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Abstract

Mammalian hearing relies on a cochlear hydrodynamic sensor embodied in the inner hair cell stereocilia bundle. It is
presumed that acoustical stimuli induce a fluid shear-driven motion between the tectorial membrane and the reticular
lamina to deflect the bundle. It is hypothesized that ion channels are opened by molecular gates that sense tension in tip-
links, which connect adjacent stepped rows of stereocilia. Yet almost nothing is known about how the fluid and bundle
interact. Here we show using our microfluidics model how each row of stereocilia and their associated tip links and gates
move in response to an acoustical input that induces an orbital motion of the reticular lamina. The model confirms the
crucial role of the positioning of the tectorial membrane in hearing, and explains how this membrane amplifies and
synchronizes the timing of peak tension in the tip links. Both stereocilia rotation and length change are needed for
synchronization of peak tip link tension. Stereocilia length change occurs in response to accelerations perpendicular to the
oscillatory fluid shear flow. Simulations indicate that nanovortices form between rows to facilitate diffusion of ions into
channels, showing how nature has devised a way to solve the diffusive mixing problem that persists in engineered
microfluidic devices.
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Introduction

The inner hair cell stereocilia bundle performs the role of

transducer during the process of mammalian hearing. Acoustic

stimuli deflect the hair bundle to open ion channels, resulting in

cation influx and the subsequent release of a neurotransmitter at

the base of the cell [1,2]. Hypotheses for this transduction include

fluid shear-driven motion between the tectorial membrane and the

reticular lamina to deflect the bundle [3,4]. It is presumed that

‘molecular gates’ sense tension in tip-links that connect adjacent

stepped rows of stereocilia to open the channels [5]. The simplest

hypothesis for the deformation of the hair bundle, either by a

mechanical probe or from fluid motion, is that each stereocilium

rotates as a rigid rod about its insertion into the cuticular plate

(Fig. 1). Equal rotations of the three rows of stereocilia then imply

that the tip-link/gate/membrane complex would undergo a

fractional length change. This simple model is appealing since it

tends to synchronize ion channel gate openings and thus increase

hearing sensitivity. But once stereocilia are allowed to deflect in the

presence of fluid shear, which itself is altered by the presence of the

hair bundle, the stereocilia will splay, and the fractional length

changes of upper and lower tip-links may lose synchronization.

The distance between the top of the tallest row of stereocilia and

the bottom of the tectorial membrane turns out to control the

amount of splay. When a mechanical probe is used to deflect the

bundle and fluid shear is not present, splay may also be controlled

by top horizontal connectors and sliding adhesion [6].

In the spirit of Occam’s razor, we should look at the next

simplest model to explain the interaction of the fluid with the

bundle. To that end, we note that inner hair cell stereocilia are

arranged in nearly straight rows to form a continuous fence-like

structure compared to the V-shaped or W-shaped patterns seen

from outer hair cells (Fig. 1B). We also note that gaps between

individual stereocilium are small compared to the gap between the

tallest stereocilium and the underside of the tectorial membrane

(100 nm vs.1000 nm). Also, in many preparations, the spacing

between adjacent stereocilia in neighboring cells is similar to the

spacing between adjacent stereocilia on the same cell.

This geometry suggests the dominant flow will be over the

bundle, rather than around individual stereocilium. This simpli-

fication allows us to model the flow and bundle in 2D rather than

3D (Fig. 1C), enabling us to increase the resolution in the model.

The inner hair cell bundle model shown in Fig. 1A and 1C is

driven by fluid motion resulting from the orbital oscillatory motion

of the reticular lamina reported from an acoustically driven

preparation [7]. It is important to notice that the orbital motion

has both horizontal and vertical components. The upper

boundary, the tectorial membrane, is assumed to be stationary

in the horizontal direction to provide an oscillatory shear stimulus,

and have the identical vertical direction motion as the reticular

lamina so that the vertical distance between the two boundaries is

unchanged during their motions. Stereocilia, tip-links, gating

springs located at the lower ends of the tip-links [8], and horizontal

links are all treated as elements possessing both stretching and
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flexural elastic energies. The hair bundle-fluid interaction

computation is performed using the immersed boundary method

[9]. Our code was designed to capture nanometer-sized motions in

a micron-sized domain.

Results and Discussion

Calibration of model
The model was dynamically calibrated at 200 Hz and 98 dB

sound pressure level to match the reported horizontal motion

(amplitude and phase) of the tallest stereocilia row reported

previously [7], Fig. S1. This involved adjusting geometric and

elastic parameters, resulting in values shown in Table S1.

Synchronization of upper and lower tip link peak tension
by the tectorial membrane

The key results in Fig. 2 are the phasic behavior of the upper

and lower tip link nanometer-sized length changes resulting from

the orbital motion of the reticular lamina. With the tectorial

membrane in the normal position, both upper and lower tip links

have maximal positive stretches synchronized at a phase of 180

degrees, which corresponds to the reticular lamina being displaced

maximally to the right and downward. When the vertical distance

between the tectorial membrane and reticular lamina is changed

from 5 to 10 microns, keeping everything else the same, the upper

tip link is always in compression (negative length changes), hence

its gate will never open. This is consistent with the increased

hearing threshold reported in Tecta heterozygous mice having an

altered tectorial membrane position relative to the reticular lamina

[10]. The vertical motion of the reticular lamina is also critical. If

the model is excited with horizontal motion only with the tectorial

membrane in its normal location, then the lower tip link doesn’t

develop tension, Fig. S2.

Predicted motion of the three stereocilia rows
The motion of the individual stereocilia rows corresponding to

the tip link stretching patterns of Fig. 2 was not anticipated. The

movements are depicted in Fig. 3 and the Video S1. The motions,

relative to the reticular lamina, are greatly exaggerated, but have

the correct phasic behavior. The smallest and tallest rows rotate as

expected, but the middle row does not; instead it changes its

length, as do all the rows. The average length change of all the

rows was ,10 nm. This length change is consistent with a

longitudinal elastic wave propagating along a rod with a free end,

where the displacement of the free end is twice the vertical

displacement of the forced end (the reticular lamina). In hindsight,

Figure 1. Model inner hair cell bundle. The orbital motion of the lower boundary, the reticular lamina (the cuticular plate is part of the reticular
lamina) and the vertical oscillatory motion of upper boundary (tectorial membrane) hydrodynamically drive the bundle. Three stepped rows of
stereocilia (actin-filled rod structures) are connected by two sets of tip links with gating springs and six horizontal top connectors. Upper tip links
connect the tallest and middle rows; lower tip links connect the shortest and middle rows. All elements are assumed to be elastic with bending and
stretching energies. The fluid is viscous and incompressible.
doi:10.1371/journal.pone.0018161.g001
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it makes sense that the middle row doesn’t rotate since it is shielded

from the fluid shear generated by the horizontal motion of the

reticular lamina by the shortest and tallest rows. If it did rotate

more energy would be dissipated in the endolymph, and the

process would be less efficient.

Formation of a nanovortex aids mixing
The sudden elongation of the gating spring boundary generates

the nanovortex, a sub-micron sized eddy seen in Fig. 4. In the

model, the gating spring is a 5 nm extension of the tip link that is

added to the tip link length when its tension reaches a threshold

26.5 nN. Like an oar in water, vorticity is generated when a

boundary moves suddenly. This effect was calculated first by

Rayleigh [11]. Indeed the vortices may alleviate a diffusive mixing

problem that appears to exist for Ca++ ions, which have a

concentration of only 20 mM in cochlear endolymph. The number

of Ca++ ions entering the bundle can be estimated , 106/sec

based on a typical total transduction current of 500 pA [12], and

the fact that most of the current is due to K+ at 160 mM. But

diffusion alone can supply Ca++ to the bundle only at a rate ,104/

sec based on the estimate D/l2, where l is the tip link length

(170 nm) and D is the Ca++ diffusivity (461026 cm2/sec) [8].

Thus diffusion alone appears to be unable to supply enough Ca++

at the required rate. The vortices can boost the supply of Ca++ by

convection if the time scale associated with vortical rotation is

comparable to the diffusive time scale l2/D. From Rayleigh’s

solution, the vorticity generated at the elongating gating spring

isA=
ffiffiffiffiffiffiffiffiffi
put3

0

q
, with A the increase in spring length, n the kinematic

viscosity and to the elongation time. Taking A = 5 nm,

D = 461026 cm2/s, n= 0.7 1022 cm2/s the vortices augment

diffusion if to , microsecond or less. This time scale is an order of

magnitude smaller than an estimate based on the ability of a bat to

hear a 100 kHz signal. Thus it seems that nature has devised a way

to solve the diffusive mixing problem that persists in engineered

microfluidic devices by using nanovorticies to augment diffusion.

Materials and Methods

Fluid-Structure Interaction
The fluid-force from endolymph deforms the stereocilia in the

bundle thereby changing the tension in the tip links and initiating

channel gating. In return, the stereocilia in the bundle exert forces

on the surrounding fluid; altering the flow pattern from one that

would exist in the absence of the bundle. The governing equations

that account for these interactions are from Peskin [9]:

+:~uu~0 ð1aÞ

r½L~uu
Lt

z(~uu:+)~uu�~{+pzm+2~uuz~FF ð1bÞ

~FF ( x
I

,t)~

ð
~ff (q,s,t):d(~xx{~XX (q,s,t))dqds ð1cÞ

L~XX
Lt

~~uu ~XX (q,s,t),t
� �

ð1dÞ

~

ð
~uu(~xx,t):d(~xx{~XX (q,s,t))d~xx: ð1eÞ

Equations (1a) and (1b) are the Navier-Stokes equations for

incompressible flow; p and~uu are pressure and velocity, while r and

m are respectively the fluid density and viscosity. In equation (1c) ~XX

Figure 2. Tip link stretching as a function of phase of reticular
lamina motion. Upper panel: tectorial membrane in normal position,
red-upper tip link; black- lower tip link. Lower panel; the tectorial
membrane-reticular lamina spacing is widened by 5 microns; same
color code. Molecular gate does not open when tip link is in
compression (negative values of stretching). Model confirms the critical
role of the tectorial membrane for hearing sensitivity.
doi:10.1371/journal.pone.0018161.g002

Figure 3. Motion of individual rows of stereocilia. All rows
undergo a length change and a rotation, except the middle row has a
negligible rotation (see Video S1).
doi:10.1371/journal.pone.0018161.g003
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is the Lagrangian variable that describes the position in curvilinear

coordinates (q,s) of each element of the stereocilia bundle,

including tip links and horizontal links. Equation (1d) imposes

the no-slip boundary condition on each element of the IHC

bundle so that fluid particles on the stereocilia bundle move at the

velocity if its elements. The no-slip condition translated to the IHC

bundle coordinate system is expressed in equation (1e). Equation

(1c) translates ~ff , the IHC bundle force per unit volume, onto the

fluid grid to facilitate calculation of the last term in the momentum

equation (1b), ~FF , a force per unit volume. This external forcing

term accounts for the influence of the bundle on the surrounding

fluid.

The force ~ff includes contributions of bundle bending and

stretching, modified from Stockie & Green [13]. It can be defined

as the gradient of an elastic energy per unit volume E as follows:

~ffl~{
LE

L~XX l

ð2aÞ

E(:::,~XXl ,~XXlz1,:::)~EszEb ð2bÞ

Es~
1

2

X
Ey DD~XX lz1{~XX l DD=r0{1
� �2

ð2cÞ

Eb~
1

2

X
Ey

d2

r2
0

~eez
:(~XX l{~XX l{1)|(~XX lz1{~XX l)=r2

0{sin h0

n o2

ð2dÞ

In equations [2], r0 is the 75 nm resting length between points

of the Lagrangian grid, d is the local diameter of an elastic element,

h0 is the initial external angle between three consecutive grid

points (e.g. 0u for a triad without initial curvature), and Ey is the

effective Young’s modulus, 2.3 GPa, for F-actin, based on

measurements of Gittes et al. [14]. The sum is over all the

discrete Lagrangian elements comprising a moving boundary. The

geometric and physical properties of the model are listed in Table

S1. We define the base of a stereocilium as one-third of its total

height and assume a linear taper of the diameter within this range.

The stiffness of links has been assigned a value of 561024 N/m

estimated by Howard & Hudspeth [15] as the gating stiffness.

Numerical method
The computational domain is a rectangle 5 microns high by 20

microns long. The height corresponds to the subtectorial gap at

the apex of the guinea pig cochlea (the low frequency end). A

sensitivity analysis ensured that the domain length was sufficiently

long so as not to not affect the results. This fluid domain is divided

into a rectangular grid with nodes every 78 nanometers along the

length and height. Situated in the middle of the domain is a three-

row stereocilia bundle with tip links and horizontal links. The

length of the tallest row was chosen so that its clearance from the

underside of the tectorial membrane (top boundary) is 0.5 microns.

The lengths of the remaining rows in the bundle were chosen so

that their height relative to that of the tallest row were similar to

those reported in Hackney and Furness [16]. The stereocilia are

represented as line forces in the fluid, and the strength of the line

forces depends on local bending and stretching energy density.

These forces in turn alter the fluid motion to convect the

stereocilia rows to updated locations. The power of this method is

that it can resolve the motion of the IHC bundle, including the

separate rows of stereocilia, along with the endolymphatic fluid

motion by decoupling the fluid solver from the solver for the

motion of the bundle. This feature provides a significant decrease

in computational cost. Another advantage of the immersed

Figure 4. A nanovortex forms near an open gate to augment supply of cations. Closed vorticity contours imply the presence of a fluid
eddy. Vorticity values are sec21. Yellow lines show the locations of the stereocilia when the phase of the reticular lamina orbital motion is 214.6
degrees.
doi:10.1371/journal.pone.0018161.g004
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boundary method is that the Navier-Stokes equations are solved

on a rectangular grid allowing a fast flow solver to be used. In this

case the governing equations for the fluid are discretized using

finite differences. The time step was 1/1000th of the period of the

200 Hz input frequency. The flow is assumed to start from rest.

The sequence of the solution advancement begins by calculating

the force densities at the hair-bundle grid points and then

distributing them onto the fluid grid of uniform spacing, with

h = 78 nanometers using the following discrete approximation of

the Dirac delta function:

dh(xi,yi)~
1

h2
dh(

xi

h
)dh(

yi

h
) ð3Þ

(xi,yi) denote the i th Lagrangian point of an elastic element in the

bundle. Each of the one-dimensional delta functions has the form

dh(r)~
1

8
(3{2 rj jz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4r{4r2

p
) 0ƒ rj jv1

~
1

8
(5{2 rj j{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4r{4r2

p
) 1ƒ rj jv2

~0 2ƒ rj j

ð4Þ

These forces are incorporated into the fluid solver and the flow

solution is advanced using Chorin’s projection method [17].

Finally the no-slip condition, Equation (1e), is applied to update

the position of the hair bundle. Velocity boundary conditions are

given on each of the four sides of the computational fluid domain

rectangle: for the bottom we use the horizontal and vertical

motions measured by Fridberger et al [7]; for the top we use the

previous vertical motion, but set the horizontal motion to zero; on

the sides we use the analytical solution given Carslaw & Jaeger

[18] for the flow in a channel, with no bundle, driven by the

oscillatory motion of one wall.

Supporting Information

Figure S1 Dynamic calibration of model. Using the orbital

motion of the lower boundary, the reticular lamina, measured in

[7] as input to the calculation, the computed motion of the inner

hair cell bundle agrees with the measured amplitude. The slight

difference phase between the computed and measured phase could

be due to differences in phase of the individual rows.

(TIFF)

Figure S2 Tip link stretching as a function of phase of
reticular lamina motion when no vertical acceleration is
present. The lower tip link does not develop significant tension

thereby reducing the sensitivity and coherence of the bundle.

(TIFF)

Table S1 Model parameters.

(DOC)

Video S1 Motion of individual rows of stereocilia in
response to acoustical input.

(MOV)
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