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Abstract

Background: Local plant-soil associations are commonly studied at the species-level, while associations at the level of nodes
within a phylogeny have been less well explored. Understanding associations within a phylogenetic context, however, can
improve our ability to make predictions across systems and can advance our understanding of the role of evolutionary
history in structuring communities.

Methodology/Principal Findings: Here we quantified evolutionary signal in plant-soil associations using a DNA sequence-
based community phylogeny and several soil variables (e.g., extractable phosphorus, aluminum and manganese, pH, and
slope as a proxy for soil water). We used published plant distributional data from the 50-ha plot on Barro Colorado Island
(BCI), Republic of Panamá. Our results suggest some groups of closely related species do share similar soil associations. Most
notably, the node shared by Myrtaceae and Vochysiaceae was associated with high levels of aluminum, a potentially toxic
element. The node shared by Apocynaceae was associated with high extractable phosphorus, a nutrient that could be
limiting on a taxon specific level. The node shared by the large group of Laurales and Magnoliales was associated with both
low extractable phosphorus and with steeper slope. Despite significant node-specific associations, this study detected little
to no phylogeny-wide signal. We consider the majority of the ‘traits’ (i.e., soil variables) evaluated to fall within the category
of ecological traits. We suggest that, given this category of traits, phylogeny-wide signal might not be expected while node-
specific signals can still indicate phylogenetic structure with respect to the variable of interest.

Conclusions: Within the BCI forest dynamics plot, distributions of some plant taxa are associated with local-scale differences
in soil variables when evaluated at individual nodes within the phylogenetic tree, but they are not detectable by phylogeny-
wide signal. Trends highlighted in this analysis suggest how plant-soil associations may drive plant distributions and
diversity at the local-scale.
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Introduction

An important goal in tropical ecology is to identify the strength

of plant associations with their physical environments in order to

understand the factors underlying the distribution and abundance

of species. Identifying plant-soil associations is not a new goal (for

example, see studies reviewed in [1]). Many advances have been

made at the levels of landscape and mesoscale (102–104 km2 and

1–100 km2 respectively, as defined by [2], e.g. [3,4,5,6,7,8,9]), but

progress in understanding local-scale (,1 km2) associations in the

tropics has been slower for two reasons. First, intensive inventories

are required to quantify the spatial distributions and abundances

of tropical tree communities. Second, quantitative measurements

of the abiotic environment are required at a high spatial resolution

within the tree communities being inventoried. Work in Malaysia

has succeeded in confronting both of these obstacles by mapping

fine scale variation in soil texture [10,11], which can correlate with

soil resources, within a 52-ha plot. Similarly, recent work on Barro

Colorado Island (BCI) in the Republic of Panamá has mapped the

spatial distribution of soil nutrients and elements within the 50-

hectare forest dynamics plot on the island [2]. The results of this

work have shown that indeed some tree species in the BCI plot

had significant associations with soil nutrients and elements.

Here we expand on previous work on local-scale plant-soil

associations by moving the analyses beyond the species-level

associations and investigating the degree to which closely related
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species share similar associations for soil variables on a local-scale.

Such an approach may be useful for understanding local-scale

patterns that exist across highly diverse tropical forests that may

share few species but have ‘deeper’ phylogenetic overlap (e.g.,

shared genera and families). For example, physiological traits

which may influence plant distributions are known to exist at

phylogenetic nodes for aluminum accumulation (e.g., Vochysia-

ceae and Melastomataceae). This trait can serve as a mechanism

of aluminum tolerance [12] and it is reasonable to hypothesize

that, in some systems, it could translate into local-scale plant-soil

associations for those groups. Similarly, node-specific plant

associations could exist for other elements, including nutrients

that may be limiting for plant productivity. In highly weathered

soils in Hawaii [13] phosphorus has been shown to be a limiting

nutrient and could be limiting to different degrees, perhaps on a

taxon-specific basis, in other tropical forests.

The degree to which soil nutrient and element associations are

similar amongst closely related species is also of practical

importance for phylogenetic investigations into the community

structure [14,15,16,17,18,19,20]. Recent work has shown that

within some topographically defined habitats of the BCI forest

plot, species assemblages tend to be more similar in their

phylogenetic composition than expected [16,19]. Knowledge

regarding the degree to which some closely related species occur

on similar positions on soil resource gradients may help uncover

mechanisms underlying empirical patterns of community phylo-

genetic structure.

Although it is not possible to conclusively determine that

associations are the result of soil influencing plant distribution, as

opposed to plants influencing soil variables, there are a few reasons

why the sampling design of the BCI soil nutrient and element data

set is more likely to detect plant responses to soil variation. As

outlined by others [2], the high tree diversity homogenizes inputs,

decreasing feedbacks of litter quality on soil properties. In addition,

soil nutrients and elements are correlated with topography

suggesting geological processes underlie nutrient and element

variation in the plot. Furthermore, soil sampling was intensive

but, due to the size of the plot area, data analysis is dependent on

kriging between the 50 m650 m (plus 3 random samples at

alternate grid points) sampling locations to create estimates at a scale

of 20 m620 m. Considering this spatial scale, along with the high

number of small individuals in the data set (,90 percent of the

individuals in the BCI plot are less than 10 cm in diameter),

strengthens the argument that associations are more likely to be due

to soil influences on plant distribution than the reciprocal effect.

However, an important caveat to this reasoning is when species are

highly aggregated, in which case many individuals could have a

cumulative effect on soil properties. Within the BCI 50-ha plot, it

has been shown that most species are spatially aggregated but there

is large variation in the degree of aggregation [21].

The present study used a phylogenetic hypothesis of the

relationships among the taxa in the BCI forest plot to quantify

the evolutionary signal in three soil nutrients and elements

(extractable phosphorus, aluminum and manganese), pH, slope

and a general index of soil fertility determined by using Principal

Component Analyses (PCA) axes which combine 15 soil variables.

Our main hypothesis was: if the evolution of soil associations has

been relatively conserved for a given soil variable or group of

variables (as evaluated through PCA axes), there will be node-

specific signal in soil variables, suggesting that the association

between edaphic variation and local-scale plant distribution within

the BCI plot exist beyond the species-level. The null hypotheses

being: an absence of signal in the soil variables. This would suggest

that local-scale variation of edaphic factors are not important in

determining distributions of clades of species; however, the

associations between plant distributions and soil factors can still

exist for individual species (as shown in [2]).

In contrast to our expectations for node-specific signal, we did

not expect to find phylogeny-wide signal for extractable alumi-

num, manganese, phosphorus, or slope (to the extent that it is a

proxy for water), due to the nature of these metrics. We are

interested in whether groups of species show association with soil

variables, which serve as the ‘trait’ values for the phylogenetic

analyses. These are not trait values in the traditional sense, as they

are not directly measured on individual organisms. However, the

soil variables have the potential to represent the evolutionary

history of an organism and we consider them to be ecological

‘traits’, which is one category of traits highlighted in Blomberg et

al. [22], along with morphological, life history, physiological, and

behavioral. For example, Blomberg et al. [22] consider mean

annual temperature and seasonality as ecological traits which,

similar to soil variables, are abiotic factors that could influence an

organisms range of potential environments and competitive ability.

Here we are investigating if taxa show tolerance, or intolerance,

within the ranges of soil variables. It follows that, within a group,

species exhibiting tolerance or intolerance would have average

values of the soil metric of interest clustered toward the extreme of

the gradient compared to those expected by chance. For tolerance,

the shifted average would reflect either 1) the ability to occupy the

more extreme sites while also existing on less extreme sites or 2) the

limited distribution on the tail of the tolerance gradient due to a

trade-off decreasing their presence in the rest of the gradient. In

contrast, data for less tolerant taxa would extend over a range of

less extreme values. Therefore, phylogeny-wide signal based on

soil variables would be unlikely to be significant because well

constrained trait values throughout the phylogeny, which might be

expected for morphological or physiological traits, are not

expected for this ecological trait. However, the phylogeny could

show node-specific associations in the trait value (as hypothesized

above).

Methods

Barro Colorado Island (BCI) is a semideciduous moist forest

with average rainfall of 2,600 mm [23]. In the 50-ha plot, red light

clays are the most abundant soil category but brown fine loams are

also present [24] (for more information on BCI soils see [25]).

Census data for the 50-ha plot was collected by Smithsonian

Tropical Research Institute (STRI) Forest Dynamics project, lead

by R. Condit, S. Hubbell and R. Foster [26,27]; data can be

requested at http://ctfs.si.edu/datasets/bci/) and we used data

from the 2005 census. All trees $1cm diameter are included in the

census and the sampling protocol is described in [28].

For soil traits, we focus on previously published data on

extractable phosphorus, aluminum, manganese, pH, and slope.

We also use a general index of soil fertility using PCA axes created

from analysis of 15 soil variables. Soil collection and analysis was

conducted by J. Dalling, K. Harms, R. John, R. Stallard, and J.

Yavitt [2,29]. Methods are described in [30]. Briefly, 300 samples

were collected to 10 cm depth following a 50 m650 m grid (plus 3

random samples at alternate grid points) and soil analyses included

extractable aluminum, boron, calcium, copper, iron, potassium,

magnesium, manganese, inorganic nitrogen, phosphorus and zinc,

in addition to net nitrogen mineralization rates, and pH. These

data were then used to create estimates at a scale of 20 m620 m.

Nitrogen was extracted using potassium chloride and estimated

colorimetrically using an autoanalyzer, while all other nutrients

and elements were extracted with a Mehlich-3 solution [31] and
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analyzed using inductively coupled plasma-atomic emission

spectrometry (ICP-AES) at Cornell University Laboratories [2].

Net nitrogen mineralization rates represent nitrogen mineralized

during a 28 day in situ incubation. Soil pH was measured using a

1:3 ratio of field moist soil to distilled water [30]. In addition,

although slope and elevation are topographic and not soil

characteristics, we included them as soil variables to guide

inference about the importance of soil water. For example, on

BCI steep slopes have been shown to have higher water potentials

than plateau areas [32,33]. The slope and elevation for each

400 m2 subplot inside the BCI forest plot were downloaded with

the original 2005 census data.

Supertree and trait files
The present study uses a previously published molecular

phylogeny for the BCI forest plot published by [19]. The

phylogeny was generated using a three-locus (rbcL, trnH-psbA,

and matK) DNA barcode dataset generated for the plot. The

sequencing, alignment and phylogenetic inference methods are

discussed in detail elsewhere [19]. The phylogeny resolves the

majority of the nodes with the phylogeny and provides a marked

improvement over phylogenetic supertrees that paste species onto

phylogenetic backbones using the taxonomic hierarchy [34].

To generate the species by soil variable association data set we

first made geographic information system (GIS) map layers of each

of the soil variables. Next, we performed a principal component

analysis (PCA) to investigate suites of correlated soil variables.

Data input into the PCA analysis were log transformed when

necessary (i.e. extractable B, Ca, Cu, Fe, K, Mg, P and Zn, and

elevation) and scaled. The resulting PCA scores were used to

generate GIS map layers for the first three PCA axes. Next using

the x-y coordinates in the original BCI census file we plotted the

BCI tree data in the GIS on top of the soil variable maps and

extracted the soil variable value for each individual stem. Then for

each species we calculated the median value on which each species

was found for each soil variable. Phylogenies and trait files for

medians were created for all individuals $1 cm in diameter.

Phylogenetic signal
Phylogenetic signal is defined as the tendency for related species

to resemble each other more than they resemble species drawn at

random from the tree [22] and phylogenetic signal is often

calculated using the mean contrast value for all nodes descendant

of a node [22,35,36,37]. In this analysis we use three metrics

(phylogeny-wide signal, node-specific signal and Blomberg’s K

statistic) to measure the tendency of related species to resemble

each other more than they resemble species drawn at random.

Phylogeny-wide signal indicates if a pattern was detected across

the entire phylogeny, while node-specific signal indicates if

significant associations were detected for nodes within the

phylogeny. Bloomberg’s K statistic was used to quantify

phylogenetic signal in the soil data and to compare the magnitude

of effect sizes among traits as measured from the root node [38].

For consistency, we only refer to the metrics which use contrast

values as phylogenetic signal (i.e. the phylogeny-wide signal and

Bloomberg’s K statistic; see below). We use the term evolutionary

signal to refer to all three metrics, including node-specific signal.

The analysis of traits (AOT) module in the software Phylocom

v4.0 [39] was used to test for phylogeny-wide signal and node-

specific signal in soil variables. In the AOT procedure, phylogeny-

wide signal was evaluated at the root node, while node-specific signal

was tested for each node in the phylogeny. Phylogeny-wide signal

here is based on the mean contrast value for all nodes descendant of

a node, while node-specific signal is based on means of all taxa

subtended by the node of interest. The analysis for Blomberg’s K

statistic was performed using the R package Picante [40].

To be conservative with interpreting significant node-specific

results from AOT module, in this paper we focus on nodes that

were significant for both tip and ancestral averaging. Detailed

information and references for all AOT can be found in [37]. The

observed mean value of each node is compared to a null

distribution of mean values that is generated by permutating trait

values across the tips of the phylogeny 999 times. If the observed

value for a node lands in the p = 0.05 tails of the null distribution,

the trait has significant signal at that node and all descendant taxa

have average trait values more similar than expected.

High and low tail tests were conducted for node-specific

associations of all traits. However, for PCA axes, only associations

with the high tail tests are considered. Significant associations with

low values of a PCA axis are not biologically meaningful and

therefore are not included in the results. Considering the number

of species and the number of individuals per species for a given

node is important for identifying significant node-trait associations

that may be skewed by poor representation of one or several taxa.

To address this, we list the number of individuals per species for

each node of interest. Significant nodes that are dependent on a

species that has less than five individuals are not included in the

results and nodes representing large numbers of individuals are

given emphasis during interpretation of the results.

Results

Principal components analysis of soil traits
The first three PCA axes were found to represent 74% of the

total variance among the 15 soil variables used in this analysis,

with the first axis representing more than three times more

variance than the second (Table 1). The fourth axis explained only

8%, while the fifth explained only 3% of the variance. Therefore,

only the first three axes are used as phylogenetic analysis ‘traits’ to

represent combinations of soil variables that were well represented

within the plot. Our analysis used additional variables compared

to the PCA results reported in [2] (Table 1), leading to different

results, most notably of axes 2 and 3.

Signal in plant-soil associations
Of the eight soil variables evaluated (medians of four soil

variables, slope, plus 3 PCA axes), none were found to have a

significant phylogeny-wide phylogenetic signal (p,0.05; data not

shown). Only two traits (PCA axis 2 and 3, Table 2) were found to

have a K statistic greater than unity. The lack of significance for

most variables suggests that, at the phylogeny-wide level, closely

related species do not have more similarity than expected by

Brownian motion model of trait evolution. Thus, across the entire

phylogeny there was little to no phylogenetic signal in species soil

associations in the BCI forest plot.

Although the analysis lacked phylogenetic signal across the

entire phylogeny, a number of significant signals at individual

nodes (i.e., node-specific signals) were detected. Rate of signifi-

cance was 3.8%, which is less than that expected given the number

of tests conducted. Despite this, we do report on those instances

where groups of closely related species share similar soil

associations. Most notably, the node shared by the Laurales and

Magnoliales was significantly associated with low extractable

phosphorus (Table 3, Figure S1), high slope (Table 4) and PCA

axis 3 (Table 5). Protium (in Burseraceae) was also associated with

low extractable phosphorus (Table 3). In contrast, Apocynaceae

and nodes uniting groups within Apocynaceae were found to be

associated with higher levels of extractable phosphorus (Table 4).

Plant-Soil Associations
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Node-specific results for association with extractable aluminum

and manganese, both potentially toxic elements, were intriguing. The

most recent common ancestor node for Myrtaceae and Vochysia-

ceae, in addition to the node shared by Eugenia and Chamguava (in

Myrtaceae) and a number of nodes shared by species of Ficus (in

Moraceae) showed association with high extractable aluminum

(Table 4, Figure S2). While the Ficus results are based on a small

number of individuals, the node shared by Myrtaceae and

Vochysiaceae and the node hosting Eugenia and Chamguava are based

on robust sample sizes (Table 4). The most recent common ancestor

node for Poulsenia armata, Olmedia aspera, and Maquira costaricana (in

Moraceae) was associated with high manganese (Table 4). In

addition, Protium (in Burseraceae) was associated with high manganese

(Table 4). However, as summarized in the footnotes of Table 5, a

number of groups showed association with more than one trait, as is

the case for Protium, which was also significantly associated with low

extractable phosphorus as mentioned above. A number of nodes also

showed association with suites of traits as evaluated through the PCA

axes (Table 5) and pH. The range of pH in this study is unlikely to

directly influence plants but pH can be considered as an important

proxy for nutrient and element availability. The node shared by

Salicaceae and Clusiaceae was associated with low soil pH, as was the

node uniting only Salicaceae and a number of nodes within

Salicaceae (Table 3). Meliaceae, on the other hand, showed a

significant association with high pH (Table 4).

Discussion

The present study asked whether closely related tropical tree

species tend to share similar soil associations in a tropical forest.

Overall there was little to no phylogeny-wide evolutionary signal in

soil nutrient/element associations, however the results from

individual nodes within the phylogeny show that medians for a

number of soil metrics had significant signal, and these instances

may be important for understanding plant distributions at the local-

scale in highly diverse tropical forest. This suggests that previous

phylogenetic analyses of BCI assemblages that found significant

phylogenetic structuring in different habitats [16,19] may be

partially explained upon the basis of phylogenetically conserved

soil nutrient and element associations. However, because many soil

variables within the dataset are correlated (Table 7 in [2]), and we

could not account for species aggregation due to dispersal limitation,

relationships between soil variables and taxa may not be causal.

Below we discuss the results with respect to the association between

individual soil variables and particular clades to highlight how plant-

soil associations may drive the maintenance of diversity and the

distributions of tropical genera and families.

Aluminum
Aluminum is nonessential for plant growth and can be toxic,

especially at pH less than 5.5 [41]. Lowland tropical forests

supported by highly weathered soils often have high levels of

extractable aluminum and relatively low soil pH, and floras of many

forests on acidic soil have been suggested to confer tolerance to this

element [41,42]. The range of soil pH values, which are below 5.5,

indicate that aluminum toxicity could be a concern in the BCI 50-ha

plot soil. Moreover, the range of Mehlich-3 extractable aluminum

was large (283–1563 mg kg21, based on the 20m620m scale data),

suggesting that the potential of toxicity could vary.

This analysis detected an association between high extractable

aluminum and the node shared by Myrtaceae and Vochysiaceae,

Eugenia and Chamguava (in Myrtaceae), nodes within Ficus (in

Moraceae) and a node shared by two species of Psychotria

(Rubiaceae) (Table 4). To different degrees, all of these taxa with

the exception of Ficus have been shown to be aluminum

accumulators, which is one known mechanism for tolerating this

potentially toxic element [43]. Vochysiaceae is well known to be a

family characterized by ability to accumulate aluminum while

species within Myrtaceae, and species within Eugenia, are noted as

sometimes being aluminum accumulators [12]. Rubioideae, which

includes Psychotria, is also noted as a group of aluminum

accumulators [44,45]. However, out of the 12 species of Psychotria

present in the plot, only one node shared by several species of

Psychotria was found to be significantly associated with high

extractable aluminum and this node did not include P. horizontalis,

which has over 3,000 individuals in the dataset.

Table 2. Bloomberg’s K statistic for soil traits.

Trait K P value

Al 0.80 0.091

Mn 0.77 0.102

P 0.92 0.010

pH 0.64 0.694

elevation 0.88 0.091

slope 0.83 0.146

PCA axis 1 0.69 0.556

PCA axis 2 1.45 0.003

PCA axis 3 1.06 0.044

Aluminum, manganese and phosphorus were extracted with Mehlich-3. See
Table 1 for information on PCA axes. Significant results of a two tailed test are
shown in bold.
doi:10.1371/journal.pone.0013685.t002

Table 1. Loadings for the first three axes of principal
components analysis (PCA) and the mean and range of the
soil variables in 20 m620 m data set.

Soil variable Axis 1 Axis 2 Axis 3 Trait mean and range

Aluminum 0.142 0.271 0.45 1012.1 (283.2–1563.8)

Boron 20.3 0.169 0.169 0.93 (0.04–3.33)

Calcium 20.310 0.193 0.271 1697.3 (343.5–4416.5)

Copper 20.234 0.255 0.155 7.1 (1.3–15.1)

Iron 20.219 0.207 20.226 178.0 (51.1–350.0)

Potassium 20.367 0.143 20.469 167.4 (58.2–391.1)

Magnesium 20.274 0.211 0.389 296.3 (43.9–861.3)

Manganese 20.285 0.522 0.436 368.2 (9.4–781.5)

Phosphorus 0.782 20.113 20.248 2.87 (0.30–8.30)

Zinc 20.355 20.132 0.115 5.1 (0.9–17.9)

Nitrogen 20.103 0.291 0.257 25.9 (12.5–47.1)

Nitrogen mineralization 20.459 20.692 20.224 17.9 (211.7–47.6)

pH 20.144 20.109 20.116 4.67 (3.64–5.35)

Elevation 0.122 20.188 0.211 144.4 (121.3–159.3) m

Slope 20.202 20.409 0.211 4.33 (0.02–16.66) degrees

% variance 51% 13% 10%

Soil variables include Mehlich-3 extractable elements, potassium chloride
extractable inorganic nitrogen, nitrogen mineralization rates, pH, slope and
elevation. All elements are expressed as mg element kg21 dry soil. Nitrogen
mineralization rates are expressed as mg N mineralized kg21 soil per 28 days.
Percent variance for each axis is included.
doi:10.1371/journal.pone.0013685.t001
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It was interesting that Melastomataceae, which is a family well

established as being aluminum accumulating [46], was not detected

as having significant association with aluminum in this analysis. We

note, however, that across the plot, the group could have a lower

median of extractable aluminum yet still show preferential success in

high aluminum areas compared to other taxa. In such a case an

association would not be detected, although aluminum tolerance

could still be an important strategy for taxa within this family.

Although associations between Melastomataceae (and groups

within this family) and aluminum were not detected in the current

work, results do suggest that associations between aluminum and

groups highlighted in this analysis, such as Myrtaceae and

Vochysiaceae, Eugenia and Chamguava, and some groups of Ficus

and Psychotria, could be important in determining local-scale plant

distribution in BCI and other tropical forests that also show both

high concentrations and large ranges of extractable aluminum.

Manganese
Manganese is an essential plant nutrient but can be toxic or

induce other deficiencies when present in high concentrations

[47]. Comparing the extractable manganese levels associated with

the nodes showing significant association with high manganese in

this analysis (which include the node hosting Poulsenia armata,

Olmedia apsera and Maquira costariacana (in Moraceae), the node

shared by three Zanthoxylum species (in Rutaceae), and Protium (in

Burseraceae) (Table 4)) shows that the high manganese levels in

this study are near levels that have been considered toxic in a

tropical agricultural system which also used a Mehlich-3 extract

[48]. However, clearly the value of direct comparisons of

extractable manganese among systems is limited because plant

ability to tolerate high levels of manganese is known to differ by

species [49,50] and the effects of excess manganese can be

dependent on concentrations of other ions [50]. Another line of

evidence for the potential of excess manganese to influence plant

distributions comes from temperate zones where high concentra-

tions of manganese have been shown to negatively affect forest tree

seedling performance [51,52,53,54].

Out of the three forests investigated in John et al. [2], the BCI

average of extractable manganese was more than twice that for Yasuni

(a lowland forest in Ecuador), and nearly two magnitudes greater than

that of La Planada (a montane forest in Columbia; Table 2 in [2]).

Although John et al. [2] did not find manganese to have a relatively

strong effect on a species analysis of niche structure compared to other

nutrients/elements for BCI, the effect of manganese tended to be

greater on BCI compared to the other two sites (Figure 3 in [2]).

Because some tropical forest soils are characterized by high levels

extractable manganese, and negative effects of excess manganese on

plant performance have been shown to vary on at least a species level,

the potential role of manganese in structuring lowland tropical forests

that show large ranges in extractable manganese concentrations is

worthy of future consideration.

Phosphorus
Phosphorus is an important nutrient that is considered to have

relatively low availability in highly weathered soils [55] and is

thought to limit ecosystem processes in some tropical forests

Table 3. Significant node-specific evolutionary signals for low tail tests of trait (i.e. soil variable) medians.

Trait Node shared by: Family Individuals per species T mean T p-value

P Protium* Burseraceae 2829, 698, 2853, 9 1.87 0.05

P Laurales & Magnoliales* 367, 27, 179, 112, 131, 2, 237, 162, 70,
59, 2115, 183, 1394, 44, 621, 472,
11327, 896, 123, 485, 794

2.19 0.02

pH Salicaceae & Clusiaceae 6, 24, 124, 34, 410, 26, 131, 14, 434, 67,
484, 23, 4, 41, 152, 393, 4602, 391, 1427

4.39 0.03

pH Salicaceae* 6, 24, 124, 34, 410, 26, 131, 14, 434 4.02 0.002

pH Casearia commersoniana C. arborea, Zuelania guidonia, Laetia
thamnia, L. procera, C. sylvestris, C. guianensis, C. aculeata

Salicaceae 24, 124, 34, 410, 26, 131, 14, 434 3.99 0.004

pH Casearia arborea, Zuelania guidonia, Laetia thamnia, L. procera,
C. sylvestris, C. guianensis, C. aculeata

Salicaceae 124, 34, 410, 26, 131, 14, 434 3.94 0.006

pH Zuelania guidonia, Laetia thamnia, L. procera, Casearia sylvestris,
C. guianensis, C. aculeata

Salicaceae 34, 410, 26, 131, 14, 434 3.84 0.008

pH Zuelania guidonia, Laetia thamnia Salicaceae 34, 410 2.24 0.006

pH Psychotria marginata & P. graciliflora* Rubiaceae 581, 53 4.37 0.044

slope Ficus obtusifolia & F. costaricana Moraceae 6, 8 2.13 0.046

slope Salicaceae* See above 2.92 0.026

slope Amaioua corymbosa, Borojoa panamensis, Alibertia edulis Rubiaceae 22, 1, 370 2.17 0.008

slope Psychotria horizontalis, P. marginata, P. graciliflora Rubiaceae 3119, 581, 53 2.38 0.024

slope Thevetia ahouai, Tabernaemontana arborea, Stemmadenia
grandiflora, Rauvolfia littoralis, Lacmellea panamensis*

Apocynaceae 91, 1593, 1, 1, 100 2.40 0.008

slope Tabernaemontana arborea, Stemmadenia grandiflora,
Rauvolfia littoralis, Lacmellea panamensis*

Apocynaceae 1593, 1, 1, 100 2.54 0.024

slope Elaeis oleifera, Chamaedorea tepejilote, Attalea butyracea* Arecaceae 21, 7, 34 2.28 0.024

All nodes listed were significant for both ancestral weighted trait and tip averaging analyses using data for all stems $1cm. Tip (T) averaging means for Mehlich-3
extractable soil elements are shown in units of mg kg21 soil and slope is in degrees. Significant nodes which are dependent on a species that has less than five
individuals are not shown. Nodes which were significant for more than one of the variables investigated are indicated with an asterisk. See footnotes of Table 5 for a
summary of nodes with multiple associations.
doi:10.1371/journal.pone.0013685.t003
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[13,56,57]. Although soil phosphorus is relatively high on BCI (for

example, see total soil phosphorus data in [58]), our results suggest

that if taxa such as Apocynaceae are sensitive to low phosphorus

availability, phosphorus limitation may exist on a taxon specific

level, even if a community as a whole is not limited. Analyses also

detected that the large clade of Laurales and Magnoliales was

associated with low extractable phosphorus, suggesting this clade

may be relatively less sensitive to low levels of this nutrient, which

could be due to lower requirements or more effective acquisition

strategies.

Taxon specific access to different forms of phosphorus, which

could be related to root fungal associations, may be one

mechanism linking taxa with phosphorus availability [59]. The

large majority of tropical trees associate with arbuscular

mycorrhizae [60], which is a wide spread plant-fungal association

that is thought to be ancestral [61] and can improve phosphorus

acquisition [62,63]. However, different arbuscular mycorrhizae

have been shown to vary in their levels of benefit to different host

species [64,65] and plant species have been documented as having

nonrandom associations with hosts [66,67]. Although a great deal

about the diversity of arbuscular fungi, the functional significance

of this diversity and trends among host taxa remains unknown

[68], investigating differences in arbuscular associations among

groups, such as the Laurales and Magnoliales compared to

Apocynaceae, could be especially interesting given the results of

this study.

We do note, however, that the node shared by Laurales and

Magnoliales was also significantly associated with slope (see below

for discussion on slope) and the suite of traits influencing PCA axis

3, which includes low phosphorus and slope in addition to high

aluminum and magnesium (Table 1). Similarly, Protium, another

well represented group in this dataset (in Burseraceae), was also

found to be significantly association with low extractable

phosphorus, suggesting this group too may have strategies for

dealing with lower phosphorus availability. However, Protium was

also significantly associated with high manganese, as discussed in

the previous section. These results highlight the fact that this study

is not based on experimental manipulations and we cannot

conclude if associations are the result of directly related

mechanisms, random correlations, or interactions between a

number of traits. Our results suggest that a trade-off between an

ability to tolerate lower phosphorus levels and compete in more

favorable conditions may exist within the BCI plot, but this

remains to be experimentally tested.

Slope
Mechanisms underpinning plant association with slope may be

related to water availability and/or correlations with nutrients/

Table 4. Significant node-specific evolutionary signals for high tail tests of trait medians.

Trait Node shared by: Family Individuals per species T mean T p-value

Al Ficus trigonata, F. popenoei, F. obtusifolia, F. costaricana,
F. citrifolia, F. bullenei

Moraceae 5, 3, 6, 8, 1, 5 1172.53 0.002

Al Ficus popenoei, F. obtusifolia, F. costaricana, F. citrifolia, F. bullenei* Moraceae 3, 6, 8, 1, 5 1192.98 0.002

Al Lythraceae, Vochysiaceae, Myrtaceae 5, 27, 60, 46, 1816, 482, 1751, 611, 449 1130.94 0.002

Al Vochysiaceae & Myrtaceae 27, 60, 46, 1816, 482, 1751, 611, 449 1110.38 0.024

Al Eugenia & Chamguava Myrtaceae 1816, 482, 1751, 611, 449 1116.23 0.044

Al Psychotria marginata & P. graciliflora* Rubiaceae See Table 3 1196.71 0.034

Mn Poulsenia armata, Olmedia aspera, Maquira costaricana* Moraceae 1162, 149, 1396 454.64 0.022

Mn Zanthoxylum setulosum, Z. panamense, Z. ekmanii Rutaceae 1, 178, 194 449.53 0.028

Mn Protium* Bursuraceae See Table 3 433.05 0.046

Mn Psychotria limonensis, P. granadensis, P. psychotriifolia, P. chagrensis Rubiaceae 65, 3, 1, 13 445.75 0.014

P Ficus popenoei, F. obtusifolia, F. costaricana, F. citrifolia, F. bullenei* Moraceae See above 3.52 0.012

P Miconia impetiolaris, M. elata, M. dorsiloba, Clidemia septuplinervia Melastomataceae 14, 12, 2, 3 3.45 0.048

P Apocynaceae 90, 1593, 1, 1, 100, 469 3.73 0.008

P Thevetia ahouai, Tabernaemontana arborea, Stemmadenia grandiflora,
Rauvolfia littoralis, Lacmellea panamensis*

Apocynaceae See Table 3 3.90 0.006

P Tabernaemontana arborea, Stemmadenia grandiflora, Rauvolfia littoralis,
Lacmellea panamensis*

Apocynaceae See Table 3 3.78 0.02

P Bactris major, B. barronis, Elaeis oleifera, Chamaedorea tepejilote, Attalea
butyracea

Arecaceae 80, 5, 21, 7, 34 3.73 0.004

P Elaeis oleifera, Chamaedorea tepejilote, Attalea butyracea* Arecaceae See Table 3 3.86 0.024

pH Sapium aucuparium, S. ‘spnov’, Hura crepitans Euphorbiaceae 52, 3, 103 4.89 0.02

pH Meliaceae 11344, 478, 1774, 59, 823, 10 4.82 0.046

slope Poulsenia armata, Olmedia aspera, Maquira costaricana* Moraceae See above 6.07 0.04

slope Laurales & Magnoliales* See Table 3 4.63 0.032

slope Piper Piperaceae 17, 5, 131, 16, 50, 19, 27 5.47 0.012

slope Piper perlasense, P. colonense, P. reticulatum, P. imperialis,
P. cordulatum, P. aequale

Piperaceae 17, 5, 131, 16, 50, 19 5.45 0.02

See Table 3 for column details.
doi:10.1371/journal.pone.0013685.t004
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elements. Sloped areas have been shown to be related to increased

water potential during the dry season compared to plateau areas

[32,33], and species densities on drier plateaus compared to wetter

slopes have been shown to be negatively correlated with drought

sensitivity [69]. Within the BCI plot, slope is also known to have

strong correlations with nutrients and elements (Table 7 in [2]).

Sloped areas are well represented in the BCI plot with over

11 hectares having a slope greater than or equal to 7 degrees

(Table 1 in [70]; slope range used in this study was 0.03 to 13.52

degrees, based on 20 m620 m data). In comparison, areas

categorized as plateau cover 31.6 ha of the plot, but note that

1.2 ha are categorized as swamp (also Table 1 in [70]), which

could alter expectations for how water availability might be linked

to a node-specific association with low slope in this study.

For the BCI community, association with slope has been well

established at the species level [69,70,71,72,73,74] and studies in

many other systems have found species association with topogra-

phy (for example, see [75,76,77] but also see [78]). The current

analysis, which found that the node shared by Laurales and

Magnoliales was significantly associated with higher slope,

while Salicaceae was associated with low slope, suggests that

patterns with slope could extend well beyond the species level to

large clades that are well represented in most tropical forest

communities.

Tolerance and trait categories
Phylogenetic studies most commonly focus on traits that can be

placed in one of five categories: life history, physiological,

morphological, behavioral or ecological traits. Behavioral and

ecological traits have, in general, been found to be more labile

than other traits [22,79]; however, tests for ecological traits, such

as precipitation and mean annual temperature, are less common

than those for behavioral traits. For example, Blomberg et al. [22]

considered categories of life history, physiological, morphological

and behavioral traits but ecological traits received little emphasis

because of small sample sizes. In order to compare phylogenetic

signal among traits and phylogenies, Blomberg et al. [22]

developed a K statistic, which is a descriptive statistic that

indicates the degree of trait similarity among closely related species

relative to expectations from a Brownian motion model of trait

evolution. Behavioral traits were found to be very labile, resulting

in low K values [22], which suggests that expectations for the K

statistic vary with trait category. Blomberg et al. [22] suggest that

less similarity than expected from Brownian motion (K less than

unity) could be the result of some but not all members of a group

of species adapting to an environmental condition.

The current study focuses solely on soil characteristics, and we

consider extractable aluminum, manganese, and phosphorus to be

ecological traits, similar to mean annual precipitation and

temperature as considered by others. We suggest that lower

phylogeny-wide similarity than expected from Brownian motion

would be expected in the case of evolution to ecological tolerance

traits. However, for this category of traits, we propose that a low K

statistic does not necessary imply that species within taxonomic

groups have not evolved similarly with regard to the ecological

trait of interest. Rather, similar to the reasoning underlying our

hypothesis of lack of phylogeny-wide signal for soil variables, we

suggest that phylogeny-wide statistics for ecological traits require a

distinct interpretation. Because ecological traits are characterized

by a disconnect between the metric measured and the mechanisms

that would underlie response to the ‘trait’, trait values for some

groups of species will necessarily be unconstrained and have large

Table 5. Significant node-specific evolutionary signals for high tail tests of PCA axes.

Trait Node shared by: Family Individuals per species T mean T p-value

PCA axis 1 Solanaceae, Bignoniaceae, Acanthaceae, Verbenaceae 69, 5, 4, 7, 230, 71, 5, 8, 280, 44 0.26 0.012

PCA axis 1 Bignoniaceae, Acanthaceae, Verbenaceae 230, 71, 5, 8, 280, 44 0.27 0.034

PCA axis 1 Psychotria marginata & P. graciliflora* Rubiaceae See Table 3 0.38 0.036

PCA axis 2 Ficus popenoei, F. obtusifolia, F. costaricana, F. citrifolia, F. bullenei* Moraceae See Table 4 0.11 0.004

PCA axis 2 Thevetia ahouai, Tabernaemontana arborea, Stemmadenia
grandiflora, Rauvolfia littoralis, Lacmellea panamensis*

Apocynaceae See Table 3 0.14 0.006

PCA axis 2 Tabernaemontana arborea, Stemmadenia grandiflora,
Rauvolfia littoralis, Lacmellea panamensis*

Apocynaceae See Table 3 0.15 0.006

PCA axis 3 Pseudobombax septenatum & Ochroma pyramidale Malvaceae 35, 10 0.13 0.038

PCA axis 3 Laurales & Magnoliales* See Table 3 0.04 0.002

PCA axis 3 Laurales 367, 27, 179, 112, 131, 2, 237,
162, 70, 59, 2115

0.05 0.026

PCA axis 3 Siparuna Siparunaceae 376, 27 0.13 0.032

PCA axis 3 Piper colonense, P. reticulatum, P. imperialis, P. cordulatum, P. aequale Piperaceae 5, 131, 16, 50, 19 0.11 0.002

PCA axis 3 Piper reticulatum, P. imperialis, P. cordulatum, P. aequale Piperaceae 131, 16, 50, 19 0.10 0.02

See Table 3 for column details.
Summary of nodes with multiple associations:
Ficus popenoei, F. obtusifolia, F. costaricana, F. citrifolia, F. bullenei: high Al, P, and PCA axis 2.
Poulsenia armata, Olmedia aspera, Maquira costaricana: high Mn and slope.
Salicaceae: low pH and slope.
Protium: low P, high Mn.
Psychotria marginata & P. graciliflora: low pH, high Al and PCA axis 1.
Thevetia ahouai, Tabernaemontana arborea, Stemmadenia grandiflora, Rauvolfia littoralis, Lacmellea panamensis: low slope, high P and PCA axis 2.
Tabernaemontana arborea, Stemmadenia grandiflora, Rauvolfia littoralis, Lacmellea panamensis: low slope, high P and PCA axis 2.
Laurales & Magnoliales: low P, high slope and PCA axis 3.
Elaeis oleifera, Chamaedorea tepejilote, Attalea butyracea: low slope, high P.
doi:10.1371/journal.pone.0013685.t005
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ranges. For example, consider a system where potentially toxic

concentrations are limited to high end of the gradient. Species

within a group displaying tolerance would have either 1) similar

average soil trait values on the extreme end of the tolerance

gradient, reflecting both their ability to tolerate such conditions

and an associated trade-off related to performance under more

favorable conditions or 2) a larger range of soil trait values which is

biased toward but is not limited to values at the extreme end if a

trade-off did not exist. In both cases, and especially the former

case, the tolerant species would have averages that are more

similar to the extreme than expected by chance. On the other

hand, trait values for non-tolerant taxa would span a larger range

of less extreme values. In turn, the phylogeny-wide K statistic

would be less than unity yet the phylogeny could show node-

specific associations in the trait value. If on the other hand, the

measured trait were the mechanism conferring the tolerance (i.e., a

physiological trait), the species found on the large range of less

extreme soil values could show a constrained trait value and a

higher K statistic could be expected.

We suggest this may be the case for the trait of extractable soil

aluminum in the current study, as it had a K statistic of less than

unity (K = 0.80 with marginal significance of p = 0.09; Table 2)

and node-specific results from the AOT showed a number of

significant nodes associated with high aluminum. Again, it is

important to note that the details of the tolerance related trait

metric are key in determining expectations for the category of

ecological tolerance. Studies that use a ranking of tolerance as the

trait metric [80], as opposed to using the value of the

environmental variable to which the organism is responding,

would not follow the same expectations. Similarly, studies

investigating tolerance and focusing on physiological adaptations

to environmental stress as the trait variables would fall in the

category of physiological traits, altering expectations for trait

lability and K statistics.

Conclusion
The present work demonstrates that distributions of some plant

taxa are associated with local-scale differences in soil variables

when evaluated at individual nodes within the phylogenetic tree,

but they are not detectable by phylogeny-wide signal. Some of the

most intriguing results suggest aluminum and manganese, both

potentially toxic elements, may structure plant distribution at the

local-scale, as suggested by the significant associations between

high extractable aluminum and the node shared by Vochysiaceae

and Myrtaceae, in addition to the node shared by Eugenia and

Chamguava, and associations between high manganese and Poulsenia

armata, Olmedia apsera and Maquira costariacana (in Moraceae), the

node shared by three Zanthoxylum species (in Rutaceae), and Protium

(in Burseraceae). In addition, this study suggests slope may be an

important variable underlying the distribution of Laurales and

Magnoliales, a large clade of plants, and Salicaceae, a well

represented family.

The BCI 50-ha plot site was chosen to limit abiotic variation

[70], which suggests that similar analyses of local-scale plant-soil

associations in plots that are randomly laid out could detect more

local-scale associations than found here. The results presented in

this study highlight associations that are most promising for future

work aimed at understanding the role of edaphic factors and

evolutionary history in determining community assemblages, and

the maintenance of diversity, at the local-scale. The degree to

which associations are mechanistically underpinned by the soil

variables highlighted in this analysis, versus being the result of

correlations between multiple edaphic variables and other

environmental factors, remains to be determined. In addition,

understanding the extent to which patterns uncovered in this

analysis hold among tropical forests is a valuable research

direction.

Supporting Information

Figure S1 Extractable soil phosphorus. Mehlich-3 extractable

soil phosphorus values (natural log transformed) are shown

mapped on the molecular phylogeny for the BCI 50-ha plot.

Found at: doi:10.1371/journal.pone.0013685.s001 (42.76 MB

EPS)

Figure S2 Extractable soil aluminum. Mehlich-3 extractable soil

aluminum values are shown mapped on the molecular phylogeny

for the BCI 50-ha plot.

Found at: doi:10.1371/journal.pone.0013685.s002 (10.72 MB

EPS)
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Colorado, Panamá. Centro de Ciencias Forestales del Tropico (CTFS) y
Instituto Smithsonian de Investigaciones Tropicales (STRI). pp 1–24.

29. Dalling J, John R, Harms K, Stallard R, Yavitt J (2009) Soil maps of Barro
Colorado Island 50-ha plot. http://ctfssiedu/datasets/bci/soilmaps/BCIsoil.

html.

30. Harms KE, Dalling JW, Yavitt JB, Stallard R (2004) Forest dynamics plot soil

sampling protocols. www.ctfs.si.edu/data///documents/SoilSmplProtocols1_
Harms.pdf.

31. Mehlich A (1984) Mehlich 3 soil test extractant: A modification of Mehlich 2
extractant. Commun Soil Sci Plan 15: 1409–1416.

32. Becker P, Rabenold PE, Idol JR, Smith AP (1988) Water potential gradients for

gaps and slopes in a Panamanian tropical moist forests dry season. J Trop Ecol 4:
173–184.

33. Daws M, Mullins C, Burslem D, Paton S, Dalling J (2002) Topographic position
affects the water regime in a semideciduous tropical forest in Panama. Plant and

Soil 238: 79–89.

34. Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied

phylogenetics. Mol Ecol Notes 5: 181–183.

35. Moles A, Ackerly D, Webb C, Tweddle J, Dickie J, et al. (2005) A brief history of

seed size. Science 307: 576–580.

36. Swenson N, Enquist B (2007) Ecological and evolutionary determinants of a key

plant functional trait: wood density and its community-wide variation across
latitude and elevation. Am J Bot 94: 451–459.

37. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis
of phylogenetic community structure and character evolution. User’s manual.

Version 4.0. http://www.phylodiversity.net/phylocom/phylocom_manual.pdf.

38. Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic
inertia, adaptation and comparative methods. J Evolutionary Biol 15: 899–910.

39. Webb C, Ackerly D, Kembel S (2008) Phylocom: software for the analysis of
phylogenetic community structure and trait evolution. Bioinformatics 24:

2098–2100.

40. Kembel SW, Ackerly DD, Blomberg SP, Cornwell WK, Cowan PD () Picante: R

tools for integrating phylogenies and ecology. Bioinformatics, In press.

41. Jansen S, Watanabe T, Dessein S, Robbrecht E, Smets E (2004) The evolution

of aluminum accumulation in angiosperms. In: Hemsley AR, Poole I, eds. The
Evolution of plant physiology. Amsterdam: Elsevier Academic Press. pp

467–479.

42. Webb L (1954) Aluminium accumulation in the Australian-New Guinea flora.

Aust J Bot 2: 176–196.

43. Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the

complexing role of organic acids. Trends Plant Sci 6: 273–278.

44. Jansen S, Dessein S, Piesschaert F, Robbrecht E, Smets E (2000) Aluminium
accumulation in leaves of Rubiaceae: systematic and phylogenetic implications.

Annals of Botany 85: 91–101.

45. Stevens PF () Angiosperm Phylogeny Website. Version 10. http://www.mobot.

org/MOBOT/research/APweb/.

46. Jansen S, Watanabe T, Smets E (2002) Aluminium accumulation in leaves of

127 species in Melastomataceae, with comments on the order Myrtales. Ann Bot
90: 53–64.

47. Marschner H (1986) Mineral nutrition of higher plants. London: Academic.

48. Hue NV, Vega S, Silva JA (2001) Manganese toxicity in a Hawaiian oxisol

affected by soil pH and organic amendments. Soil Sci Soc Am J 65: 153–160.

49. Morris H (1949) Minimum concentrations of manganese necessary for injury to

various legumes in culture solutions. Agron J 41: 107–112.

50. El-Jaoual T, Cox DA (1998) Manganese toxicity in plants. J Plant Nutr 21:

353–386.

51. McQuattie CH, Schier GA (2000) Response of sugar maple (Acer saccharum)

seedlings to manganese. Can J For Res 30: 456–467.

52. Kitao M, Lei TT, Nakamura T, Koike T (2001) Manganese toxicity as indicated

by visible foliar symptoms of Japanese white birch (Betula platyphylla var.

japonica). Environ Pollut 111: 89–94.

53. St Clair SB, Lynch JP (2005) Element accumulation patterns of deciduous and

evergreen tree seedlings on acid soils: implications for sensitivity to manganese

toxicity. Tree Physiology 25: 85–92.

54. Ducic T, Leinemann L, Finkeldey R, Polle A (2006) Uptake and translocation of

manganese in seedlings of two varieties of Douglas fir (Pseudotsuga menziesii

var. viridis and glauca). New Phytol 170: 11–20.

55. Walker TW, Syers JK (1976) Fate of phosphorus during pedogenesis. Geoderma

15: 1–19.

56. Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, et al. (2008)

Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett

11: 35–43.

57. Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition

strategies change with soil age. Trends Ecol Evol 23: 95–103.

58. Yavitt J, Wieder R (1988) Nitrogen, phosphorus, and sulfur properties of some

forest soils on Barro-Colorado Island, Panama. Biotropica 20: 2–10.

59. Turner BL (2008) Resource partitioning for soil phosphorus: a hypothesis. J Ecol

96: 698–702.

60. Smith SE, Read DJ, Harley JL (1997) Mycorrhizal symbiosis. London:

Academic Press.

61. Fitter AH, Moyersoen B (1996) Evolutionary trends in root-microbe symbioses.

Philos T Roy Soc B 351: 1367–1375.

62. Sanders FE, Tinker PB (1971) Mechanism of absorption of phosphate from soil

by endogone mycorrhizas. Nature 233: 278–279.

63. Smith SE (1982) Inflow of phosphate into mycorrhizal and non-mycorrhizal

plants of Trifolium-subterraneum at different levels of soil phosphate. New

Phytol 90: 293–303.

64. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-

Engel R, et al. (1998) Mycorrhizal fungal diversity determines plant biodiversity,

ecosystem variability and productivity. Nature 396: 69–72.

65. Kiers ET, Lovelock CE, Krueger EL, Herre EA (2000) Differential effects of

tropical arbuscular mycorrhizal fungal inocula on root colonization and tree

seedling growth: implications for tropical forest diversity. Ecol Lett 3: 106–113.

66. Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003)

Co-existing grass species have distinctive arbuscular mycorrhizal communities.

Mol Ecol 12: 3085–3095.

67. Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular

diversity of arbuscular mycorrhizal fungi and patterns of host association over

time and space in a tropical forest. Mol Ecol 11: 2669–2678.

68. van der Heijden MGA, Scheublin TR (2007) Functional traits in mycorrhizal

ecology: their use for predicting the impact of arbuscular mycorrhizal fungal

communities on plant growth and ecosystem functioning. New Phytol 174:

244–250.

69. Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, et al. (2007)

Drought sensitivity shapes species distribution patterns in tropical forests. Nature

447: 80–82.

70. Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of

trees and shrubs in a 50-ha neotropical forest plot. J Ecol 89: 947–959.

71. Hubbell SP, Foster RB (1983) Diversity of canopy trees in a neotropical forest

and implications for conservation. Sutton SL, Whitmore TC, Chadwick C, eds.

British Ecological Society Special Publications Series, Vol 2, Tropical Rain

Forest: Ecology and Management. Oxford: Blackwell Scientific Publications. pp

25–41.

72. Hubbell SP, Foster RB (1986) Biology, chance and history and the structure of

tropical rain forest communities. In: Diamond J, Case TJ, eds. Community

Ecology. New York: Harper and Row. pp 314–329.

73. Hubbell SP, Foster RB (1986) Commonness and rarity in a neotropical forest:

implications for tropical tree conservation. In: Soule ME, ed. Conservation

Biology: the Science of Scarcity and Diversity. SunderlandMassachusetts:

Sinauer Associates. pp 205–231.

74. Comita LS, Condit R, Hubbell SP (2007) Developmental changes in habitat

associations of tropical trees. J Ecol 95: 482–492.

75. Tateno R, Takeda H (2003) Forest structure and tree species distribution in

relation to topography-mediated heterogeneity of soil nitrogen and light at the

forest floor. Ecol Res 18: 559–571.

76. Aiba S, Kitayama K, Takyu M (2004) Habitat associations with topography and

canopy structure of tree species in a tropical montane forest on Mount Kinabalu,

Borneo. Plant Ecology 174: 147–161.

77. Gunatilleke CVS, Gunatilleke I, Esufali S, Harms KE, Ashton PMS, et al. (2006)

Species-habitat associations in a Sri Lankan dipterocarp forest. J Trop Ecol 22:

371–384.

Plant-Soil Associations

PLoS ONE | www.plosone.org 9 October 2010 | Volume 5 | Issue 10 | e13685



78. Hall J, McKenna J, Ashton P, Gregoire T (2004) Habitat characterizations

underestimate the role of edaphic factors controlling the distribution of
Entandrophragma. Ecology 85: 2171–2183.
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