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Abstract

Background: MicroRNAs are required for maintenance of pluripotency as well as differentiation, but since more microRNAs
have been computationally predicted in genome than have been found, there are likely to be undiscovered microRNAs
expressed early in stem cell differentiation.

Methodology/Principal Findings: SOLiD ultra-deep sequencing identified .107 unique small RNAs from human embryonic
stem cells (hESC) and neural-restricted precursors that were fit to a model of microRNA biogenesis to computationally
predict 818 new microRNA genes. These predicted genomic loci are associated with chromatin patterns of modified
histones that are predictive of regulated gene expression. 146 of the predicted microRNAs were enriched in Ago2-
containing complexes along with 609 known microRNAs, demonstrating association with a functional RISC complex. This
Ago2 IP-selected subset was consistently expressed in four independent hESC lines and exhibited complex patterns of
regulation over development similar to previously-known microRNAs, including pluripotency-specific expression in both
hESC and iPS cells. More than 30% of the Ago2 IP-enriched predicted microRNAs are new members of existing families since
they share seed sequences with known microRNAs.

Conclusions/Significance: Extending the classic definition of microRNAs, this large number of new microRNA genes, the
majority of which are less conserved than their canonical counterparts, likely represent evolutionarily recent regulators of
early differentiation. The enrichment in Ago2 containing complexes, the presence of chromatin marks indicative of
regulated gene expression, and differential expression over development all support the identification of 146 new
microRNAs active during early hESC differentiation.
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Introduction

Specific populations of microRNAs are uniquely expressed in

mouse embryonic stem (ES) cells [1], mouse or human

embryonic carcinoma cells [2], and human ES cells [3,4]. The

presence of selected microRNAs in stem cells and their

disappearance during differentiation suggest roles in suppressing

pluripotency and/or restricting cell differentiation. Indeed,

knockout mice lacking Argonaute2 (Ago2), the catalytic compo-

nent of the RNA-induced silencing (RISC) complex, exhibit

severe defects in neural development, including the failure to

close neural tube [5]. Genomic silencing of DGCR8, an RNA-

binding protein essential for processing microRNAs, completely

prevents mouse ES cells from differentiating into embryoid

bodies, suggesting that microRNAs are required to inhibit ES

self-renewal [6]. In one example, mir-302 is induced by Oct4

(POU5F1) and Sox2 in hESC, in turn suppressing cyclin D1 and

thereby (along with other target mRNAs), increasing the fraction

of cells in S phase and stimulating cell cycle [7]. Alternatively,

mir-145, induced upon differentiation, represses pluripotency by

inhibiting production of Oct4, Sox2, and KLF4 [8]. From these

studies we conclude that microRNAs are important early in stem

cell differentiation and are likely to be required for differentiation

mechanisms [reviewed by: 9].
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While about 700 human microRNAs have been identified, the

total number of microRNA genes has been predicted to be from

1,000 per genome [10,11,12] to as many as 10,000 [13]. Perhaps

some microRNAs are exclusively expressed in specific tissues or

differentiation stages, functioning transiently during development.

We propose that most previously identified microRNAs are

expressed universally or in stable, adult tissues. Therefore, early

stages of development are more likely to express microRNAs that

are present only transiently or in specific cell stages. One study

proved that this can be an effective strategy by using deep

sequencing to screen small RNA sequences in hESC, finding 13

new microRNAs [14]. Perhaps existing discovery methods,

including earlier deep sequencing approaches, were not sufficiently

sensitive to detect low concentrations of these microRNAs. Since

we wish to study the function of microRNAs during early neural

precursor development, we chose to apply the highly sensitive and

accurate method of Sequencing by Oligo Ligation and Detection

(SOLiD) to cultures of hESC and their neural precursor

derivatives. We found not only that quantifying microRNAs by

counting sequences is a sensitive method for evaluating microRNA

expression, but that new transcripts could be identified that

mapped to genomic loci predicted to encode previously unknown

microRNAs. However, sequencing alone cannot distinguish

microRNAs from other families of small, non-coding RNA

(ncRNA). Since microRNAs must be associated with a RISC

complex to have function, we identified candidate microRNAs

by identifying them in immunoprecipitated Ago2-containing

complexes.

Known populations of microRNAs are strongly conserved

across species, but should we expect newly-identified microRNAs

to be similarly conserved? Most studies that have searched for

microRNAs have attempted to extend this conservation when

identifying putative genes among populations of small ncRNA.

One of the accepted criteria for microRNA identification is

phylogenetic conservation across species [15]. This criterion would

automatically exclude any potentially species-specific microRNAs

and skew evolutionary studies to identify a high percentage of

conserved microRNAs by definition. However, many microRNAs

are not conserved and are lineage- or species-specific

[12,16,17,18,19,20]. The expansion and evolution of microRNAs

have been linked to both body plan innovation and vertebrate

morphological complexity throughout evolution [21,22,23], sug-

gesting that some newly-described microRNAs may lack conser-

vation with distant species. Furthermore, there is evidence that

microRNA innovation is an ongoing process [21,24]. MicroRNAs

have been identified as key developmental regulators, modulating

cell specificity and tissue identity. Based on this fundamental

developmental function, we speculate that species-specific micro-

RNAs function in a manner that would contribute to the

uniqueness of a species. For example, Cao et al. [20] describe a

hES cell-specific population of microRNAs that evolved in

primates only some 5 million years ago. These microRNAs are

differentially expressed during cell differentiation and probably

exert a posttranscriptional regulatory role specific to primate stem

cell self-renewal and differentiation. Therefore, we predict that

new microRNAs expressed early in human development would

not likely be conserved across most species.

By incorporating SOLiD deep sequencing of large numbers

(.100 million) of small RNAs from hESC and by adapting these

results to an algorithm designed to match small RNA reads with

genome sites consistent with the established mechanism of

microRNA processing [25], we identified over 800 predicted

microRNAs. To validate these predictions we assayed Ago2-

containing complexes and found 146 predicted microRNAs as

enriched by immunoprecipitation. Finally, we compared small

RNA SOLiD sequencing results from multiple, independently-

derived hESC lines to ensure expression across biologically

variable samples. While a similar approach has been tried

previously with lower numbers of small RNA sequences [14],

ours is the first study to combine ultra-deep sequencing, model-

based precursor prediction, and validation in Ago2-containing

complexes. Initial analysis of new microRNAs suggests that they

are expressed in a more biologically-specific manner and are less

conserved than previously-identified microRNAs.

Methods

hESC Cultures
HSF1 and HSF6 cultures were prepared and differentiated at

UCLA as previously described [26]. H1 and RG7 cultures were

grown at Rutgers using the feeder free methodology described by

Ludwig et al. [27]. H1 and H9 were obtained from the National

Stem Cell Bank (WiCell). The derivation and characterization of the

novel hESC line RG7 will be described elsewhere (Moore et al., in

preparation). Summarizing those results, H9 (46XX) and RG7

(46XY) were found to have normal karyotypes by G-banding and

array comparative genomic hybridization (aCGH; Agilent 244K

chips) but H1 (46XY) exhibited genome duplications on chromo-

somes 12 and 17, as assessed by preliminary aCGH. Alterations in

H1 genome have been seen previously over extended passaging

[28]. All lines had demonstrable pluripotency by gene expression

studies, immunofluorescence, and cell sorting assays (Moore et al.,

in preparation). Since H1 was used initially in our lab, initial deep

sequencing datasets came from this cell line. As we learned about

the genomic duplications on H1, we switched to RG7 to retain the

XY genotype while providing a more normal genome.

Cells were passaged with 1 U/mL dispase every 7 days at a

splitting density of 1:6 to 1:10, so that the resulting cultures are 80–

90% confluent by the 7th day of passage. In order to obtain Neural

Stem Cells (NSC), a protocol based on previously published,

adherent neural differentiation protocols has been developed

[29,30]. On day 0, undifferentiated cells were pre-conditioned

with Neural Induction Medium (NIM), which consists of a 1:1

ratio of DMEM/F12 and NeuralBasal media (Gibco, Life

Technologies, Inc.) containing 16 B27 (without retinoic acid;

Gibco) and 16N2 supplement (Gibco) for 2 days. After 48 hours

the pre-conditioned cells were passaged using 0.5 U/mL papain

(Sigma-Aldrich) and transferred to dishes coated with J the

recommended concentration of Matrigel and grown for 2 more

days in NIM. On day 5, the medium was changed to Neural

Precursor Media (NPM). NPM is a 1:1 ratio of DMEM/F12 and

NeuralBasal media that contains 0.56 B27 and N2, as well as

20 ng/mL bFGF (Invitrogen, Life Technologies, Inc.). When cells

grown in NPM reached 90–100% confluent, they were passaged

1:2 on Matrigel diluted J and the medium was refreshed every

other day. On day 7–10, differentiation into neuronally restricted

precursors (NRP) was induced by withdrawing bFGF and adding

10 ng/mL BDNF, as described in Nat et al. [29]. All culturing of

RG7 was performed without federal funding in a laboratory built

and operated with New Jersey state funding. Procedures were

approved by the Rutgers institutional embryonic stem cell research

oversight (ESCRO) committee. Total cellular RNA was prepared

using Trizol and assessed by Bioanalyzer (Agilent, Santa Clara,

CA) and Nanodrop (ND-1000, Thermo Fisher, Waltham, MA).

iPS cells
Cultures of iPS(Foreskin)-1 (Clone 1) were obtained from the

National Stem Cell Bank (WiCell) and cultured as described above
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for hESC. Morphologically, the cells were enlarged and flattened

compared with hESC cultures and a larger proportion of the cells

did not grow in defined colonies. However, the cultures readily

differentiated into NSC as defined by immunocytochemistry (not

shown).

Immunofluorescence
Cells from each of the 3 differentiation stages (ESC, NSC, and

NRP) were plated on coverslips and cultured as described. After

fixation with 4% paraformaldehyde, the cells were permeabilized

and blocked. The cells were incubated with primary antibody

diluted in blocking buffer for at least 1 hour and AlexaFluor

conjugated secondary antibodies (Molecular Probes) were used to

visualize the antibodies by fluorescence microscopy. Antibodies,

sources, and final concentrations used were: Oct4 (Millipore

MAB4401, 0.5 ml/ml), SSEA4 (Millipore MAB4304, 1.0 ml/ml),

SSEA1 (Millipore MAB4301, 1.0 ml/ml), Sox2 (Millipore AB5603,

1.0 mg/ml), Nestin (Millipore MAB5326, 0.5 mg/ml), and TuJ1

(Aves TUJ-S, 1.0 mg/ml).

Microarrays
RNA samples, 500 ng each, prepared by Trizol extraction and

alcohol precipitation, were labeled and hybridized with Illumina

Human-6 beadchips at the Burnham Institute genome center.

RNA integrity was assessed by Bioanalyzer (Agilent) and

concentrations determined by Nanodrop spectrophotometry.

Results were interpreted using GeneSpring v7.4 (Agilent) and/or

R/Bioconductor (http://www.bioconductor.org). Data are avail-

able through GEO (GSE15206).

SOLiD Sequencing
Total cellular RNA samples (100 ng) were processed into

sequencing libraries using the Small RNA Expression Kit (SREK,

Applied Biosystems). Briefly, RNA was ligated overnight with the

‘‘A’’ adapters from the kit, reverse transcribed, RNAse H-treated,

and PCR-amplified before size selection on polyacrylamide gels to

contain 18–30 nt of inserted sequences. After quantification by

qPCR, libraries were amplified onto beads using emulsion PCR,

deposited on slides, and sequenced using the SOLiD v 2 sequencing

system (Applied Biosystems) at the Waksman Genomic Laboratory,

Rutgers University. Results were obtained as ‘‘good’’ and ‘‘best’’

beads (as judged by the SOLiD sequence analysis software) as

colorspace FASTA files (csfasta). In one experiment (identified as

experiment 2 in Table S1), ten different samples were distinguished

by adding unique ‘‘barcode’’-labeled amplification primers (pro-

vided as part of the SOLiD SREK kit). All ten libraries were mixed

and sequenced on a single slide. After the usual sequencing

reactions, a second set of reactions decoded the barcode, matching a

bead sequence with the identity of the sample. Primary H1 small

RNA sequencing data from experiment 1 are available from the

NIH short reads archive (accession SRA008181.1).

Data Analysis
Individual colorspace sequences were loaded into a MySQL

database from which distinct colorspace sequences were extracted.

These were aligned with human genome (build 18) in colorspace

using SHRiMP v1.1.0 software (http://compbio.cs.toronto.edu/

shrimp/) with default parameters set except the maximum length

(25 nt) and the maximum number of matches (limited to 10).

Alignments were loaded into a MySQL database. To increase

signal above noise, we conservatively selected only those

alignments corresponding to beads sampled a minimum of 10

times in any of the libraries. Overlapping alignments were

condensed to distinct genomic intervals and read counts were

aggregated for each interval. Summarized, individual intervals

were extracted for each culture condition (H1 ESC or H1 NSC,

see Results) for each chromosome. Colorspace alignment data

were then reshaped (see Methods S1) and used as input for a

probabilistic model for microRNAs identification from deep

sequencing reads. Briefly, miRDeep [25] extracted potential

precursors and attempted to fold these into hairpin sequences.

The potential precursors were then aligned with individual reads

and positions along the potential precursor were integrated with

sequence counts with hairpin folding potential to identify

microRNA-like loci. Predicted loci matching known microRNAs,

other RNA genes, or repeated chromosomal regions were

removed using Genome Browser software (http://genome.ucsc.

edu). Except where noted, BLAST was used to match known and

predicted microRNAs to obtain counted expression levels [31] as

described in the Methods S1.

qPCR
Predicted microRNAs were assayed in small RNA libraries by

SYBR green qPCR (SYBR Green Master Mix, Applied

Biosystems) using one microRNA-specific primer and one primer

specific for the library (59-CTC CTG TAC GGC CAA GGC G-

39). Known human microRNAs were assayed using the Human

microRNA TaqMan low density array (Applied Biosystems).

Immunoprecipitation
Lysed cell extracts were immunoprecipitated with Anti-human

Ago2 antibody [32] (Ascenion GmbH, Helmholtz Zentrum,

München) or rabbit IgG using protein G Sepharose beads. Each

cell extract was spiked with a known quantity of synthetic

microRNA (NCode Control RNA, Invitrogen) to provide an

endogenous control to correct for differences in library prepara-

tion or sequencing depth. After elution from beads, RNA was

prepared using Trizol reagent and used to construct SOLiD

libraries. A detailed protocol is provided in the Methods S1.

Results

To search for evidence of additional microRNAs in H1 human

embryonic stem cell cultures (hESC), we prepared RNA samples

for deep sequencing using the SOLiD system for massively-parallel

sequencing by ligation [33,34]. The differentiation status of hESC

cultures was assessed by culture morphology and by immunohis-

tochemistry for standard markers (Figure 1A–C). ESC cultures

(Figure 1A) were positive for SSEA4 and Oct4 but not SSEA1,

consistent with pluripotency. NSC cultures (Figure 1B, grown in

neural induction medium including bFGF) expressed nestin but

lacked b-III tubulin (TUJ1), and NRP cultures (Figure 1C, grown

in neuronal differentiation medium lacking bFGF but including

BDNF) exhibited long processes and mostly expressed b-III

tubulin and not nestin. To support this interpretation, Illumina

human-6 microarrays were run on single biological replicates of

three cell lines (H1, HSF1, and HSF6) under two conditions (ESC,

NSC). HSF1 and HSF6 were previously studied for their divergent

NSC differentiation patterns [26]. Results are consistent with a

pluripotent status for ESC and a neural precursor status for NSC.

Focusing on 60 genes that were significantly different between

ESC and NSC conditions (t-test, 5% false discovery rate [FDR],

$1.5-fold different), individual cell lines clustered appropriately by

their culture condition (Figure 1D). Within the full set of results

(available from NIH GEO accession GSE15206), pluripotent-

specific genes such as POU5F1 (OCT4), NANOG, LIN28,

DNMT3B (ICF), GABRB3 (MGC9051), and GDF3 were all
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reproducibly expressed at higher levels in ESC than NSC cultures,

agreeing with previous expression studies in hESC lines [35]. NSC

cultures expressed higher levels of many mRNAs previously

identified as specific for human NSC, including PAX6, FOXG1B,

TH, NKX2-2, CHAT, TPH2, HDAC6, IL11RA, COL2A1

[26,36] (including genes not found to be significantly different due

to cell line to cell line variance). The highest relative NSC

expression markers included NR2F1, NR2F2, SEPT5, ZFHX4,

and GPR162. We conclude that the cultures sampled as ESC and

NSC exhibit the appropriate phenotypes.

Small RNA sequences were determined using SOLiD on

libraries prepared from ESC or NSC staged H1 hESC cultures,

producing an average of 55 million 25-nucleotide sequences for

each of the two conditions (Table S1, Experiment 1). To search for

Figure 1. Characterization of hESC cultures. For each hESC line used, culture stage was assessed by immunocytochemistry and culture
morphology. As an example, the RG7 hESC line exhibited markers consistent with pluripotency (SSEA4) but not differentiation (SSEA1) in the ESC
condition (panel A), expressed nestin but not b-III-tubulin (TuJ1) in the neural stem cell (NSC) stage (panel B), and expressed b-III-tubulin with lesser
levels of nestin in the neural-restricted precursor (NRP) stage (panel C). In addition, the ESC cultures grew as colonies, the NSC grew as isolated
groups of cells, and the NRP produced processes reminiscent of neurons. To confirm this interpretation, mRNA microarrays were run on single
samples of H1 ESC and NSC cultures to compare with HSF1 and HSF6 culture samples as previously defined [26]. Hierarchical clustering of all detected
genes shows a clear hierarchical clustering of samples by culture stage. Here, this grouping is highlighted using genes distinguishing ESC from NSC
(Student’s t-test by stage, 5% false discovery rate [FDR]; panel D).
doi:10.1371/journal.pone.0007192.g001
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previously known microRNAs within these results, we ran a simple

text-matching query to count the number of sequences perfectly

matching each of the human mature microRNAs found in

miRBase v11 [37]. Of the 733 available known mature microRNA

and ‘‘star’’ sequences, 598 microRNAs were identified among our

results.

The resulting counts of small RNA sequences detected ideally

reflect expression levels of individual microRNAs. This technique

of digital gene expression (DGE) has been found to be a sensitive

method for detecting microRNAs but one with some sequence bias

based on library preparation methods [38]. Comparing various

DGE protocols, ratios among counts of sequences were found to

be consistent, meaning that differences between multiple samples

assayed by the same method should be accurate [38]. A total of

four SOLiD assays were run on multiple hESC cell lines and stages

(Table S1). A second slide made use of the multiplexing capability

of the SOLiD system to sequence multiple samples at about 7.5

million sequences each by using primers having different barcodes.

A third slide sequenced three stages of the novel hESC line RG7,

including a ‘‘terminally differentiated’’ (NRP) culture, with an

average of 46 million sequences per sample. Is counting of SOLiD-

detected sequences an accurate method for measuring microRNA

concentrations? We assayed two developmental stages (ESC and

NSC) of one cell line (RG7) using both SOLiD and TaqMan

microRNA qPCR (File S1), which is generally accepted as an

accurate method for measuring relative RNA concentrations. We

found good correlation between methods when comparing fold-

change from ESC to NSC (r = 0.730, Pearson). We conclude that

counting SOLiD sequences exhibits similar accuracy as qPCR

over a broad range of concentrations. Therefore, this method is

acceptable for judging relative quantities of sequences as potential

mature or star strands within a precursor structure.

We performed hierarchical clustering to characterize cell lines and

culture stages using counts of all detected known microRNAs.

Selecting a list of 82 microRNAs as being significantly different

between ESC and NSC cultures across all cell lines (t-test, 5% false

discovery rate [FDR], $1.5-fold), results were displayed as a heat

map, retaining the dendrogram of relationships among samples

calculated from all expressed microRNAs, to demonstrate that

cultures were distinctly different by culture stage more than by cell

line (Figure S1). Within each culture condition group, the RG7 NRP

sample was most dissimilar compared with NSC and NPC cultures,

but the H1 embryoid body (EB) culture was more like H1 ESC than

other ESC cultures, consistent with a predominant cell line difference.

The H1 cell line has been found to contain several genomic deletions

(see Methods) and therefore may represent a true biological outlier

compared with the other lines. This identifies known microRNAs that

are differentially expressed between the NSC/NPC precursor stage

and the terminally differentiated NRP stage.

H1 hESC small RNA sequencing results from Experiment 1

were used to predict genomic microRNA precursors with

miRDeep [25]. This algorithm was designed to screen deep

sequencing reads that have been aligned to genome for model

properties consistent with Drosha/Dicer substrate processing.

SOLiD sequencing produces reads in ‘‘colorspace,’’ where

adjacent pairs of nucleotides are detected using a color-coded

fluorescent signal indicating a 2-nt sequence selected by ligation

[33,34]. The color-coded reads are interpreted as specifying the

‘‘interval’’ between two adjacent bases. In alignments with

genomic sequences, two successive colors must be interpreted

consistently since they share a common nucleotide that is

interrogated twice. Inconsistent color patterns cannot be aligned

to reference genome and thus are discarded, improving the quality

of the aligned colorspace sequences. We aligned reads to human

genome in colorspace using SHRiMP, which rapidly identifies

potential homologies and extends them with a Smith Waterman

algorithm [39]. The Smith-Waterman method is a well-established

dynamic programming algorithm for finding the optimal local

alignment between two sequences using a substitution matrix and

a gap-scoring system. Approximately 110 million reads (Table S1,

experiment 1) produced 591 million alignments. Alignments were

distributed across all chromosomes (Figure S2).

To focus on high-confidence alignments, we conservatively

selected those having 10 or more overlapping SOLiD small RNA

reads aligned with a single genomic location. This was done in two

separate datasets—one derived from H1 ESC and the other from

H1 NSC samples, reasoning that expression and alignment

patterns of one condition might obscure those from the other

condition. We do not believe that the sequences selected were due

to PCR over-amplification because most sequences aligning in

overlapping positions varied in their terminal nucleotide position

(not shown). A large number of reads were excluded by selecting

10 or more reads per genomic location—31,773,857 reads were

excluded for ESC and 37,779,985 for NSC. Selected alignments,

condensed by location, were used to extract surrounding putative

precursor sequences from genome. These precursors were folded

with RNAFold [40] to identify characteristic hairpin structures.

Individual small RNA reads, now translated from colorspace to

DNA sequence, were re-aligned with putative precursor segments

using BLAST [31]. Results of all analyses were input to miRDeep

[25]. Using a cut-off log-odds score of 1.0 (that is, results that are

10-fold more likely than random sequence to match the form of a

predicted microRNA precursor, according to the miRDeep

algorithm [25]), we obtained 1,216 raw candidates from ESC

and 4,494 candidates from NSC (Figure 2). A table of all

consolidated sequences comprising all the putative precursors

along with genomic alignment positions is found in File S2. These

predictions covered all chromosomes with NSC predictions

exhibiting higher frequencies on chromosomes 1 and X (Figure

S2). One example alignment and predicted precursor position is

shown in Figure 2A. The grayscale wiggle track of SHRiMP-

aligned colorspace sequences identifies two adjacent regions—an

interval with more aligned sequences (darker) near an interval with

less aligned sequences (lighter), potentially representing mature

and star sequences derived from a microRNA precursor. Indeed,

after RNAFold and miRDeep computation, a single predicted

microRNA and precursor (bottom) is selected.

As an internal control for the prediction process, we chose not to

remove sequence reads matching known microRNAs during the

prediction phase. Among the miRDeep-derived candidates there

are 179 and 238 known microRNAs or snoRNAs from ESC and

NSC, respectively. These were removed from predictions using the

Tables function of the UCSC genome browser (http://genome.

ucsc.edu). Similarly, prediction sites matching the RNA Genes

track of the browser were removed, eliminating fragments of

rRNA, tRNA, snoRNA, or other classes of small RNA. Finally,

prediction sites matching the RepeatMasker track of the genome

browser were removed so that we could focus on non-repeated

genomic loci. After filtering, a total of 818 predicted microRNA

genes were identified from the two conditions, ESC and NSC. Of

these, 75 predictions appeared in both conditions, leaving 287

predictions specific for ESC and 456 specific for NSC (Figure 2B).

Comparing miRDeep log-odds score distributions for recovered

known microRNAs and predicted microRNAs, there is a large

degree of overlap but the predicted microRNA population

includes a lower range of scores (Figure S3). Perhaps some of

these 818 predicted microRNAs could be other classes of small

ncRNA.
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Figure 2. Computationally-predicted microRNAs. A. Example SHRiMP alignment of small RNA sequences, shown here as grayscale ‘‘wiggle’’
tracks on the genome browser, were used to predict a potential microRNA structure. One track is shown for each chromosomal strand. For the
miRDeep-predicted microRNA track, the dashed line represents the predicted mature microRNA sequence (aligning with the most frequent small
RNA sequence from the wiggle tracks) and the solid line represents the remaining predicted hairpin precursor. B. Table showing numbers of
predicted microRNAs produced by miRDeep based on small RNAs derived from ESC or NSC and those subtracted by overlap with the sno/miRNA
track, the RNA genes track, or the RepeatMasker track of the genome browser. The remaining predictions shown at bottom constitute an aggregated
group of 818 predicted microRNAs. C. Venn diagram showing distinct known (top) and predicted (bottom) microRNAs derived by miRDeep from ESC
or NSC cultures as well as the numbers in common between the two conditions. Fewer predicted microRNAs were identified as common to ESC and
NSC than known microRNAs. D. ChIP-Seq read densities derived from H9 ESC cultures [41] flanking the aggregated start positions for H1 ESC
predicted microRNA precursors. See legend for color specific to each modified histone mark. E. ChIP-seq read densities derived from H9 ESC cultures
flanking the aggregated start positions for H1 NSC predicted microRNA precursors.
doi:10.1371/journal.pone.0007192.g002
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As expected, a larger proportion of these 818 predicted

microRNA genes were identified from data unique to a single

developmental stage than was true for known microRNAs

(Figure 2C, Files S2 and S4). This agrees with the hypothesis

that previously identified microRNAs are more commonly

expressed in multiple tissues or stages of development. Newly-

identified microRNAs are likely to be more specific to tissue or

developmental stage.

If these 818 predicted microRNA genes are expressed and/or

regulated during early stem cell differentiation, their genomic

positions should be phased with respect to chromatin marks,

particularly those characteristic of developmental regulation.

Using publicly-available ChIP-Seq data from the ESC stage of

the H9 cell line [41], we overlapped the start site and direction of

all predicted precursors from each class (ESC or NSC; Figure 2D–

E). For this summary analysis we did not examine potential

clusters of microRNAs, presence of microRNA-encoding loci in

introns, or the possibility of distant transcription start sites, all of

which could confound a more detailed interpretation. However,

the precursors predicted from ESC had a phased peak of

H3K4me3 with local maximum near ,100 bp upstream of the

59 end of the precursor and local minima ,500 bp upstream and

,800 bp downstream. No peaks were observed for H3K27me3 or

H3K36me3. This pattern is similar to a plot summarizing ChIP-

Seq marks for 93 known microRNAs exclusively expressed in

hESC (not shown). The ChIP alignment pattern was quite distinct

for NSC-derived predictions in ESC cultures. The H3K4me3

track had local maxima at ,500 bp upstream and ,400 bp

downstream of the precursor 59 end with a dip in the track near

the 59 end. To a lesser degree, H3K27me3 and H3K36me3 tracks

appear to peak upstream of the precursor. Since H3K4me3 is

normally considered to be indicative of active expression, the

presence of marks overlapping predicted transcriptional precursors

for the ESC predictions in ESC cells is consistent with gene

expression. However, there is no clear indication of transcription

by the H3K36me3 marks for this class of predictions. On the other

hand, increased numbers of marks for H3K27me3 for the NSC

predictions in ESC might indicate repression of at least a subset of

the predicted precursors. Since H3K36me3 is also found

surrounding predicted precursor sites, another subset may be

transcribed or it may represent stalled transcription. Overall, a

clear presence of epigenetic marks aligning with predicted

precursor locations on genome is consistent with regulated

expression during early differentiation.

As a validation strategy for potential biological function of these

predicted microRNAs, we searched for small RNAs that could be

associated with RISC by immunoprecipitation (IP) with anti-Ago2.

Ago2 is one member of the Argonaute family found in RISC

complexes [42]. Available evidence suggests that binding among

Ago family members is not sequence-specific [43,44] and so Ago2

binding was expected to serve as a proxy for binding with all Ago

proteins. We prepared small RNAs from immunoprecipitated

cytoplasmic extracts of hESC or NSC cultures from the RG7 line.

Preliminary experiments used qPCR and primers specific for a

subset of the predicted microRNAs to test Ago2 IP samples. Out of

87 predicted microRNAs tested, 46 were found to be enriched by

Ago2 IP over IgG IP (File S3). Based on this pilot experiment we

expanded our search using deep sequencing of the IP samples.

Small RNAs were sequenced and those predicted microRNAs that

were enriched at least 4-fold over IgG controls were selected,

yielding 146 new microRNAs (Files S2 and S5). A similar analysis

of known microRNAs found 609 that were at least 4-fold enriched

by Ago2 IP (File S2, also see Methods S1). Interestingly, while the

majority of Ago2 IP-selected microRNAs were expressed linearly

with their concentration within the Ago2 IP sample, several

outliers were observed (Figure S4). From this observation we

conclude that Ago2 IP does not always merely reflect cellular

concentration and therefore it may be more indicative of

microRNA function than measurements of microRNA concen-

trations in the cell.

If Ago2 IP reliably selected microRNAs among other varieties

of small RNA sequences, we expect that these sequences would be

reproducibly expressed across biological replicates—in the case of

human stem cells, in several independently-isolated cell lines. We

quantified sequencing results from small RNA libraries (not

immunoprecipitated) from samples of either ESC or NSC staged

cultures of H1, HSF1, HSF6, or RG7. Results were adjusted for

sequencing depth by converting to counts per million sequences

detected (cpm). All 755 Ago2 IP-selected RNAs (146 predicted and

609 known) were detected (File S2). Additionally, the computa-

tionally-predicted microRNAs would be expected to be expressed

in the stage from which it was originally identified (i.e., ESC or

NSC). For the 44 microRNAs predicted based on expression in

ESC, 41 were present in at least 3 of the 4 ESC cell lines and only

1 was detected in only a single line. Similarly, from the 116

microRNAs predicted based on NSC expression, 115 were

detected in at least 3 of the 4 NSC lines and one was found in

only two lines. The measured expression levels clearly distinguish

cultures by stage. This was independently observed for all 755

RNAs, only the 609 Ago2 IP-enriched known microRNAs and the

146 Ago2 IP-enriched predicted RNAs (Figure 3A). Examining the

distribution of expression levels for known vs. predicted micro-

RNAs in each culture stage, we find that in ESC the predicted

microRNAs include lower concentrations than the known

populations but the distributions mostly overlap in NSC (Figure

S5). This matches our prediction that newly-described microRNAs

would be found at lower concentrations in conditions searched

previously such as ESC, but that transient developmental stages

such as NSC would be a rich source of new microRNAs at any

concentration. We conclude that the 146 computationally-

predicted microRNAs that are Ago2 IP-enriched are consistently

expressed in a biologically-diverse group of samples.

To test for regulation of predicted microRNAs over develop-

ment, we analyzed expression levels for 755 microRNA (609

known and 146 predicted) that were selected by the Ago2 IP

enrichment strategy. RNA was prepared from RG7 hESC cultures

at three stages (ESC, NSC, and NRP), induced pluripotent cells

obtained from WiCell cultured at two stages (ESC, NSC), and

three adult human tissues (brain, heart and kidney). Sequencing

libraries were constructed and sequenced (Table S1). Counted

observations were normalized by calculating the counts per million

beads detected (File S2). In general, microRNA expression levels

correlated samples according to their developmental stage

(Figure 3B). That is, ESC samples from RG7 hESC were similar

to an iPS culture obtained from WiCell. RG7 NSC samples were

more like NRP and iPS NSC cultures than other tissues. Similar

results were obtained by comparing iPS cultures with other hESC

lines (not shown).Three adult tissues were least correlated. This

pattern was similar for the Ago2 IP-enriched known microRNAs

and for the Ago2 IP-enriched predicted microRNAs, except that

the predicted microRNAs grouped brain and iPS NSC samples

together. We observed that these iPS cells were more likely to

spontaneously differentiate based on culture morphology and that

these cells were more likely to produce neural markers upon

differentiation (not shown), consistent with the increased correla-

tion of iPS NSC cultures with adult brain with predicted

(correlation coefficient of 0.830) but not known microRNAs

(0.385, Figure 3B). This is likely due to a more selective expression

Ago2 IP of Predicted MicroRNAs
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Figure 3. Ago2 IP-selected microRNAs. A. Hierarchical clustering dendrogram showing Pearson correlation between ESC and NSC stages of four
hESC lines: H1, HSF1, HSF6, and RG7. Expression was determined by counting occurrences based on the list of 609 known or 146 predicted
microRNAs found to be Ago2 IP enriched. Counts were normalized to the total number of sequences per sample. For both known microRNAs (top)
and predicted microRNAs (bottom), the primary distinction between samples is based on cell stage. This demonstrates that each group of microRNAs
is uniformly expressed in a group of biologically distinct cell lines. B. Pearson correlation tables of microRNA expression across development. Using
the list of 609 known microRNAs (top) or 146 predicted microRNAs (bottom) selected from the Ago2 IP enriched lists, expression levels were
determined by counting sequences and correcting for total numbers of sequences per sample. Known microRNA expression levels (top)
distinguished all three adult tissues from a pluripotent group (RG7 ESC and iPS cells obtained from WiCell) and also from a neural lineage group (RG7
NSC, RG7 NRP, and iPS-derived NSC). However, predicted microRNAs included the adult brain sample in a cluster containing iPS NSC and, to a lesser
extent, RG7 NSC and NRP. C. The same dataset was K-means clustered to isolate expression patterns. Based on minimizing the mean sum of squares
fit (Figure S6), k = 11 clusters were selected. Shown here are the cluster means6SEM, color-coded to match the complete plotting of all 755 clustered
known and new microRNAs (Figure S7). D. Conservation of predicted microRNAs determined using the novel SiPhy metric v; substitution rate relative
to an ancestral repeat-based neutral evolution model (grey dashed line) [45]. Known microRNAs (black) exhibit two distinct peaks with the larger one
(left) having relatively high conservation across 29 mammalian species. The 818 miRDeep-predicted microRNAs (red), in contrast, overlapped with the
less conserved fraction of the known microRNAs. A small portion of the 146 Ago2 IP selected microRNAs (blue) peaked as a conserved-sequence
group but the majority aligned with the non-conserved microRNAs.
doi:10.1371/journal.pone.0007192.g003
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of newly-identified microRNAs in different tissues or develop-

mental stages.

Results were also K-means clustered to group similar expression

patterns for all 755 Ago2 IP-selected microRNAs, using the

Pearson correlation of log values as the metric. From the optimal

fit of 11 clusters (Figure S6), we observe distinct expression

patterns for developmental stages or tissues (Figure 3C). Figure S7

includes all individual expression patterns for all 755 microRNAs

analyzed, color-coded by cluster membership. Two clusters (2 and

6) included microRNAs primarily expressed in pluripotent cultures

and these clusters included mir-302 family members as expected.

Other clusters are primarily specific for adult tissues or for neural

precursor cultures. Each cluster included both known and

predicted microRNAs. Therefore, the 146 predicted microRNAs

selected by Ago2 IP are found to be regulated over differentiation

as predicted, but in patterns similar to those of known microRNAs.

Since microRNAs were originally identified by strong evolu-

tionary homology, we surmised that newly-described microRNAs

observed in hESC could be less conserved, consistent with a more

recent evolutionary appearance, as has been predicted [24]. We

employed a novel metric, SiPhy [45], to assess the substitution rate

of each new microRNA across a genomic alignment of 29

mammalian species (manuscript in preparation). The substitution rates

(v) were determined relative to the substitution rates of ancestral

repeats, a model for neutral evolution (Figure 3D). As expected,

miRDeep predicted microRNAs (Figure 3D, red) as a class

demonstrate higher substitution rates than previously classified

‘known’ microRNAs (Figure 3D, black), suggesting that there is

less evolutionary constraint on these sequences. A similar

distribution of v is observed for the subset of new microRNA

sequences that were confirmed through direct association with

Ago2 (Figure 3D, blue). The new microRNA sequences described

here demonstrate a reduced substitution rate from a neutral model

(Figure 3D, grey), but are significantly less conserved than the

population of known microRNAs. Since previous microRNA

annotation efforts have required a high degree of conservation

[15], it is clear that the majority of these new sequences would not

have met this stringent criterion, despite their physical association

with the RISC complex.

Discussion

By applying ultra-deep sequencing techniques to samples

obtained from hESC cultures, we predict up to 818 new

microRNA-encoding genes. Chromatin marks associated with

these genomic loci are consistent with regulated gene expression.

Validation was accomplished by immunoprecipitation of Ago2-

containing RISC complexes. These RNAs are drastically regulated

over differentiation. Evolutionary conservation among these

predicted microRNAs is weaker than for previously identified

microRNAs, but we propose that this is appropriate for recently-

evolved microRNAs that may be involved in species-specific

processes. The fact that 32.9% of the Ago2-selected, newly-

described microRNAs shared identical seed sequences with known

microRNAs (File S2) supports this conjecture. We believe we have

identified a large number of new microRNAs that are expressed in

a regulated fashion over development, are associated with RISC

complex, and therefore likely function during early stem cell

differentiation.

The large number of candidates was likely due to several factors.

The use of colorspace coding of nucleic acid sequences allowed us

to discard reads that were likely due to technical error during deep

sequencing, enhancing the confidence in the remaining sequences.

Aligning these sequences to genome with SHRiMP using color-

space retained the advantages of this scheme, ideally enforcing the

overlapped interrogation of each nucleotide by two adjacent color

codes. We used miRDeep [25] to model microRNA gene structure

by comparing both positions and counts of accumulated genome

alignments with features characteristic of precursors capable of

cleavage by the Microprocessor system. Using the probabilistic

scoring provided by miRDeep, we found that a large proportion of

our predictions overlapped with scores for known microRNAs

(Figure S3). Comparing individual predicted microRNA genes

with wiggle tracks of SHRiMP alignments, the general pattern of

mature and star strand RNAs coincides with miRDeep-selected

results (e.g., Figure 2A). Certainly our conservative selection of

only the alignments overlapping at least 10 individual sequence

reads limited the production of additional predicted genes.

However, we believe that the computational interpretation of

deep sequencing reads within a probabilistic model of a Drosha/

Dicer substrate generally provided reasonable candidates for

further investigation.

Deep sequencing of small RNAs has drawn criticism as some

claim that the observed small RNAs are merely degradation

fragments of longer RNAs. We uniquely address this critique by

selecting for small RNAs that contain the characteristic 59-

phosphate and 39-hydroxyl groups of RNase III (Dicer) processing

through the library construction process. In separate studies, we

built SOLiD libraries from RNA samples digested with alkaline

phosphatase to destroy 59-monophosphates and then with

Tobacco Acid Phosphatase to convert capped termini to

monophosphates. Assessing sample microRNAs using qPCR (not

shown) we found that these libraries were enriched for U4 snRNP

and depleted for microRNAs, supporting our interpretation that

the small RNA libraries used here are not capped. Additionally, in

a preliminary alignment to genome, overlapping reads were

aggregated together into contiguous intervals. The mean size of

these intervals was 21 nt in length for both the H1 ESC and NSC

datasets (consistent with the mean size of small RNAs known to be

associated with the RNAi machinery) with a mean coverage of

,150- and ,200-fold respectively. Furthermore, the largest

interval we were able to construct from the overlapping alignments

was ,170 bases. Approximately 40% of these small RNAs were

found to be intragenic to a known transcript (RefSeq and

Ensembl), however the majority of these align to intronic regions,

with little evidence of exonic, protein-coding sequences aligning to

oursmall RNAs. These results, taken together and in conjunction

with our other data, suggest a functional role for these sequenced

small RNAs within the cell.

A previous study [14] used high-throughput pyrosequencing of

concatamers built from small RNAs to detect more than 46105

sequences—about 240-fold less than the number of sequences we

observed. From this starting point, alignments representing mature

and ‘‘star’’ sequences were computed into hairpins, similar to steps

within the miRDeep algorithm. By these methods, Bar and

colleagues identified 14 novel and 53 candidate microRNAs, using

expression detection by a second method as validation. Five novel

microRNAs were selected for validation. Only one of those, mir-

1912, matches a predicted microRNA gene found in our list

(chrX:113792287-113792343:+) and this RNA was found to be

enriched by Ago2 IP (File S2). We did not test the other, non-

overlapping predictions from Bar for Ago2 IP. We conclude that

our deeper sequencing allowed the detection of many more

predicted microRNA genes. Alternatively, the more sophisticated

model used by miRDeep may have increased the likely candidates

from existing data.

File S2 lists the locations and sequences for the 146 predicted

microRNAs that were found to be enriched by Ago2 IP. A

Ago2 IP of Predicted MicroRNAs

PLoS ONE | www.plosone.org 9 September 2009 | Volume 4 | Issue 9 | e7192



supplemental file (File S5) also provides a standard BED file for

visualizing these predicted microRNAs in the genome browser

(http://genome.ucsc.edu). Among this group of RNAs, 50 (34%)

are found within RefSeq mRNA loci on genome (the enclosing

RefSeq names are included in File S2). While many previously-

known microRNAs are found clustered in genome, we find that

the closest distance between adjacent microRNAs within this new

list of 146 is 21 kb, but four of the new microRNAs appear to

cluster with previously-known microRNAs (neighbors listed in File

S2). While the precise sequence of the mature microRNA that is

listed was produced based on probabilistic methods, we note that

the calculated seed sequences (positions 2–8) have a 32.9% identity

with known microRNAs (p,0.0001, chi-square, see File S2 for

identities of shared seeds). For example, predicted microRNA

chr16:62121639-62121678:- was based on RNA sequences found

in ESC and its expression clusters with mir-302a, with which it

shares a seed sequence (cluster 2, see Figure S7). This may

represent the evolution of a new family member with slightly

different regulatory control based on having different transcrip-

tional regulatory sequences, with different precursor processing

based on variation in hairpin sequences, or with target

discrimination based on sequence differences outside the seed

area. The significantly high proportion of new microRNAs

matching seed sequences from previously known microRNAs

suggests the presence of new family members, perhaps by a seed-

conservative evolutionary mechanism. Certainly for this subset, we

predict that cellular mRNA targets must exist since they would be

predicted to overlap those of existing microRNAs.

Expression analysis of counted sequencing results reveals a broad

range of patterns, as assessed by K-means clustering (Figure 3C and

Figure S7). Some clusters are reminiscent of a CNS differentiation

pathway, such as clusters 3 and 10. Cluster 3 includes the archetypical

nervous system microRNAs mir-9 and mir-124, as well as 12 new

microRNAs. We expect that many of these new microRNAs will

function in neural differentiation. Two clusters, numbers 2 and 6,

contained predominantly pluripotent conditions (hESC and iPS).

Interestingly, several individual members of these clusters distinguished

embryonic from this example of induced pluripotent cultures. For

example, three new microRNAs (chr11:15312537215312579:+:ESC,

chr6:75211867275211929:+:ESC, and chr8:27799484227799541:

2:ESC, all members of cluster 2) were primarily found in iPS

cultures, suggesting that these microRNAs may be induced during

reprogramming or perhaps represent a ‘microRNA memory’ of the

original cellular phenotype. None of the known microRNA

members of this cluster was so specific for iPS cells. In contrast,

chr9:1236719542123672027:2:ESC was primarily expressed in

hESC instead of iPS, as were mir-371-5p, mir-372, and mir-520a.

These differences are consistent with recent studies that suggest cellular

reprogramming may be incomplete, and that differences between

hESC and iPS cells can be identified at the transcriptional level [46].

Clearly, the combination of expression patterns could be used to

distinguish iPS from hESC cultures, but the differences in microRNA

expression levels may also contribute to the subtle phenotypic

differences observed between iPS and hESC.

Surprisingly, we find that microRNA expression levels are not

always predictive of association with Ago2 (Figure S4). This

disagrees with a study performed with FLAG-tagged Ago2 in

HEK293T cells where no sequence selection was found in loading

RISC [47]. We found, for example, that the ES-specific

microRNA mir-302 family is over-represented in Ago2 IP samples

compared with other microRNAs (Figure S4C). Similarly, the

differentiation-specific microRNA mir-145 is over-represented in

Ago2 IP samples (Figure S4D). Most new microRNAs are under-

represented in both conditions. Perhaps there is a bias in binding

Ago2 over other Ago family proteins and this explains the

discrepancy? Investigation of the preference of Ago proteins for

specific microRNAs found no evidence for such selectivity [43,44].

The possibility remains that some preference does exist and if we

immunoprecipitated all Ago proteins (Ago1-Ago4) we should find

an aggregate enrichment proportional to microRNA concentra-

tions in the cell. Alternatively, an unknown cellular mechanism

might regulate the association of microRNAs with RISC

components so that identifying only those microRNAs found

bound with Ago predicts their function. A third possibility is that

since our detection methods are so ‘‘deep,’’ we are measuring the

Ago-selection of microRNAs at lower concentrations and these

rare microRNAs are regulated differently from the constitutive

microRNAs that were assayed earlier. A fourth possibility is that

the stabilities of microRNAs in RISC are based on finding mRNA

targets, so that the most actively targeting microRNAs would be

over-represented and those that are present without a currently-

expressed target may be under-represented. No matter what the

explanation, we conclude that Ago2 binding is a reasonable

predictor of function but that lack of binding does not exclude

RISC loading by microRNA binding with other Ago family

members.

These predicted microRNA genes match most of the generally-

accepted definitions for microRNAs [15]. They were identified

within a size-fractionated library of cDNAs (here made by PCR

instead of cloning) and they are predicted to match a model of

fold-back precursor structure and microRNAs biogenesis, as

judged within the mirDeep algorithm using RNAfold [25,40]. At

this stage the predicted microRNAs have not been demonstrated

to exhibit increased precursor accumulation following Dicer

knockdown—this would be technically difficult for a large number

of precursors in hESC cultures. While it is possible to obtain

transient Dicer knockdown using siRNAs (not shown), selection of

stably transfected hESC lines often leads to differentiation, altering

microRNA expression patterns. Finally, the requirement for

phylogenetic conservation cannot be demonstrated for the

majority of these microRNAs since we hypothesize that they are

recently evolved (Figure 3D). However, within the established

criteria, one mode of acceptance is strong evidence of expression

and the establishment of a hairpin structure on the precursor.

These two criteria were tested here. Sequencing detected both

mature and star strands of a computed hairpin. Furthermore, we

conservatively filtered the predictions for expression in multiple

cell lines in multiple differentiation stages. We also tested

predictions for co-immunoprecipitation with Ago2, an indication

of the presence in a RISC ribonucleoprotein complex. The

inclusion of this final validation step, we believe, provides valuable

proof that at least these predicted microRNAs found associated

with Ago2 should be acceptable as microRNAs.

Association with Ago2 alone is not sufficient to define a

microRNA. For example, recent studies found Ago2 bound with

dsRNAs associated with promoter elements [48], Dicer cleavage

products of snoRNAs [49], or mitochondrial tRNA [50].

However, our screening strategy specifically identified Drosha-like

substrate structures in genomic DNA and subtracted other classes

of known small RNAs including tRNAs and snoRNAs, supporting

our conclusion that we have identified new microRNAs. One way

to substantiate this claim is to demonstrate cleavage of predicted

precursors by Microprocessor complex by inhibiting the RNA

binding protein DGCR8, as has been done in mouse ES cells [6].

We attempted this by transient transfection of DGCR8-specific

siRNAs into hESC cultures. While this technique was successful at

reducing DGCR8 mRNA, by 3 days after transfection it did not

alter levels of DGCR8 protein, as judged by Westerns or of known
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microRNAs, as judged by qPCR (not shown). Creating stably

transfected lines from hESC is difficult since the cells tend to

differentiate upon long-term selection. We will continue to search

for appropriate methods to demonstrate that the predicted

precursors are processed by microRNA pathways.

The discovery of new microRNAs in hESC and their

differentiating cellular products provides the basis for a complex

regulatory network. Regulated expression of microRNAs upon

differentiation satisfies the hypothesized role of microRNAs in

canalization, or stabilization of nascent cell types in the face of

stochastic regulatory drift. An elegant hypothesis was recently

published considering the evolutionary pressures on microRNAs

and how they may function to stabilize species identities or even cell

types from one another [51]. These authors conjecture that

microRNAs have dual functions: gene expression tuning and

expression buffering, and that both of these contribute to stabilizing

homeostasis. Furthermore, the action of microRNAs on translation

may be modest—few examples show more than 50% change in

target protein levels [52]. Wu and colleagues consider that

microRNAs, as agents of stabilization, may only be phenotypically

functional when homeostasis is perturbed [51]. In the context of

stem cell differentiation, this may be just the case—that the

perturbation of homeostasis from pluripotency to differentiation

programs is exactly the situation when the function of microRNAs is

most important. The expanded number of microRNAs found in this

study and associated with RISC provides a broad collection of

molecules poised to reinforce the dynamic stability of cell type-

specific phenotypes during early hESC development.

Supporting Information

Methods S1

Found at: doi:10.1371/journal.pone.0007192.s001 (0.26 MB

DOC)

Table S1 Summary of SOLiD experiments. For each of the

experiments used in this study, the table shows the samples run,

the number of usable sequences (‘‘good and best’’ classification by

SOLiD software) and the number of sequences that were unique.

As an example, for slide 1 there were a total of 83,644,650 and

80,542,053 beads read for ESC and NSC samples, respectively.

The number of usable beads was, then, 55.2% and 79.2% of the

total beads detected. The percentage of usable sequences was

largely reflective of the density that beads were loaded onto the

slides with higher densities leading to a greater number of total

beads but a lower percentage of usable sequences.

Found at: doi:10.1371/journal.pone.0007192.s002 (0.04 MB

DOC)

Figure S1 Digital gene expression analysis of known micro-

RNAs in SOLiD sequencing datasets. For this analysis perfect

string matching was used to identify and count known human

microRNAs (miRBase v. 11). Resulting counts were normalized by

total sequences for each sample, deriving the ‘‘cpm’’ or counts per

million sequences. A hierarchical cluster was drawn of microRNAs

explaining the difference between ESC and neural precursors

(Student’s t-test, 5% FDR, $1.5-fold). The dendrogram showing

association between samples, however, was calculated from all

microRNAs using correlation as the metric.

Found at: doi:10.1371/journal.pone.0007192.s003 (1.18 MB EPS)

Figure S2 Distributions of alignments and predictions by

chromosome. In the top panel, all 591 million alignments are

plotted by chromosome using the number of alignments per

million bases (MB). The middle panel shows the total number of

miRDeep predictions, for each differentiation stage, by chromo-

some. At bottom are the predictions after filtering out known

microRNAs, RNA genes, and repeat sequences (See Fig. 2B).

Found at: doi:10.1371/journal.pone.0007192.s004 (0.99 MB EPS)

Figure S3 Log-odds scores produced by miRDeep for known

and predicted microRNAs. Novel microRNAs predicted by

miRDeep (solid lines) tended to have lower scores than known

microRNAs (dashed lines) but a large fraction overlapped.

Found at: doi:10.1371/journal.pone.0007192.s005 (0.80 MB EPS)

Figure S4 Relationship between sequence counts observed in

unfractionated or Ago2 IP-selected samples. For panels A and B,

normalized log counts of sequences found to be Ago2 IP-enriched

were calculated and displayed for measures of direct expression

(RG7 ESC) vs. Ago2 IP samples (Ago2 IP RG7 ESC). Known

microRNAs are depicted as black squares and predicted micro-

RNAs are depicted as blue rectangles. Panel A is from ESC and

panel B is from NSC. For each case, linear regression was

calculated based on known microRNAs and used to predict Ago2

IP counts. For ESC, the r2 is 0.697 and for NSC the r2 is 0.109

(p,0.001 for each case). The top 20 outliers, as determined by the

greatest residuals, are shown in panels C (ESC) and D (NSC).

Most predicted microRNAs are under-represented by these

calculations but several known microRNAs are among the top

lists of over- or under-represented sequences, demonstrating

differences in comparing expression and Ago2 binding.

Found at: doi:10.1371/journal.pone.0007192.s006 (1.56 MB EPS)

Figure S5 Distributions of expression levels for known and

predicted microRNAs, split by developmental stage. Mean

expression levels from four cell lines (H1, HSF1, HSF6, and

RG7) at two stages (ESC, NSC) were calculated. The blue line

shows the distribution of 609 known microRNAs and the black

line shows the 146 predicted microRNAs selected by Ago2 IP.

Results show that the novel microRNAs in ESC exhibit a lower

range of expression levels, as predicted. Furthermore, the range of

novel microRNA expression in NSC was similar to that of known

microRNAs, agreeing with the hypothesis that unknown micro-

RNAs could be found in transient stages of differentiation.

Found at: doi:10.1371/journal.pone.0007192.s007 (1.16 MB EPS)

Figure S6 K-means best fit plot for expression analysis shown in

Figures 3 and S7. By judging the best fit as the minimum mean

sum of squares at k = 11, we selected 11 clusters for the dataset.

Found at: doi:10.1371/journal.pone.0007192.s008 (0.84 MB EPS)

Figure S7 Individual expression plots for all 755 known and

predicted microRNAs. Colors of plots match the cluster means

plotted in Fig. 3C to identify cluster numbers. Expression levels are

calculated as cpm, or counts per million sequences.

Found at: doi:10.1371/journal.pone.0007192.s009 (1.31 MB

PDF)

File S1 Excel file containing TaqMan microRNA Array results

for RG7 hESC stages. A single sample of RG7 ESC, NSC, or

NPC culture RNA (the same samples used for the Illumina

Beadchip microarray assay) were assessed by qPCR for known

microRNAs using the Applied Biosystems TaqMan Human

microRNA array cards (A and B, part numbers 4398965 and

4398966), following the manufacturer’s recommended protocol.

For each probe, the ‘‘2dCt’’ or negative delta Ct (cycle threshold)

is shown, subtracting the Ct value for U6 snRNA endogenous

control (not shown). To calculate quantities relative to ESC, the

negative delta-delta Ct (2ddCt) was calculated by subtracting the

dCt for ESC, and then the relative quantity (RQ, labeled here as

2ˆ2ddCt) was calculated by making this value the exponent of

power 2.
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Found at: doi:10.1371/journal.pone.0007192.s010 (0.27 MB

XLS)

File S2 Excel file containing all microRNA predictions and

expression levels. Contents of worksheets: 1. H1 predicted

microRNAs: the list of 818 predicted microRNAs filtered as

described in Figure 2B. This sheet matches the BED file in

Supplemental File 2. 2. Ago2 IP novel: the 146 predicted

microRNAs that were found to be enriched following Ago2 IP

compared with IgG IP. The mean enrichment is shown for each

stage (ESC and NSC). Also listed are the mature sequence of the

predicted microRNA, the calculated seed (positions 2–8), a

hyperlink to the TargetScan web site to search for targets, and

the known human microRNAs matching the seed sequence. 3.

Ago2 IP known: This sheet lists the 609 known microRNAs found

to be enriched by Ago2 IP over IgG IP (see mean enrichment

values). 4. hESC lines: The calculated counts per million

expression levels in four human stem cell lines at two

differentiation stages, used in creating Figure 3A. 5. Clustered

expression: The calculated counts per million expression levels for

all 609 known and 146 predicted microRNAs in three stages of

hESC (ESC, NSC, and NRP), two iPS cultures (ESC and NSC,

obtained from WiCell), and three adult tissues (brain, heart,

kidney). Also listed are the cluster numbers matching Figures 3C,

S6, and S7).

Found at: doi:10.1371/journal.pone.0007192.s011 (0.55 MB

XLS)

File S3 qPCR assay of Ago2 immunoprecipitated samples.

Predicted microRNAs were assayed in small RNA SREK libraries

by SYBR green qPCR (SYBR Green Master Mix, Applied

Biosystems) using one microRNA-specific primer and one primer

specific for the library (59-CTC CTG TAC GGC CAA GGC G-

39). Custom microRNA probes were designed by synthesizing

DNA oligos identical to the probed RNAs. Results show the Ct

value (mean of two technical replicates) for each RNA. The

‘‘delCt’’ was calculated by subtracting the detected Ct for the

spiked-in NCode control small RNA (see text). If qPCR product

was not observed for a probe (blank entry in Ct column), 40 cycles

was substituted to calculate the minimum observable quantity of

target. The ‘‘deldelCt’’ subtracts the delCt for IgG background

from the Ago2 delCt, and the resulting value is used to calculate

relative quantity (RQ) by raising 2 to the power of the deldelCt. In

this case, RQ refers to the relative enrichment of the target RNA

by Ago2 IP over background IgG IP.

Found at: doi:10.1371/journal.pone.0007192.s012 (0.05 MB

XLS)

File S4 BED file for UCSC genome browser listing human

genome (hg18) coordinates of 818 predicted microRNAs identified

by miRDeep based on SOLiD sequenced small RNAs aligned

with SHRiMP.

Found at: doi:10.1371/journal.pone.0007192.s013 (0.02 MB ZIP)

File S5 BED file for UCSC genome browser listing genomic

coordinates of 146 predicted microRNAs found to be enriched by

Ago2 IP.

Found at: doi:10.1371/journal.pone.0007192.s014 (0.00 MB ZIP)
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