from the catabolism of glucose is generated by glycolysis

[4,45]. At physiologic glucose concentrations, endothelial oxidative

metabolism is inhibited, a phenomenon known as the Crabtree

effect (inhibitory effect of glucose on mitochondrial respiration) [45].

Because glycolysis plays such an important role in endothelial ATP

generation, we expected that the other glycolytic inhibitors tested

would exert similar antiangiogenic effects as 2-DG, at equimolar

concentrations. The finding that 2-DG had greater in vitro

antiangiogenic effects than 2-FDG and oxamate, two potent

glycolytic inhibitors, was therefore surprising. The demonstration

that 2-DG’s antiangiogenic effects were reversed by mannose

(Fig. 3C, D, E), the sugar molecule involved in N-linked

glycosylation, and the direct demonstration that 2-DG inhibits

synthesis of endothelial lipid linked oligosaccharides (Fig. 4) indicate

that the predominant mechanism of endothelial cytotoxicity and

tube formation inhibition by 2-DG is interference of N-linked

glycosylation. Previously we reported a similar effect of 2-DG in

select tumor cell lines growing under normoxia and demonstrated

that the endoplasmic reticulum stress induced by 2-DG led to an

UPR activation of the apoptotic pathway (CHOP/GAD133). In

that report it was demonstrated that mannose could reverse the

cytotoxicity of 2-DG as well its interference on oligosaccharide

synthesis and N-linked glycosylation, while mannose did not impair

2-DG uptake at the relevant concentrations. This previous data

strengthens our conclusion that the predominant mechanism of 2-

DG’s endothelial cytotoxicity is via interference with N-linked

glycosylation leading to UPR-mediated cell death.

The importance of surface glycoproteins and N-linked glycosyla-

tion on endothelial functions in vitro and in vivo has been reported

[46,47,48]. Pili et al., showed that Castanospermine (CST), an alpha

glucosidase inhibitor, which prevents the synthesis of complex

oligosaccharides, inhibits bovine pulmonary artery ECs and bovine

aortic ECs in vitro, and inhibits in vivo angiogenesis and tumor growth

[48]. Martinez et al., demonstrated that N-glycosylation is critical for

EC proliferation [46,47], and that tunicamycin, an inhibitor of N-

linked glycosylation, induces apoptosis in bovine adrenal microvas-

cular endothelial cells [49]. The work presented here differs from the

above studies in several aspects. First, the effects of low doses of 2-DG

seem to preferentially affect actively forming capillaries, an effect that

was not demonstrated with the above mentioned compounds.

Second, CST and tunicamycin have been associated with potentially

significant toxicity related to alteration in glycogen levels in vivo and

neurotoxicity, respectively [50,51,52,53]. This significantly limits

their potential clinical development. On the other hand, 2-DG has

displayed good bioavailability after oral administration, and safety has

been demonstrated in early phase human clinical trials [23,24,25].

Notwithstanding our data which demonstrate that 2-DG effects

on ECs are predominantly through interference with glycosylation

leading to ER stress, it remains to be determined whether the anti-

glycolytic effects of this sugar analog contribute to its overall

antiangiogenic activity. Indeed, results presented in figure 3 suggest

that glycolysis inhibition may play a role in 2-DG’s growth

inhibitory effect. This is based on our data which showed that 2-

FDG (a more potent glycolytic and weaker glycosylation inhibitor

than 2-DG [18]) and oxamate (pure glycolytic inhibitor) had non-

significant cytotoxic effects (Fig. 3A), but did induce significant

growth inhibition in ECs (Fig. 3B). The endothelial growth

inhibitory effects of 2-FDG however, were significantly greater

than that of oxamate, implying that interference with glycosylation

(by 2-FDG but not oxamate) may be the more predominant

mechanism for this effect. These findings further support the

conclusion that inhibition of glycosylation is a necessary mechanism

for 2-DG’s cytotoxic and antiangiogenic effects. Studies to fully

characterize the role of glycolysis and glycosylation on different

steps of the angiogenic process in vitro and in vivo are in progress.

In conclusion, our findings underscore the importance of

endothelial glucose metabolism, and provide a rationale to explore

this target as a novel strategy for the treatment of angiogenesis

dependent diseases.

Supporting Information

Figure S1 2-DG inhibits endothelial cell growth in a dose and

time dependent manner. 2-DG significantly inhibited bFGF

induced HUVEC cell growth in a dose dependent manner at

24, 48 and 72 hours. Results (percent of control) are presented as

the average of triplicate experiments and 95% confidence

intervals. * = p,0.05.

Found at: doi:10.1371/journal.pone.0013699.s001 (0.45 MB TIF)
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