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Abstract

The goal of this study was to investigate the relationship between resting-state functional connectivity and the severity of
post-traumatic stress disorder (PTSD) symptoms in 15 people who developed PTSD following recent trauma. Fifteen
participants who experienced acute traumatic events underwent a 7.3-min resting functional magnetic resonance imaging
scan within 2 days post-event. All the patients were diagnosed with PTSD within 1 to 6 months after trauma. Brain areas in
which activity was correlated with that of the posterior cingulate cortex (PCC) were assessed. To assess the relationship
between the severity of PTSD symptoms and PCC connectivity, contrast images representing areas positively correlated
with the PCC were correlated with the subject’s Clinician-Administered PTSD Scale scores (CAPS) when they were
diagnosed. Furthermore, the PCC, medial prefrontal cortex and bilateral amygdala were selected to assess the correlation of
the strength of functional connectivity with the CAPS. Resting state connectivity with the PCC was negatively correlated
with CAPS scores in the left superior temporal gyrus and right hippocampus/amygdala. Furthermore, the strength of
connectivity between the PCC and bilateral amygdala, and even between the bilateral amygdala could predict the severity
of PTSD symptoms later. These results suggest that early altered resting-state functional connectivity of the PCC with the
left superior temporal gyrus, right hippocampus and amygdala could predict the severity of the disease and may be a major
risk factor that predisposes patients to develop PTSD.
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Introduction

Post-traumatic stress disorder (PTSD) is an anxiety disorder that

can develop following exposure to a traumatic event, such as

military combat, traffic accidents, rape, assault, or natural

disasters. It is a complex syndrome that involves re-experiencing

of symptoms (e.g., nightmares and flash-backs), hyperarousal

symptoms (e.g., insomnia), numbing symptoms (e.g., restricted

affect and anhedonia), and avoidance symptoms (e.g., avoiding

trauma-related stimuli), in addition to cognitive impairment, such

as poor concentration and difficulty in explicitly recalling aspects

of the traumatic event [1]. More than one third of people with

PTSD fail to recover, even after many years [2]. Additionally,

50% of PTSD patients have comorbid drug abuse and other

mental disorders, and their suicide rate is six times that of normal

individuals [3]. Therefore, how to reduce the damage to human

health and the large consumption of social rescources caused by

PTSD is becoming a scientific cutting-edge issue primarily focused

by the government and scientific community. A deeper un-

derstanding of the neurobiological basis of PTSD may also explain

individual differences in susceptibility to the disorder and aid in

the development of more effective treatments.

Over the past decade, neuroimaging techniques have been

critical in the process of identifying important brain systems in the

pathophysiology of PTSD. Specifically, findings from functional

neuroimaging studies indicated abnormalities in amygdale and

amygdala-linked circuitry involving the medial prefrontal cortex

(mPFC), insula, anterior cingulate cortex (ACC), and hippocam-

pus [4,5,6,7,8] Studies [5,6,7,8] have shown heightened amygdala

responsivity in PTSD during symptomatic states and during the

processing of trauma-unrelated affective information. Importantly,

amygdala responsivity is positively associated with the severity of

symptoms in PTSD [9,10,11,12,13]. In contrast, the mPFC

responsivity is negatively associated with the severity of PTSD

symptoms [9,14], and the mPFC appears to be hyporesponsive

during symptomatic states and the performance of emotional

cognitive tasks in PTSD.
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Resting-state functional connectivity has been widely used in the

study of PTSD [9,10,11,12,13,14,15,16], because during scanning,

the absence of demanding cognitive activity and instructions

makes it more straightforward to compare brain activity across

groups that may differ in motivation or cognitive abilities. It is

unknown whether the structural and functional changes are due to

the effect of the traumatic event on neural function, or rather

represent underlying risk factors that predate the trauma and

predispose individuals to developing PTSD. To partially assess this

topic, we aimed to assess the relationship between resting-state

functional connectivity and clinical severity of PTSD in patients

who developed PTSD following recent trauma.

Materials and Methods

Subjects
The current study included 15 car accident victims randomly

recruited from the Emergency Department of Renji Hospital.

Most of them witnessed actual or threatened death or serious

injury to others, and some of them had mild concussive

neurotrauma and bruises. In order to guarantee scanning quality,

to avoid major head movements during data acquisition, and to

eliminate the potential effect of lesions in the brain on the analysis

of resting state functional connectivity, we excluded the patients

with significant head injury. All subjects underwent baseline

evaluation within 2 days (2d). The tests included the Mini-

International Neuropsychiatric Interview (MINI) [17], Acute

Stress Disorder Structured Interview (ASDI) [18] and functional

magnetic resonance imaging (fMRI) scans. Follow-up evaluation

for the PTSD diagnosis, based on the Clinician-Administered

PTSD Scale (CAPS) [19], was conducted at 1 and 6 months post-

accident. All PTSD subjects fulfilled criterion for PTSD as assessed

using CAPS, either 1 month or 6 months post-accident. All

participants were right-handed.

The exclusion criteria were as follows: (1) younger than 18 or

older than 60 years, with an education ,9 years; (2) ASDI ,3; (3)

significant head injury (i.e., abnormalities on conventional MRI,

neurological abnormalities during emergency department evalu-

ation, and loss of consciousness longer than several seconds during

the accident); (4) a history of neurological disorders; (5) current axis

I disorders at the time of the accident, as assessed using the MINI

[17], or drug or alcohol abuse/dependence within 6 months prior

to the accident; (6) medications (psychotropic drugs within 4 weeks

prior to scanning); and (7) contraindications to MRI.

The current study was approved by the Research Ethics

Committee of Renji Hospital. All subjects gave their informed

written consent. All procedures were in accordance with in-

stitutional guidelines.

MRI Acquisition
MRI was performed on a 3T magnetic resonance scanner (GE

Signa HDxt 3T, USA). A standard head coil with foam padding

was used to restrict head motion. During resting-state fMRI, the

subjects were instructed to keep their eyes closed, remain

motionless, and not to think of anything in particular. A

gradient-echo echo-planar sequence was used to acquire func-

tional images (repetition time [TR]= 2000 ms, echo time

[TE] = 30 ms, field of view [FOV]= 230 mm26230 mm2, ma-

trix = 64664, thickness = 4 mm, and gap= 0). Each fMRI scan

lasted 440 s. Other sequences were also acquired, including: (1)

sagittal T1-weighted 3D-magnetization prepared rapid acquisition

gradient echo sequences (TR=9.4 ms, TE=4.6 ms, flip an-

gle = 15u, slice thickness = 1 mm, gap= 0 mm,

FOV=256 mm6256 mm, matrix = 2566256, and slices = 155);

(2) axial T1-weighted fast field echo sequences (TR=331 ms,

TE=4.6 ms, FOV=256 mm 6256 mm, slice thickness = 4 mm,

gap= 0, slices = 34, and matrix = 5126512); and (3) axial T2-

weighted turbo spin-echo sequences (TR=3013 ms, TE= 80 ms,

FOV=256 mm6256 mm, slice thickness = 4 mm, gap= 0,

slices = 34, and matrix = 5126512).

Image Analysis
Brain MR imagings (T1-weighted and T2-weighted images)

were evaluated by two experienced neuroradiologists. No gross

abnormalities were observed in the participants. Functional MRI

preprocessing was carried out using Data Processing Assistant for

Resting-State fMRI (DPARSF V 2.0, by YAN Chao-Gan, http://

www.restfmri.net), which is based on MRIcroN (by Chris Rorden,

http://www.mricro.com), statistical parametric mapping (SPM5;

Wellcome Department of Imaging Neuroscience, London, UK),

and the Resting-State fMRI Data Analysis Toolkit (REST V1.5

software, by SONG Xiao-Wei et al., http://www.restfmri.net).

The first 10 volumes of each functional time series were discarded

because of instability of the initial MRI signal and the initial

adaptation of participants to the situation. Data from each fMRI

scan contained 220 time points, and the remaining 210 images

were preprocessed. The images were subsequently corrected for

slice timing and realigned to the first image for rigid-body head

movement correction. No participant had motion of more than

1 mm with maximum translation in x, y, or z, or 1u of any angular
motion throughout the course of scan. The functional images were

normalized into standard stereotaxic anatomical Montreal Neu-

rological Institute space. The normalized volumes were resampled

to a voxel size of 3 mm63 mm63 mm. The echo-planar images

were spatially smoothed using an isotropic Gaussian filter of 4 mm

full width at half maximum.

Each voxel’s time-series was detrended to correct for lineral drift

over time. Nine nuisance covariates (time-series predictors for

global signal, white matter, cerebrospinal fluid, and the six

movement parameters, including the first derivative, obtained

during realignment to account for motion-related effects in blood

oxygenated level-dependent) were sequentially regressed from the

time-series [20]. Following this procedure, temporal filtering

(0.01 Hz–0.08 Hz) was applied to the time series of each voxel

to reduce the effect of low-frequency drifts and high-frequency

noise [21,22,23].

The PCC template, which consisted of Brodmann’s areas 29,

30, 23, and 31, was selected as the region of interest (ROI) using

WFU-Pick Atlas software [24]. The BOLD time series of the

voxels within the seed region were averaged to generate the

reference time series.

For each subject and seed region, a correlation map was

produced by computing the correlation coefficients between the

reference time series and the time series from all the other brain

voxels. Correlation coefficients were then converted to z values

using Fisher’s z-transform to improve the normality [22]. The

individual z value was entered into a random effect one-sample t-

test in a voxel-wise manner to determine brain regions showing

significant connectivity to each seed region within PTSD patients

under a combined threshold of P,0.01 and cluster size

n = 486 mm3. This yielded a corrected threshold of P,0.05,

determined by Monte Carlo simulation with the program

AlphaSim in AFNI with the following parameters: full width at

half maximum=4 mm, within the BrainMask in REST. This

procedure produced significant functional connectivity z-statistic

maps for the PTSD group.

To examine whether the strength of functional connectivity in

the PCC varies with the severity of disease in PTSD patients,

Early Altered FC Predicts the Severity of PTSD
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Pearson’s correlative analysis was performed to examine relation-

ships between the z-values and CAPS in PTSD patients at the time

that patients were diagnosed using a threshold of p,0.05 as

corrected by AlphaSim. Left and right amygdala templates were

selected as ROIs using WFU-Pick Atlas software [24], acting as

separate seed regions. The mPFC was selected as the seed region

centered at Montreal Neurological Institute coordinates of22, 48,

and 24 in a 10-mm sphere, as described in a previous study [15].

For each seed region, the BOLD time series of the voxels within

the seed region was averaged to generate the reference time series.

Using ROI-wise functional connectivity analysis, the correlation

coefficients of the functional connectivity in each pair of seed

regions were calculated and then converted to z values within

correlation coefficients. Pearson’s correlative analysis was per-

formed to examine relationships between the z-values and CAPS

in PTSD patients at the time of diagnosis using a threshold of

p,0.05 as corrected by AlphaSim.

Results

Subject Characteristics
The mean age of PTSD patients (4 females, 11 males) was

41.52612.56 years, and the mean duration of education was

12.0262.56 years. All subjects underwent baseline evaluation

within 2 d post-accident. No patient met diagnostic criteria for

current axis I disorders as assessed using the MINI, and the mean

ASDI was 15.4266.01. Follow-up evaluation for PTSD diagnosis

was conducted at 1 month and 6 months post-accident. Eleven

and 4 patients were diagnosed 1 month and 6 months post-

accident, respectively, and the mean time from accident to PTSD

diagnosis was 2.3362.28 months. The mean CAPS when the

patients were diagnosed was 44.53615.76.

Correlation between PCC Connectivity and CAPS
Connectivity with the PCC was negatively correlated with

CAPS scores in the left superior temporal gyrus and right

hippocampal gyrus/right amygdala (see Table 1 and Fig. 1).

Correlation of Functional Connectivity within Seed
Regions and CAPS
Four regions were selected, including the PCC, mPFC and

bilateral amygdala. Correlation analysis of the strength of

functional connectivity within each pair of seed regions and CAPS

was performed. The strengths of functional connectivity of the

PCC-right amygdala (r =20.57, p = 0.03), PCC-left amygdala

(r =20.53, p = 0.04) and right amygdala-left amygdala (r =20.54,

p = 0.04) were negatively correlated with CAPS scores in the

PTSD patients at the time of diagnosis. (See Table 2 and Fig. 2).

Discussion

To the best of our knowledge, this is the first study to examine

the relationships between default network connectivity and

prospective PTSD symptoms soon after trauma. This study

demonstrated that resting state connectivity with the PCC was

negatively correlated with CAPS scores in the left superior

temporal gyrus and right hippocampus/amygdala. Furthermore,

the strength of connectivity between the PCC and bilateral

amygdala, and even between the bilateral amygdala could predict

the severity of PTSD symptoms later.

These results are partly consistent with previous studies

[9,10,11,12,15,16,25]. Structural abnormalities in the superior

temporal gyrus have been found in maltreated children and

adolescents with PTSD [26]. The superior temporal gyrus has

connections with temporolimbic areas, including the hippocam-

pus, amygdala, entorhinal cortex, thalamus, and neocortical

association areas in prefrontal and parietal cortices [27]. The

superior temporal gyrus is involved in auditory processing,

including language, and has also been implicated as a critical

structure in social cognition. De Bellis et al. [26] found that

superior temporal gyrus volumes were larger in the chronic PTSD

patients than in control subjects. They suggested that there might

be a compensatory synaptic increase in the superior temporal

gyrus related to the increase of the sensitivity to conditioned

auditory stimuli during development, or the larger superior

temporal gyrus gray matter in the PTSD subjects could be

Figure 1. Brain regions where functional connectivity with the PCC was correlated with CAPS at the time when patients were
diagnosed with PTSD. Note: The right part of the figure represents the patient’s left side. PTSD=post-traumatic stress disorder.
doi:10.1371/journal.pone.0046833.g001
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a consequence of a decreased developmentally-related input from

the frontal cortex. The hippocampus is essential for the formation

of stable declarative memory in humans and spatial memory in

rodents, and is the brain functional domain most closely associated

with learning, memory, and cognitive function [28]. Dickie et al

[9] found that change in the activity of the hippocampus and

subgenual anterior cingulate cortex (as a function of emotional

memory) was correlated with improvement in PTSD symptoms,

suggesting that activity in these areas may be associated with

recovery. We found a negative correlation of the connectivity with

the PCC in superior temporal gyrus and hippocampus with CAPS,

suggesting that early altered resting-state functional connectivity in

these areas could predict the severity of the disease and may be

a major risk factor that predisposes patients to develop PTSD.

Amygdala activity plays a causal role in the experience of

negative effects, such as fear, anxiety, and distress. In healthy

brains, amygdala activity is thought to be dampened via top-down

inhibition by the mPFC, yielding a reduction in subjective distress.

However, in PTSD, a defect in mPFC function impairs inhibition

of the amygdala, resulting in abnormal amygdala activity and

pathological distress [5,29]. Therefore, PTSD neuroimaging data

support a model of PTSD pathogenesis that proposes two

important elements: 1) the emotional distress characterizing PTSD

arises from hyperactivity in the amygdala; and 2) amygdala

hyperactivity is caused by defective inhibition from a hypoactive

mPFC [29,30]. A previous study [31] suggested that amygdala

damage abolishes the development of PTSD among combat

veterans, which supports the assertion that amygdala hyperactivity

plays a causal role in the pathophysiology of PTSD. Numerous

studies, using a variety of tasks and stimuli, have reported

significant positive correlations between the severity of PTSD

symptoms and amygdala activity [12,13] and both positive [25]

and negative [32,33,34] correlations with activity of the mPFC.

We found that the strength of connectivity between the PCC and

bilateral amygdala was negative correlated with CAPS, which may

be caused by hyper-inhibition by the mPFC in the early stage of

post-trauma. Early abnormal function of amygdala-linked circuitry

may lead to the subsequent onset of illness. Interestingly, we also

found a negative correlation of the strength of functional

connectivity in right-left amygdala with CAPS. Further research

is necessary to explain this phenomenon in detail.

We did not observe any significant differences in PCC

connectivity to the mPFC or anterior cingulate cortex in PTSD

patients at rest. This is a notable negative finding and requires

replication; however, we acknowledge that it could have resulted

from the following: (1) a small sample size may have led to false

negative results and/or more subtle connectivity abnormalities;

and (2) the resting-state task may be insensitive to detecting early

and mild PCC-prefrontal and amygdala-mPFC connectivity

abnormalities, which may require engagement by an overt task.

Koenigs et al. [31] considered that the finding of mPFC

hypoactivity in functional imaging studies of PTSD does not

necessarily reflect a causal contribution to the disorder. It is

possible that the mPFC hypoactivity observed in PTSD develops

as a consequence of chronic distress associated with PTSD.

Koenigs et al. [31] found that mPFC lesions resulted in decreased

susceptibility to PTSD and they proposed that the causal role of

mPFC in PTSD may be related to its function in self-insight and

self-reflection. Therefore, a loss of self-insight or self-reflection may

diminish the core symptoms of the disorder.

The current study has several limitations. First, the sample size

was relatively small. Second, the seed-point method as the mode of

Table 1. Brain regions where functional connectivity with the PCC correlated with CAPS scores at the time PTSD patients were
diagnosed.

Peak MNI coordinate region Peak MNI coordinates Number of cluster voxels

x y z

1 left superior temporal gyrus 242 3 224 44

2 Right hippocampal gyrus/right amygdala 36 224 224 61

(p,0.05, AlphaSim-corrected)

Note: PTSD=post-traumatic stress disorder; PCC= posterior cingulated cortex;
CAPS = the Clinician-Administered PTSD Scale.
doi:10.1371/journal.pone.0046833.t001

Figure 2. Correlation between PCC-left amygdala, PCC-right amygdala, left-right amygdala connectivity and CAPS in 15 PTSD
patients: (Fig. 2a) PCC-left amygdala connectivity and CAPS, r =20.53, p=0.04; (Fig. 2b) PCC-right amygdala connectivity and
CAPS, r =20.57, p=0.03; (Fig. 2c) left-right amygdala connectivity and CAPS, r =20.54, p=0.04.
doi:10.1371/journal.pone.0046833.g002
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analysis may have been biased by the particular seed region

chosen, focusing on long-distance patterns of connectivity.

However, we applied all of the ROIs mentioned in previous

studies. Third, we did not obtain the patient’s fMRI again when

they were diagnosed. Fourth, these connectivity differences could

be resolved by other factors unrelated to the traumatic event. Fifth,

we excluded the patients with significant head injury (i.e.,

abnormalities on conventional MRI, neurological abnormalities

during emergency department evaluation, and loss of conscious-

ness longer than several seconds during the accident). PTSD can

commonly result from concussive injury resulting in loss of

consciousness; thus, this criterion for exclusion severely limits

generalizability. Follow-up studies should be conducted in the

future to verify the present findings.

Conclusions
This paper describes a preliminary study investigating the

relationship between resting-state functional connectivity and the

severity of post-traumatic stress disorder (PTSD) symptoms in

people who developed PTSD following recent trauma. Early

altered functional connectivity in the PCC with the left superior

temporal gyrus, right hippocampus and amygdala could predict

the severity of the disease, and may be a major risk factor that

predisposes patients to develop PTSD.
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