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Abstract

The linear or threshold Public Goods game (PGG) is extensively accepted as a paradigmatic model to approach the
evolution of cooperation in social dilemmas. Here we explore the significant effect of nonlinearity of the structures of public
goods on the evolution of cooperation within the well-mixed population by adopting Darwinian dynamics, which
simultaneously consider the evolution of populations and strategies on a continuous adaptive landscape, and extend the
concept of evolutionarily stable strategy (ESS) as a coalition of strategies that is both convergent-stable and resistant to
invasion. Results show (i) that in the linear PGG contributing nothing is an ESS, which contradicts experimental data, (ii) that
in the threshold PGG contributing the threshold value is a fragile ESS, which cannot resist the invasion of contributing
nothing, and (iii) that there exists a robust ESS of contributing more than half in the sigmoid PGG if the return rate is
relatively high. This work reveals the significant effect of the nonlinearity of the structures of public goods on the evolution
of cooperation, and suggests that, compared with the linear or threshold PGG, the sigmoid PGG might be a more proper
model for the evolution of cooperation within the well-mixed population.

Citation: Deng K, Chu T (2011) Adaptive Evolution of Cooperation through Darwinian Dynamics in Public Goods Games. PLoS ONE 6(10): e25496. doi:10.1371/
journal.pone.0025496

Editor: Attila Szolnoki, Hungarian Academy of Sciences, Hungary

Received July 18, 2011; Accepted September 5, 2011; Published October 25, 2011

Copyright: � 2011 Deng, Chu. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Natural Science Foundation of China under grant Nos. 60974064 and 60736022 (http://www.nsfc.gov.cn/
Portal0/default124.htm). K. Deng acknowledges the support from a scholarship within the Erasmus Mundus External Cooperation Window LiSUM project (http://
www.lisum.ugent.be/index.asp). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: RossDeng@pku.edu.cn (KD); chutg@pku.edu.cn (TC)

Introduction

The evolution of cooperation in social dilemmas has attracted

broad interests across disciplines [1–5]. Social dilemmas are situa-

tions in which individual rationality leads to collective irrationality

[6,7]. They are pervasive in all kinds of relationships, from the

interpersonal to the international. For example, a public local

library financed through donations benefits all people in the

community. One can benefit most if he donates nothing. However,

if everyone reasoned like this, the library would not keep running

due to the lack of finance, and all people would be worst off [8]. This

is a Public Goods dilemma. There exists another kind of social

dilemma called commons dilemma. For example, farmers living in a

common grassland can benefit more by raising as many cattle as

they want. However, if every farmer reasoned like this, the grassland

would be depleted very soon, and all farmers would worst off [6].

The same reasoning applies to these two kinds of social dilemmas, so

we focus on the Public Goods dilemma, which is usually modeled as

a Public Goods game (PGG).

In a traditional PGG experiment, some subjects form a group.

Each subject is endowed with a certain amount of money, and

they have to decide how much to invest in the public project,

which is increased to a multiple of it and then split evenly among

all subjects. So the gains of the subjects consist of two parts: the

money left that they do not invest and the money gained from

investing in the public project. For example, each of a four-

member group is given 20 money units (MUs), and the money

invested in the public project is doubled. If all members invest 20

MUs, everyone will have 40 MUs. However, every invested MU

only returns a half, and thus all members have an incentive to keep

all money in pocket. If you defect by investing zero while every

other member invests 20 MUs, you will have 50 MUs while other

members 30 MUs per person. If all members defect, everyone

ends up with 20 MUs and the benefit of the public project is

forgone. Consequently a dilemma arises. Since every invested

MU returns a half, from now on we call it a linear PGG, instead

(Fig. 1).

In the linear PGG, investing nothing is the only equilibrium.

That is, no one can gain more by investing more than zero no

matter how much others invest. However, whether in linear PGG

experiments or in real life, people often invest more than zero [9].

To better understanding people’s behaviors, the threshold PGG is

extensively researched (Fig. 1). In the threshold PGG, there exits

a provision point or threshold value. If the total sum of the

contributions is less than it, all contributions are lost, whereas if

the total sum exceeds it, a fixed amount of the public good is

gained. In contrast to the linear PGG, the threshold PGG has

other equilibria except investing nothing. That is, any combina-

tion of contributions that sum to the provision point is an

equilibrium. For example, each of a four-member group is given

20 MUs, and when the money invested in the public project

reached 60 MUs every member is given extra 40 MUs. Then

every member invests 15 MUs is an equilibrium. Three investing

20 MUs and one investing zero is another equilibrium. A

threshold PGG is a dilemma with a coordination game embedded

in it [8].
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However, most of social dilemmas in the real world are not

with an obvious or clearly defined provision point. For

example, in order to establish and maintain a public local

library, those initial donations are important. Once the library

starts to run, extra donations are also important for keep it

running smoothly. But they are not as important as those that

finally make possible the establishment of the library.

Therefore, a tilted S-shaped continuous function such as a

sigmoid function may provide a better model of many social

dilemmas [8,10–12]. We refer to a PGG with this kind of

structure as a sigmoid PGG (Fig. 1). As pointed out in [11], the

linear or threshold PGG is a simplification, or rather an

extreme version of the sigmoid PGG.

So far, there have been very few efforts made to directly

explore the effect of nonlinearity of the structures of public

goods on the evolution of cooperation. In [10], a rather simple

model was employed to independently analyze the accelerating,

linear, and decelerating portions of the S-shaped function, so

that the complexity of directly dealing with the S-shaped

function itself was circumvented. In [12], the authors concluded

by adopting replicator dynamics that the threshold PGG

(therein is called the Volunteer’s Dilemma) is a good

approximation of any public goods games in which the public

good is a nonlinear function of the number of cooperators (see

further comparison to our analysis in section Results and

Discussion). Here we will apply Darwinian dynamics [4,13–16]

to analyze the evolutionarily stable strategies (ESS) of these

three kinds of PGGs, and try to show that the sigmoid PGG is

really a more proper model for the evolution of cooperation

within the well-mixed population, compared with the linear or

threshold PGG in that it can reinforce our understanding of

people’s behaviors in the real world.

Analysis
The pioneering definition of ESS, which is originated by

Maynard Smith and Price, refers to a strategy that, when

common, can resist the invasion of a minority of any other

strategy [17]. Resistance to invasion is a static concept, since it

says nothing about what would happen if the population starts at

(or is perturbed to) a nearby point [15]. Therefore, an ESS which

does not require convergence stability may be unattainable

through strategy dynamics by natural selection. This leads to

the proliferation of related terminology such as evolutionarily

unbeatable strategy, d-stability, internal stability, and evolution-

arily singular strategy [18].

In contrast, Darwinian dynamics use a fitness-generating

function (G-function) approach to continuous-trait evolutionary

games [13,14]. The G-function allows for simultaneous con-

sideration of population dynamics and strategy dynamics. An ESS

is redefined as a coalition of strategies that is both convergent-

stable and resistant to invasion, which is a natural extension of

the original definition of Maynard Smith and Price. Those

strategies consisting of an ESS are evolutionarily stable maxima

on the adaptive landscape [4]. Here we adopt this definition of

ESS.

In the following, we first introduce Darwinian dynamics and the

extended concept of ESS. Then we analyze these three kinds of

PGGs in this context. After the relatively simple linear and sigmoid

PGGs are analyzed, the threshold PGG, which is not continuously

differentiable so that the G-function approach cannot be directly

Figure 1. The three kinds of structures of the PGG. (Dash-dot) The linear PGG, gl(x)~x. (Solid) The sigmoid PGG, gs(x)~ sin2 (px=2).
(Dashed) The threshold PGG, gt(x)~0 if 0ƒxv1=2, and 1 if 1=2ƒxƒ1.
doi:10.1371/journal.pone.0025496.g001
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applied to, is approximated by analyzing a class of PGGs with the

structure of power functions.

The G-function Approach
The G-function approach is mainly developed by Vincent, Brown,

and their coauthors [4,13,14,16]. We begin with introducing the

fitness-generating function (G-function). Assume that there are s
populations, and that the i-th population adopts the strategy ui

and its frequency is pi[P~½0,1�. All strategies ui’s are limited in

the evolutionarily feasible set U. We set u~½u1,u2, . . . ,us�[Us and

p~½p1,p2, . . . ,ps�[Ps. The G-function G(v,u,p) represents the

fitness of the i-th population when the virtual variable v[U is

replaced with ui.

Darwinian dynamics consist of population dynamics and

strategy dynamics. In terms of the G-function G(v,u,p), the

population dynamics are given by

_ppi~pi G(v,u,p){G
� �

, ð1Þ
where

G~
Xs

i~1

piG(v,u,p)jv~ui
: ð2Þ

When strategies ui’s do not evolve with time, they are equivalent to

the replicator dynamics [19,20]. The strategy dynamics are given

by

_uui~h
LG(v,u,p)

Lv

����
v~ui

, ð3Þ

where h is a positive factor that influences the speed of the

evolution of strategies [16]. In the special case that one extant

strategy is invaded by one rare mutant strategy, they reduce to the

adaptive dynamics [14,18,21,22].

A non-trivial equilibrium point p�~½p�1, . . . ,p�s �[Ps (reorder the

indexes if necessary) is called an ecologically stable equilibrium point, if

it satisfies that

p�i w0 with G(v,u,p){G
� �

v~ui ,p~p�~0, ð4aÞ

for i~1, . . . ,s,

p�i ~0, for i~sz1, . . . ,s, ð4bÞ

and that every trajectory starting from a point which is in Ps and

near p� remains in Ps for all time and converges to p� as time

approaches infinity. The strategies corresponding to p� is denoted

by u�~½u�c ,u�m�, where

u�c~½u�1, . . . ,u�s�, ð5aÞ

u�m~½u�sz1, . . . ,u�s �: ð5bÞ

The coalition of strategies u�c[Us is defined as an evolutionarily stable

strategy (ESS), if p� is an ecologically stable equilibrium point for

any u�m[Us{s. The adaptive landscape is simply a plot of

G(v,u,p){G
� �

versus the virtual variable v with u and p fixed.

The ESS Maximum Principle [13] states that

G(v,u,p){G
� �

u~u�,p~p�
must take on its maximum value, 0, as a

function of v[U at v~u�1, . . . ,u�s.

Here we assume that the evolution of strategy is slower than that

of population (but in all of the following invasion simulations we do

not make this assumption), and focus on the ESS coalition of one

strategy where u�c~u�1 and p�1~1. On the adaptive landscape, a

stable minimum indicates an evolutionary branching point. The

population which evolves to branching points may diverge into

two separate populations or species with distinct strategies [18,22].

Both unstable maxima and unstable minima are repelling points,

and they should not be observed in nature [15]. An ESS is an

global fitness maximum and convergently stable [14].

In the interior of U , a necessary condition for u�1 to resist the

invasion of rare mutant strategies is given by

LG(v,u�1,p�1)

Lv

����
v~u�

1

~0, ð6aÞ

L2G(v,u�1,p�1)

Lv2

����
v~u�

1

v0: ð6bÞ

A necessary condition for the convergence stability of u�1 is given

by

L2G(v,u�1,p�1)

Lv2
z

L2G(v,u�1,p�1)

Lu�1Lv

" #
v~u�

1

v0: ð7Þ

The linear PGG is played in a group of n interacting members.

Each member is endowed with c units of utility, and they have to

decide how much to invest in the public project. The total units of

utility invested in the public project is multiplied by a positive

number r and then split evenly among all members. If r§n, no

member will lose anything no matter how much he invests. If rƒ1,

no member can gain more no matter how much he invests. So the

number r is restricted between one and n. Group members benefit

most when all cooperate, but each has an incentive to contribute

nothing because every invested unit of utility only returns r=n units

of utility and thus cooperation incurs cost c(1{r=n) to himself. So

the group will no doubt end up all members contributing nothing

when they get experienced and the benefit of the public project is

forgone. This is the dilemma all group members face. The interests

of individuals totally contradict the interest of the group.

From now on we set c~1 with no loss of generality, since it has

no effect on the nature of the dilemma. We subsequently apply this

G-function approach to the aforementioned three kinds of PGGs,

so as to analyze the dependence of cooperation levels on the

structures of Public Goods.

For the PGG, if the populations are evolutionarily stable in the

evolutionarily feasible set U~½0,1�, the expected contribution from

any random group member is
Xs

i~1
piui. In a group of n

members, if the focal member decides to contribute v[U, then the

average contribution As(v) is given by

As(v)~
1

n
vz(n{1)

Xs

i~1

piui

" #
: ð8Þ

Thus the return from the public good for the focal member is

rg½As(v)�, and the G-function is given by

Adaptive Evolution of Cooperation
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G(v,u,p)~rg½As(v)�{v, ð9Þ

where the function g(x) is supposed to represent the structure of

the public good (Fig. 1).

The Linear PGG
In the special case of the linear PGG of our interest here (Fig. 1),

we set

g(x)~gl(x)~x, ð10Þ

and thus the G-function is

G(v,u,p)~rAs(v){v: ð11Þ

It follows that

LG(v,u,p)

Lv
:

r

n
{1v0, ð12Þ

which is independent of the composition of the population. Group

members can always benefit more by reducing their contributions,

so there exists no ESS in the interior of ½0,1�.
However, this also gives us a hint that contributing nothing,

where u�1~0 and p�1~1, is the only possible ESS. Considering that

the adaptive landscape

G(v,u�1,p�1){G
� �

u�
1
~0, p�

1
~1

~
r

n
{1

� �
v ð13Þ

reaches its global maximum, 0, in ½0,1� when v~0 (Fig. 2),

contributing nothing is surely an ESS for the linear PGG.

Similarly, we can conclude that another boundary value of ½0,1�,
contributing all, where u�1~1 and p�1~1, is not an ESS, since the

adaptive landscape

G(v,u�1,p�1){G
� �

u�
1
~1, p�

1
~1

~ 1{
r

n

� �
(1{v) ð14Þ

reaches its global minimum, 0, in ½0,1� when v~1 (Fig. 2).

A simulation of altruistic cooperators who contribute all (i.e.,

v~1) invading the population of defectors who contribute nothing

(i.e., v~0) is shown in Fig. 3. The result shows that the ESS v~0 is

rather robust against invasion. Yet this contradicts the fact that the

mean contributions usually end up with between 40% and 60% in

experiments [9].

The Sigmoid PGG
In the special case of the sigmoid PGG (Fig. 1), we set

g(x)~gs(x)~ sin2 p

2
x

� �
: ð15Þ

Other functions with similar properties are of course possible, but

not explored here for simplicity. Thereby the G-function is

simplified as

G(v,u,p)~r sin2 p

2
As(v)

h i
{v: ð16Þ

We examine the one-strategy ESS (coalition of one strategy);

that is, s~1. When u�c~u�1 and p�1~1, the G-function (Fig. 4) is

G(v,u�1,p�1)~r sin2 p

2
A1(v)

h i
{v

~r sin2 p

2n
½vz(n{1)u�1�

n o
{v:

ð17Þ

It follows that

LG(v,u�1,p�1)

Lv

����
v~u�

1

~
pr

2n
sin½pA1(u�1)�{1

~
pr

2n
sin(pu�1){1:

ð18Þ

If rv
2n

p
,
LG(v,u�1,p�1)

Lv
v0. We can verify that v~0 is the global

maximum in ½0,1� of the adaptive landscape

Figure 2. The adaptive landscapes in the linear PGG. u1~0 is an ESS which sits at the top of the adaptive landscape. Parameters: u1~0, 0:33,
0:66, and 1; n~10; and r~8.
doi:10.1371/journal.pone.0025496.g002
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G(v,u�1,p�1){G
� �

u�
1
~0, p�

1
~1

~r sin2 p

2n
v

� �
{v: ð19Þ

Hence, if rv
2n

p
, contributing nothing is also an ESS for the

sigmoid PGG, just as in the case of the linear PGG.

When r§
2n

p
, the equation

LG(v,u�1,p�1)

Lv

����
v~u�

1

~0 has two

solutions in ½0,1�:

u�1,1~
1

p
arcsin

2n

pr

� �
, ð20Þ

and

u�1,2~1{
1

p
arcsin

2n

pr

� �
§

1

2
: ð21Þ

We can identify u�1,2 as an ESS candidate by verifying the following

two conditions,

L2G(v,u�1,2,p�1)

Lv2

�����
v~u�

1,2

~
p2r

2n2
cos½pA1(u�1,2)�

~
p2r

2n2
cos(pu�1,2)v0,

ð22Þ

and

L2G(v,u�1,2,p�1)

Lv2
z

L2G(v,u�1,2,p�1)

Lu�1,2Lv

�����
v~u�

1,2

~
p2r

2n
cos½pA1(u�1,2)�~ p2r

2n
cos(pu�1,2)v0:

ð23Þ

Similarly, we can show that u�1,1 is an unstable fitness minimum.

Hence there exists a stable state of the population contributing

u�1,2, which is more than half, if the return rate r is relatively high.

A simulation of defectors who contribute nothing (i.e., v~0)

invading the population of individuals who play the ESS (i.e.,

v~u�1,2) is shown in Fig. 5. The result shows that the ESS is surely

able to resist the invasion.

Figure 3. An invasion simulation of Darwinian dynamics of the linear PGG. (Upper-left) Evolution of the frequencies of the ESS and the
invader strategy starting from 20% and 80% respectively. (Upper-right) Evolution of the ESS and the invader strategy starting from ESS~0 and
Invader~1 and ending up with the latter evolving to the former. (Lower) Evolution of the adaptive landscape and the two strategies: tv0 (i.e.,
before the invasion happens), ESS~0 is the global maximum; t~0 (i.e., the invasion happens), the adaptive landscape is elevated with ESS~0 still
being the global maximum and Invader~1 being the global minimum; t~1:3, the invader strategy climbs up with the adaptive landscape going
down; t§5:5, the invader strategy coincides with ESS~0 and reaches the top of the adaptive landscape, which falls back to the state before the
invasion happens. Parameters: n~10, r~8, and h~0:9.
doi:10.1371/journal.pone.0025496.g003
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The Threshold PGG
For the special case of the threshold PGG (Fig. 1), we set

g(x)~gt(x)~
0, if 0ƒxv

1

2
,

1, if
1

2
ƒxƒ1:

8><
>: ð24Þ

Yet the discontinuity of gt(x) inhibits the application of Darwinian

dynamics to our research into the process of evolution. Instead, we

adopt a class of power functions gk(x), where k~1,2, . . ., to

approach function gt(x) (Fig. 6); that is,

gt(x)& lim
k??

gk(x)~ lim
k??

1

2
½(2x{1)

1
2kz1z1�: ð25Þ

Other functions with similar properties are of course possible, but

not explored here for simplicity. Hence the G-function can be

expressed as

G(v,u,p)~
r

2
f½2As(v){1�

1
2kz1z1g{v: ð26Þ

We still focus on the one-strategy ESS where s~1. When

u�c~u�1 and p�1~1, the adaptive landscape (Fig. 6) is

G(v,u�1,p�1)~
r

2
f½2A1(v){1�

1
2kz1z1g{v

~
r

2

2

n
(vz(n{1)u�1){1

	 
 1
2kz1

z1

( )
{v:

ð27Þ

It follows that

LG(v,u�1,p�1)

Lv

����
v~u�

1

~
r

(2kz1)n
½2A1(u�1){1�{

2k
2kz1{1

~
r

(2kz1)n
(2u�1{1)

{ 2k
2kz1{1:

ð28Þ

The equation
LG(v,u�1,p�1)

Lv

����
v~u�

1

~0 also has two solutions in ½0,1�:

u�1,1~
1

2
{

1

2

r

(2kz1)n

	 
(1z 1
2k

)

, ð29Þ

and

u�1,2~
1

2
z

1

2

r

(2kz1)n

	 
(1z 1
2k

)

: ð30Þ

We can identify u�1,2 as an ESS candidate by verifying the

following two conditions,

L2G(v,u�1,2,p�1)

Lv2

�����
v~u�

1,2

~{
4kr

(2kz1)2n2
½2A1(u�1,2){1�{(1z 2k

2kz1
)

~{
4kr

(2kz1)2n2
(2u�1,2{1)

{(1z 2k
2kz1

)
v0,

ð31Þ

Figure 4. The adaptive landscapes in the sigmoid PGG. u1~0:707 is an ESS which sits at the top of the adaptive landscape. u1~0:293 is an
unstable minimum which sits at the bottom of the adaptive landscape. Parameters: u1~0, 0:22, 0:293, 0:38, 0:62, 0:707, 0:78, and 1; n~10; and r~8.
doi:10.1371/journal.pone.0025496.g004

Adaptive Evolution of Cooperation

PLoS ONE | www.plosone.org 6 October 2011 | Volume 6 | Issue 10 | e25496



and

L2G(v,u�1,2,p�1)

Lv2
z

L2G(v,u�1,2,p�1)

Lu�1,2Lv

�����
v~u�

1,2

~{
4kr

(2kz1)2n
½2A1(u�1,2){1�{(1z 2k

2kz1
)

~{
4kr

(2kz1)2n
(2u�1,2{1)

{(1z 2k
2kz1

)
v0:

ð32Þ

Similarly, we can show that u�1,1 is an unstable fitness minimum.

With increasing k, u�1,1 monotonically decreases, whereas u�1,2

monotonically increases, and both approach the threshold value

1=2 (Fig. 6).

Fig. 6 also shows that, in contrast to the ESS in the sigmoid

PGG, here just on the left side of u�1,2 there exists a global

minimum, which makes the ESS is rather fragile. This point is

fully exposed in Fig. 7, where only 0:1% invaders of defectors

who contribute nothing (i.e., v~0) drove the whole population

to the stable state of contributing nothing with a much faster

speed relative to that in Fig. 3 or Fig. 5. Hence the threshold

PGG basically does not have much advantage over the linear

PGG.

Results and Discussion

In summary, by adopting Darwinian dynamics, we have

explored the significant effect of nonlinearity of the structures of

public goods on the evolution of cooperation within the well-

mixed population. The threshold PGG does not have much

advantage over the linear PGG, whereas in the sigmoid PGG

there exists a one-strategy ESS of the whole population con-

tributing more than half. This suggests that the sigmoid PGG

might be a more proper mathematical model for the research of

the evolution of cooperation within the well-mixed population,

and thereby may release researchers from the shackles of the linear

or threshold PGG.

In contrast to most work in which replicator dynamics or

adaptive dynamics were applied to the evolution of cooperation in

social dilemmas [12,22], here we adopt Darwinian dynamics

mainly developed by Vincent, Brown, and their coauthors, which

simultaneously consider the evolution of populations and strategies

on a continuous adaptive landscape [4,13,14,16]. In Darwinian

dynamics, the concept of ESS is extended as a coalition of

strategies that is both convergent-stable and resistant to invasion,

Figure 5. An invasion simulation of Darwinian dynamics in the sigmoid PGG. (Upper-left) Evolution of the frequencies of the ESS and the
invader strategy starting from 80% and 20% respectively. (Upper-right) Evolution of the ESS and the invader strategy starting from ESS~0:707 and
Invader~0 and ending up with the latter evolving to the former. (Lower) Evolution of the adaptive landscape and the two strategies: tv0 (i.e.,
before the invasion happens), ESS~0:707 is the global maximum; t~0 (i.e., the invasion happens), the adaptive landscape is reshaped with
ESS~0:707 sitting at the left of the global maximum and Invader~0 being the global minimum; t~1:3, the two strategies climb up so that the
adaptive landscape is reshaped with the global maximum sitting between the two strategies; t§30, the two strategies coincide and reach the top, at
ESS~0:707, of the adaptive landscape, which falls back to the state before the invasion happens. Parameters: n~10, r~8, and h~0:9.
doi:10.1371/journal.pone.0025496.g005
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whereas the original definition of ESS by Maynard Smith and

Price might be unattainable through strategy dynamics by natural

selection. This well-developed framework provides us with another

wonderful mathematical tool for the research related to natural

selection.

To our knowledge the only systematic theoretical analysis until

now of the effect of nonlinearity of the structures of public goods

on the evolution of cooperation is [12], in which a series of

functions 1=(1ze{kx) were adopted to explore the sigmoid PGG

and their limit function when k?? was used to approach the

threshold PGG, and the authors concluded that the threshold

PGG is a good approximation of any public goods games in which

the public good is a nonlinear function of the number of

cooperators. However, compared to Eqn. (28) we adopt here,

1=(1ze{kx) is not a good approximation due to its asymptotic

nature. For example, this series of functions cannot represent full

cooperation (or full defection) even though all individuals are

cooperators (or defectors).

Both in the sigmoid PGG approximated by 1=(1ze{kx) and in

the threshold PGG approximated either by limk?? 1=(1ze{kx)
or by Eqn. (25), the ESS (note the different definition of ESS in our

analysis from [12]) is accompanied by an unstable cooperation

level (Figs. 6 and 7), which makes the ESS is rather fragile. In

contrast, in the sigmoid PGG approximated here by Eqn. (15) the

ESS is the only global extreme point in the interior of the

evolutionarily feasible set U~½0,1� (Figs. 4 and 5). This suggests

that the sigmoid PGG might be a more proper model for the

evolution of cooperation within the well-mixed population, in that

it hosts a non-trivial evolutionarily stable cooperation level when

the return rate is relatively high, whereas the linear or threshold

PGG never does.

Note that our results are reached within the well-mixed

population. There exist different possibilities if we adopt other

assumptions on the population, the group size, or the structure of

the PGG. For example, within structured populations with different

group sizes, the coexistence of cooperation and defection is possible

even for the linear PGG due to noise underlying strategy adoptions

[23]. The exploration of the linear PGG that requires a minimum

collective investment to ensure any benefit shows that decisions

within small groups under high risk significantly raise the chances of

coordinating actions [24]. In addition, the relative size of the

threshold value of the threshold PGG might also affect the evolution

of cooperation within the structured population [25].

However, our work does show the significant effect of

nonlinearity of the structures of public goods on the evolution of

cooperation within the well-mixed population. Actually, when x
increases from 0 to 1, the slope of the S-shaped function g(x) goes

through a process from accelerating to decelerating. Simulations

show that this property of g(x) plays a key role for the existence of

a robust ESS in the PGG within a well-mixed population.

Naturally, an interesting future work might be to search for the

optimal structure of public goods in the sense that complete

cooperation is a robust global ESS in the PGG with this kind of

structure, and the way to implement it in the real world.

Figure 6. The approximate representative of the threshold PGG by a class of power functions. (Upper-left) gk(x)~½(2x{1)
1

2kz1z1�=2
where k~1, 4, and 500. (Upper-right) the ESS and the unstable minimum as the functions of parameter k. They are getting closer and closer with
increasing k. (Lower) the adaptive landscapes when k~500, and u1~0, 0:4996, 0:5004, and 1. u1~0:5004 is an ESS which sits at the top of the
adaptive landscape. u1~0:4996 is an unstable minimum at the bottom of the adaptive landscape. Parameters: n~10, and r~8.
doi:10.1371/journal.pone.0025496.g006
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Figure 7. An invasion simulation of Darwinian dynamics in the threshold PGG which is approximated by gk(x)~½(2x{1)
1

2kz1z1�=2
where k~500. (Upper-left) Evolution of the frequencies of the ESS and the invader strategy starting from 99:9% and 0:1% respectively. (Upper-
right) Evolution of the ESS and the invader strategy starting from ESS~0:5004 and Invader~0 and ending up with the former evolving to the
latter. (Lower) Evolution of the adaptive landscape and the two strategies: tv0 (i.e., before the invasion happens), ESS~0:5004 is the global
maximum; t~0 (i.e., the invasion happens), the adaptive landscape is elevated with ESS~0:5004 being the global minimum and Invader~0 being
the local maximum; t~0:03, the ‘‘ESS’’ climbs up towards the invader strategy with the latter keeping sitting at the local maximum of the reshaped
adaptive landscape; t§0:55, the ‘‘ESS’’ coincides with Invader~0 and reaches the top of the reshaped adaptive landscape, which means the success
of the invader strategy and the failure of the ‘‘ESS’’. Parameters: n~10, r~8, and h~0:9.
doi:10.1371/journal.pone.0025496.g007
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