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Abstract

Background: Microarrays are widely used for estimation of expression of thousands of genes in a biological sample. The
resolution ability of this method is limited by the background noise. Low expressed genes are detected with insufficient
reliability and expression of many genes is never detected at all.

Methodology/Principal Findings: We have applied the principles of stochastic resonance to detect expression of genes
from microarray signals below the background noise level. We report the periodic pattern detected in genes called ‘‘Absent’’
by traditional analysis. The pattern is consistent with expression of the conventionally detected genes and specific to the
tissue of origin. This effect is corroborated by the analysis of oscillating gene expression in mouse (M.musculus) and yeast (S.
cerevisae).

Conclusion/Significance: Most genes usually considered silent are in fact expressed at a very low level. Stochastic
resonance can be applied to detect changes in expression pattern of low-expressed genes as well as for the validation of the
probe performance in microarrays.
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Introduction

Microarrays have become a standard technique in biological

research. From the beginning, the focus in microarray experiments

has been on taking the simultaneous snapshot of a large number of

genes, rather than exact measurement of expression level for a

small number of selected genes. Over the years the technology has

undergone a significant evolution, allowing a reliable identification

of functional relation of co-expressed genes and a good estimation

of expression level for particular genes [1,2]. However microarray

performance is still limited by the background noise. Advanced

normalization and summation algorithms[3,4] can improve signal

to noise ratio for the low-expressed genes. However, none of the

contemporary algorithms can help with identifying expression of

the genes expressed at such low level that the luminescent signal

reading from the spot does not exceed the reading from the space

between spots. It is commonly assumed that genes whose

expression could not be identified by either microarray or RT-

PCR experiment are silent. This assumption is intuitive, but not

founded in biology. In contrast, most recent studies indicate the

presence of eukaryotic transcription initiation complexes at the

promoters of majority of ‘‘silent’’ genes for which no transcripts

could be detected [5]. On the other hand, the situation where the

signal to be detected is weaker than the ambient noise and could

not be registered directly is not new in the other areas of science.

The effect of Stochastic Resonance (SR) is well studied and widely

applied in physics [6,7] and even some areas of biology [8,9].

Stochastic resonance is a counter-intuitive effect of amplification of

a weak periodic signal by an increase of ambient noise (see

Supplemental Figure S1). But what periodic signal in gene

expression could be detectable with SR approach?

In 2006–2007 we have published a series of papers character-

izing the oscillating patterns of gene expression in metabolically

active peripheral tissues in mice. The circadian oscillation we

reported extends far beyond the commonly accepted 10–15% of

genes directly regulated by the circadian molecular clock [10],

[11], [12], [13]. The accumulated evidence allows us to postulate

that oscillation is a basic property of expression of all genes, not

necessarily connected with any specific gene function. However,

the oscillatory properties, such as phase and amplitude are

dependent on the gene function and differ between tissues and

experimental conditions [13]. Oscillatory patterns of expression in

major housekeeping genes responsible for the energy balance

(PPAR) and basic transcription (TBP) are bound to impose the

same patterns on all transcribed genes regardless of the volume of

transcription.

Results and Discussion

The heat map plot in Figure 1 shows the pattern of circadian

expression in approximately 30% of all genes interrogated by the

Affymetrix mouse expression microarray. At first glance the

pattern of two red (zenith) and two green (nadirs) areas over two-

day period is remarkably similar to the previously published

circadian expression patterns in mice [10],[14]. However in this

case none of the genes selected for analysis has been called
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‘‘Present’’ even once at any of the 12 time points. This effect is not

specific to a particular tissue and observed in all mouse and yeast

data sets considered in this paper.

In most studies such ‘‘silent’’ genes are excluded from further

analysis on the early stages. The filtration criteria are usually more

stringent, selecting only genes called ‘‘Present’’ in at least half of all

time points [15]. In the previous publications we have reported

circadian oscillation in nearly 100% of all genes [13]. But the

oscillating pattern does not show a strong dependence on the

absolute level of expression or any regard to the signal/

background noise ratio of the Affymetrix GeneChip. Figure 2

shows relations between likeliness of circadian oscillation (estimat-

ed by a periodicity test p-value) and the overall median of

expression signal in time series. There is no indication of a

threshold associated with presence or absence call. Genes

expressed below the noise level (typically with signal reading

under 150) generate the same pattern as highly expressed genes.

This finding is corroborated by the results of periodicity tests

performed on the subset of non-present genes (see Table 1). As

expected, the number of ‘‘absent’’ genes for which a periodic

pattern is observed with the confidence level of p,0.1 is lower and

the expression profiles are generally noisier compared to analysis

of entire set of transcripts [13]. However, in spite of the lower

signal to noise ratio the underlying baseline circadian, oscillation is

detectable in majority of the profiles. This pattern and the

proportion between phase groups are consistent with that of the

‘‘present’’ genes or the mixture of ‘‘present’’ and ‘‘absent’’ genes

(transcripts). These observations lead to the conclusion that the

criteria separating ‘‘present’’ from ‘‘absent’’ genes is arbitrary. The

low signal emitted from the microarray probes can be below the

noise level for the chip at each particular time point. However, it

reflects the pattern of gene expression rather than an ambient

noise. This point can be further illustrated by Figure 3 which

shows expression pattern of transcripts called ‘‘Absent’’ and

‘‘Present’’ in the contexts of a biological pathway (a fragment of

insulin signaling pathway, data from Metacore database, GeneGo

Inc.). In spite of the absence call for the insulin receptor the white

adipose tissue is known to respond to the insulin signal [16]. The

profile for the ‘‘Absent’’ insulin receptor is pronouncedly circadian

and perfectly synchronized with production rate of the insulin

receptor substrate, which is called present.

Periodic patterns observed in genes usually considered unex-

pressed are not necessarily associated with circadian rhythm.

Analysis of respiratory oscillation pattern in S.cerevisae reveals a

large group of genes (or rather transcripts interrogated by

Affymetrix probe sets) that demonstrate a clear oscillating pattern

consistent with that of highly expressed genes (Supplemental

Figure S2).

Why do the ‘‘absent’’ genes, with expression pattern otherwise

indistinguishable from the background noise suddenly show signs

of expression consistent with that of reliably detectable genes? The

explanation has been outlined in the abstract of the very first paper

reporting the effect of SR [6]. The paper had shown that a

dynamical system subject to both periodic forcing and random

perturbation may show a resonance (peak in the power spectrum)

which is absent when either the forcing or the perturbation is

absent. In microarray gene expression studies the threshold is

defined by the signal and noise levels estimated from the

luminescent signal read from the spot with immobilized probes

for a specific gene (transcript) and the background luminescence

from the space between spots and/or blank spots with no specific

probe. The details of signal detection may vary, particularly with

Affymetrix summation algorithms (see [17] for review). However,

regardless of the image processing and inference procedure

microarray can be viewed as a detector with a certain threshold.

All contemporary methods concentrate on improving the signal to

noise ratio by either lowering the noise or amplifying the signal or

both. However, the underlying periodicity of gene expression can

provide an essential component for the SR to take effect. With

known periodicity of the signal we have all necessary factors for

SR. Periodicity of expression in nearly 100% of eukaryotic genes

has been demonstrated in our recent paper [13]. The dominating

Figure 1. Circadian expression pattern in transcripts never called present. In spite of being considered silent most genes called absent are
expressed in a daily changing pattern of elevated (red) and lowered expression level (green) over the 48h period of alternating light and darkness
(bottom), consistent with circadian pattern in highly expressed genes. The plot shows four phase groups (roman numbers) in four murine tissues
(data from [10] and [12]). On each pane expression profiles are stacked in order of autocorrelation with 24h lag (Ac, vertical axis).
doi:10.1371/journal.pone.0001842.g001
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rhythm is circadian in case of murine peripheral tissues.

Expression pattern in yeast (S. cerevisae) is dominated by metabolic

oscillation in respiratory cycle and this rhythm is also observed in

nearly 100% of all genes (transcripts). However, the effect of SR

can be achieved even without a natural baseline oscillation.

Oscillation can be generated by repetitive application of

perturbation (signal, treatment) in a biological system. Periodicity

does not have to be time-wise. Regular placement of replicate

probes on a lattice can also be viewed as a periodic signal across

the surface of microarray and in combination with background

noise it can create the effect of SR. In this case application of SR

would require a new specifically designed microarray as well as

significant modification of the analysis pipeline, starting from the

image analysis on and between the spots of attached probes. In all

cases the algorithm for detection of signal is based on a test for

periodicity in a series of measurements rather than static

comparison of signal and background noise levels.

Using the SR methodology, the test for gene silence can be

formulated as follows: in presence of both periodic signal with

known frequency v and stochastic noise the null hypothesis (H0:

gene Y is expressed) is equivalent to H0: expression signal for gene

Y is periodic with frequency v; H0 could not be rejected if test for

periodicity is positive, alternative hypothesis (HA: gene X is silent)

is accepted if there is no evidence of oscillation with frequency v.

There are a few available tests for periodicity; we suggest Pt-test

[14], specifically developed for short time series with low sampling

rate, typical for gene expression profiles. This test can be applied

in conjunction with digital signal processing in phase continuum

approach [13], which increases the test’s ability to identify baseline

oscillation. The concept of assigning detection calls using

Figure 2. A scatter plot of mean intensity (axis X) and likeliness of periodicity estimated by Pt-test p-value (axis Y).
doi:10.1371/journal.pone.0001842.g002

Figure 3. Insulin regulation of lipid metabolism in white adipose tissue (fragment). Transcripts called present are plotted with a red line on
a white pane, absent transcripts are plotted blue on gray. Interactions are marked as p+ (activation by phosphorylation), b+ (activation by bonding)
and tr+ (transcription activation). Timing of insulin receptor substrate transcription (IRS-1) is perfectly synchronized with insulin receptor transcription
rate in spite of the absence call for the latter.
doi:10.1371/journal.pone.0001842.g003
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stochastic resonance is further illustrated by the computer program

in supplemental materials (supplemental file Code S1). This

program implements the simplest variant of detection call

assignment: if sliding frame in phase continuum tests positive for

baseline oscillation the genes found in this frame are called

‘‘Present’’. More sophistication can be added by testing the

presence of the baseline oscillation by a panel of statistical tests

and/or taking in account the number of adjacent frames testing

positive or negative. Multiple testing of FDR adjustment in not

applicable for the reasons explained in the Methods section.

Detection of the extra-low gene expression has a few important

implications. Long term practice of using microarray and RT-PCR

technology has created a perception that a gene for which signal has

the same intensity as ambient noise is not expressed. However, this

fact relates to the resolution ability of the method rather than a real

property of the gene. Using the principle of SR we greatly improve

our ability to detect weak signals, but this method also has its limit.

We observe expression of a large number of genes previously

considered silent, but again this signal sinks into noise with no clear

landmark separating expressed and silent fractions of genes. Could it

be that the latter fraction does not exist and all genes are expressed,

even at a miniscule rate? The entire concept of ‘‘silent’’ genes is

created by our inability to detect extremely low transcript

concentrations. There is no obvious landmark separating low-

expressed genes and below-detection-threshold genes. Summing up

the number of conventionally detected transcripts and transcripts

detectable by SR leaves a very small fraction of truly silent gene

candidates. This fraction also contains transcripts for which

microarray probes are not performing as intended, which further

reduces the number of potentially silent genes almost to none.

Recent publication has already demonstrated that most human

protein-coding genes are primed for transcription initiation,

including those for which no transcripts could be detected [5].

Now we can detect those elusive transcripts with the new

computational tools and a novel approach to the analysis of low-

abundance transcripts. The ‘‘pilot light’’ suggested in the title seems

to be more appropriate than ‘‘silent’’ for the genes expressed below

the standard detection threshold. Such genes are likely to have

transcription initiation complex in place, but no significant

accumulation of mature transcripts in the cytoplasm. Theoretically,

the concept of all genes being expressed, only at very different scale

does not contradict the accumulated knowledge about cellular

processes. However, ability to detect the extremely low expression

and account for it in the experiment design opens new prospective

for better, more complete understanding of the cellular processes,

better account for potential adverse effects in medication and more

precise biology in general.

Materials and Methods

Murine circadian expression data sets
We have completed independent circadian studies in AKR/J

mice acclimated to a 12 hr light: 12 hr dark cycle, harvesting sets

of 3–5 mice at 4 hr intervals in duplicates over a 24 hr period [10].

Total RNA samples from inguinal (iWAT) white adipose tissue,

brown adipose tissue (BAT), and liver have been assayed by

Affymetrix microarrays. A few genes have been selected for

validation with RT-PCR for the expression profile of representa-

tive circadian rhythm genes in all 3 tissues. The transcriptomic

data set contained over 22,000 gene expression profiles for each of

3 different tissues. In the current study, we have used only the

murine liver data. Since each time point was sampled twice, the

following Fourier transform for each profile can be re-arranged

into a short time series that represents two complete circadian

cycles. Profiles have been smoothened by a 3rd degree polynomial

procedure and median-subtracted. For better compatibility, the

same smoothing and median subtraction procedure has been

applied to all other data sets.

Yeast data set
We have re-analyzed the time series data set provided by Dr. Tu

and Dr. McKnight [18]. It has been reported that the time series

covers approximately three periods of respiratory cycle and the

majority of expressed genes follow this oscillating pattern.

Algorithms
Data pre-processing. Profiles have been smoothened by a

3rd degree polynomial procedure and median-subtracted. For

smoothing we use seven-point Savitzky-Golay algorithm [19]. To

take advantage of all points in the time series a single-pass

smoothing has been applied in a circular manner, with the last

points contributing to smoothing the starting points. For better

compatibility, the same smoothing and median subtraction

procedure has been applied to all data sets.

Spectral Analysis. For purposes of spectral analysis, consider

a series of microarray expression values for gene x with N samples

of the form

Y~x0,x1,x2,:::xN{1

This series can be converted from time-domain, where each

variable represents a measurement in time to a frequency domain

using Discrete Fourier Transform (DFT) algorithm. Frequency

domain representation of the series of experiments is also known as

Table 1. Numbers of circadially oscillating ‘‘absent’’ genes as reported by different algorithms and testing strategies.

Tissue

Number of
probesets always
absent Fisher’s g-test

Auto-
correlation Pt-test Phase continuum method

g-test Auto-correlation Pt-test

KS fit for
permuted
periodogram

Brown adipose tissue 7170 (31.60%) 607 767 856 313 7130 7130 6817

White adipose tissue 5427 (23.92%) 514 620 640 303 5387 5387 5084

Liver 7570 (33.36%) 643 757 955 477 7530 7530 7049

Bone 5748 (25.33%) 478 536 1931 n/a n/a n/a n/a

doi:10.1371/journal.pone.0001842.t001
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periodogram, which can be denoted by I(v):

I(v)~
1

N

XN{1

t~0

xte
{ivtð Þ

�����
�����
2

, v[ 0,p½ �

If a time series has a significant sinusoidal component with

frequency vM[0, p], then the periodogram exhibits a peak at that

frequency with a high probability. Conversely, if the time series is a

purely random process (a.k.a ‘‘white noise’’), then the plot of the

periodogram against the Fourier frequencies approaches a straight

line [20].

Fisher’s g-test. The significance of the observed periodicity

can be estimated by Fisher g-statistics, as recently recommended in

[21]. Fisher derived an exact test of the maximum periodogram

coordinate by introducing the g-statistic

g~
maxk I vkð ÞPN=2

k~1 I vkð Þ
,

where I(vk) is a k-th peak of the periodogram. Large values of g

indicate a non-random periodicity. We calculate the p-value of the

test under the null hypothesis with the exact distribution of g using

the following formula:

P gwxð Þ~
X1=x
p~1

{1ð Þp n!

p! n{pð Þ! 1{pxð Þn{1

� �
,

where n = [N/2] and p is the largest integer less than 1/x.

This algorithm closely follows the guidelines recommended for

analysis of periodicities in time-series microarray data [21] with

the exception that we applied a locally developed C++ code

instead of R scripts.

Autocorrelation. For a given a discrete time series Y = x0, x1,

x2,... xN21 the autocorrelation is simply the correlation of the

expression profile against itself with a frame shift of k data points

(where 0#k#N21, often referred as the lag). For the time shift f,

defined as f = i+k if i+k,N and f = i+k2N otherwise

R(f )~

PN{1
0 xi{�xxð Þ xf {�xx

� �
PN{1

0 xi{�xxð Þ2

For each time series we calculate the maximum positive R(f)

among all possible phase shifts f and use tabulated 0.05

significance cutoff values for correlation coefficient. Time series

that shows significant autocorrelation R(f) with the lag f

corresponding to one day (6 time points) are considered

circadially expressed.

Pt-test. Consider a time series Y = x0, x1, x2,... xN21 in which

technical variation approaches or even exceeds the amplitude of

periodic expression. In a very short time series stochastic noise

often obscures periodicity. However, the periodic change of the

base expression level can still be identified in spite of the high noise

level. If the periodogram of the original time series IY(v) contains

a significant peak corresponding to a particular frequency (for

example, circadian) this peak results from observation is the Y. A

random permutation would preserve the same noise level, but not

the periodicity. Let YR be a random permutation of the time series

Y. Its corresponding periodogram is IR(v). After DFT a

periodogram IR(v) would represent only the peaks occurring by

chance. However it will miss the true periodic frequencies unless

permutations happen to preserve the period, for example if the

rank of each point x in permutated series YR is equal xY6n*p where

n is a natural number and p is a period corresponding to a

significant peak in IY(v). To avoid random re-institution of

periodicity we generate YR by multiple shuffling of randomly

selected time points xnuxm, where |n2m|?p, i.e. each shuffle is

swaps time points from different phase. Comparing permutations

with deliberately wiped out periodicity to the original time series

we can estimate whether a particular order of observations (i.e.

time series) is important. For each gene expression profile we

generate two series of min(n!,100) random permutations. Each

permutated series YR is transformed to the frequency domain and

a single peak of the periodogram IR(v) is stored. The p-value for

the null-hypothesis of random nature of a particular peak of

periodogram can be estimated by comparing the stored IR(v)

values to the observed I(v):

p~
NIR vð Þ§IY vð Þ
min n!,100ð Þ :

High p-value exceeding the threshold, for example 0.05, means

that at least 5 out of 100 random permutations of time series

produce a periodogram with the same or higher peak,

corresponding to a given periodicity. Low p-values indicate a

significant difference between periodogram IR(v) preserving

circadian periodicity and randomly permutated periodogram

IY(v) with the same level of technical variation. This difference

leads to rejection of the null-hypothesis of purely random nature of

variation in the original time series Y.

Phase continuum. We start with phase classification,

assigning each gene a phase based on maximal correlation to an

ideal cosine curve. This method is superior to assigning a phase by

position of peaks only because it takes into account more data.

Each profile is subjected to z-score transformation equalizing the

variation between time points. For each profile autocorrelation

with circadian lag (Rc) is calculated and all profiles are sorted first

by phase then by descending order of Rc. Concatenating all

profiles of the same phase with equalized range of variation

(amplitude) we generate a continuous stream Cph of measurements

containing a clear signal on one end and stochastic noise on the

other. This continuum is treated with low-pass frequency filter and

polynomial smoothing. We analyze each phase fraction separately

to detect the point at which circadian signal deteriorates beyond

p = 0.05 significance cutoff. A window W moving along the stream

is transformed to frequency domain using Discrete Fourier

Transform (DFT). The resulting periodogram Iw is compared a

periodogram of a randomly permutated Wr using Kolmogorov-

Smirnov goodness of fit test. Once the point at which Iw does not

differ significantly from a random periodogram Iwr is detected, we

count all original gene expression profiles that have circadian

signal above the established cutoff [13].

False Discovery Rate analysis. This methodology often

applied to reduce the number of false-positive tests is based in the

assumption of independent or mildly dependent [22] hypothesis

testing. However, in case of testing timeline expression profiles for

periodicity independence could not be assumes for a number of

reasons. First, the pattern of circadian oscillation is obvious in the

great majority of expression profiles as seen on heatmaps (Figure 1,

for example). Second, analysis of correlation with phase shift (also

used to identify phase groups) confirms high correlation of nearly all

profiles to common cosine curves. Third, living cells are known to

have more than one oscillator, but these oscillators are normally

synchronized to the rhythm of the circadian molecular clock, active

in peripheral tissues. Testing individual expression profiles for

periodicity we are looking for manifestation of the same factor, hence
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not independent hypothesis. For these reasons FDR correction has

not been applied to reduce the number of detected oscillating genes.

Supporting Information

Figure S1 Illustration of the principal of stochastic resonance. A

periodic signal could be too weak to be detected by existing

methods (A). The threshold for a detector can be selected so that a

stochastic ambient noise is occasionally detected. The occurrence

of stochastic noise exceeding the detection threshold is non-

periodic (B). However, in presence of both stochastic noise and a

weak periodic signal (C) there is a higher probability for the noise

to be registered above threshold. Consequently, the occurrence of

noise exceeding threshold becomes periodic and detection of this

periodicity indicates the presence of baseline periodic signal.

Found at: doi:10.1371/journal.pone.0001842.s001 (0.04 MB

DOC)

Figure S2 Heatmap of 323 transcripts (Affymetrix probesets)

never called present at any time point. YG_S98 Affymetrix

microarray has much fewer probesets compared to mouse

expression arrays and almost all of these genes are found

‘‘present’’ or at least ‘‘marginal’’ at least once over the three

periods of respiratory cycle. Only 323 genes are never called

present. Pt-test indicates significant baseline oscillation with 3

periods within all profiles (36 time points each), although the

pattern of 3 red zones is not obvious in all profiles. Only 3

transcripts show significant oscillation by fisher’s g-test (p,0.1).

These profiles are depicted on Supplemental Figure 3.

Found at: doi:10.1371/journal.pone.0001842.s002 (0.12 MB

DOC)

Figure S3 Expression profiles of the tree S.cerevisae probesets

with p,0.1 by both Pt-test and Fisher’s g-test. All three are never

called present at any single time point. AFFX-BioDn-5_st

represents a control sequence of bacterial origin which should

not be present. Oscillating pattern of this probeset may be caused

by a small contamination of the yeast culture with E.coli or cross-

hybridization from the nearest yeast homologues of dethiobiotin

synthetase. Two other probesets (6617_at and 7889_at) are

annotated as ‘‘dubious ORF’’ and ‘‘nonessential protein’’.

Found at: doi:10.1371/journal.pone.0001842.s003 (0.09 MB

DOC)

Code S1 This is an abbreviated C++ program that illustrates the

concept of detection call based on the principle of Stochastic

Resonance.

Found at: doi:10.1371/journal.pone.0001842.s004 (0.41 MB ZIP)
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