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Abstract

Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus found in fish from oceans of the northern hemisphere and
freshwaters of Europe. It has caused extensive losses of cultured and wild fish and has become established in the North
American Great Lakes. Large die-offs of wild fish in the Great Lakes due to VHSV have alarmed the public and provoked
government attention on the introduction and spread of aquatic animal pathogens in freshwaters. We investigated the
relations between VHSV dispersion and shipping and boating activity in the Great Lakes by sampling fish and water at sites
that were commercial shipping harbors, recreational boating centers, and open shorelines. Fish and water samples were
individually analyzed for VHSV using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and cell culture
assays. Of 1,221 fish of 17 species, 55 were VHSV positive with highly varied qRT-PCR titers (1 to 5,950,000 N gene copies).
The detections of VHSV in fish and water samples were closely associated and the virus was detected in 21 of 30 sites
sampled. The occurrence of VHSV was not related to type of site or shipping related invasion hotspots. Our results indicate
that VHSV is widely dispersed in the Great Lakes and is both an enzootic and epizootic pathogen. We demonstrate that
pathogen distribution information could be developed quickly and is clearly needed for aquatic ecosystem conservation,
management of affected populations, and informed regulation of the worldwide trade of aquatic organisms.
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Introduction

Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus

that has caused extensive losses of cultured and wild fish. It is one

of the most studied fish pathogens [1] and has expanded its

geographic range and habitat occupation in the last two decades.

Up to the mid-1980s, VHSV was considered [2] to be a pathogen

limited to freshwater fish in western Europe. VHSV was later

detected [3,4] in Pacific salmon (Oncorhynchus tshawytscha, O. kisutch)

and then determined [1,5,6] to be present in many fish species of

the North Pacific and North Atlantic oceans. A survey of a wide

range of marine species in the North Sea [7] in the late 1990s

found VHSV in many species examined even though few

displayed clinical signs of the disease. VHSV now appears widely

distributed in the Northern Hemisphere across many species that

may or may not show symptoms of viral infection or experience

mortality.

More recently, a novel genotype of VHSV (North American

genotype IVb) has become established in the North American

Great Lakes and is expanding to other freshwaters in the United

States. The virus was first isolated in the Great Lakes in 2005 from

freshwater drum (Aplodinotus grunniens) and round goby (Neogobius

melanostomus) experiencing a large die-off in Lake Ontario [8].

Afterward, VHSV was isolated from archived samples of

muskellunge (Esox masquinongy) captured in Lake St. Clair,

Michigan in 2003 [9]. Additional fish mortality episodes appeared

in 2006 through 2008 at several locations in Lakes Michigan, Erie,

St. Clair, and connected waters ([9–12], Figure 1). Most

investigations of VHSV in the Great Lakes have been associated

with fish mortality in new areas of the system.

The process of VHSV range expansion is not understood. The

emergence of large fish die-offs beginning in 2005 led manage-

ment agencies and the public to regard VHSV as a recent invader.

Introduction of VHSV into the Great Lakes via ship ballast water

has been postulated as a likely mechanism [8,13–15] because

ballast water has been implicated in a majority of non-native

species introductions in the Great Lakes [16–19]. Investigations of

ship ballast contents further substantiates the likelihood that

shipping is a key source of new aquatic species entering the Great

lakes [20–22]. In addition, non-native bacteria and viruses have
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been documented in ship ballast at ports [23–25]. Shipping and

recreational boating activity within the Great Lakes region have

also been considered [26] as a mechanism for non-native species

dispersion. As a result, controls on ship ballast water are being

developed under intense public concern about new species

entering the Great Lakes.

Fish kills caused by VHSV have elevated public and

government attention on species introductions in the Great Lakes

with attention focused on ships and ports for monitoring and

regulation. Shallow connecting waters between the lakes and

shallow approaches to primary shipping ports are considered

invasion hotspots [18,27] from the record of first occurrence of

non-native species and expected discharge of ballast water in these

areas (Figure 1). Ship decontamination and port monitoring are

being targeted by conservation organizations, federal agencies,

state governments, and others (e.g., [27–29]) to prevent invasions

by non-native species, including microbes. However, there are

currently no data to corroborate a primary role of ships in

introduction or dispersal of VHSV. Instead, obvious fish die-offs

have been the de facto method for detecting pathogen presence.

This approach does little to inform options for prevention of

pathogen dispersal by ships and other vectors.

Our purposes for this study were to: (1) test the capability to

detect VHSV in Great Lakes water samples and fish using rapid

survey methods suitable for regional-scale monitoring, and (2) to

test the hypothesis that ports and invasion hotspots are points of

concentration for VHSV.

Results

Fish collections at the 30 sites yielded 1,221 fish of 17 species

(Table 1) that were analyzed for VHSV. Most were round goby

(710) and yellow perch (264) with median total lengths of 91 and

195 mm, respectively (Table 2). Six fish species were found to have

VHSV and most positive fish were round goby and yellow perch.

The qRT-PCR titers in the 55 positive fish were highly varied (1 to

5,950,000 N gene copies). The highest N gene count per fish was

48 times higher than the next highest so we considered this value

an outlier. Based on the other 54 fish, N gene counts averaged

4,202 per sample (standard deviation 17,419) with a median count

of 115 (interquartile range of 37 to 1,400). Four of the 55 qRT-

PCR positive fish were confirmed VHSV positive by cell culture

analyses (Table 1). These were the four fish with the highest N

gene counts (.16,500). Highly variable N gene counts and the

dominance of VHSV negative fish essentially resulted in a

dichotomous data distribution: VHSV presence (detected) or

absence (not detected) by fish. By site, the number of VHSV

positive fish was highly correlated (r = 0.93, P = 0.0007) with the

number of fish tested. With a mean detection rate of 5% (95% CI

0–14) half of the species were not collected in enough numbers to

reliably detect VHSV. N gene counts in 9 positive 10 L water

samples averaged 100 per sample (standard deviation 70) with an

interquartile range of 48 to 160. Water sample results were also

treated as presence or absent for consistency with fish analysis

results.

Figure 1. Distribution of VHSV positive fish in the Great Lakes from 2003 through 2008 as reported by the U.S. Department of
Agriculture Animal and Plant Health Inspection Service [12] and the distribution of documented invasion hotspots [18,27].
doi:10.1371/journal.pone.0010156.g001

VHSV in the Great Lakes
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The presence of VHSV in fish and water samples from the same

site were associated (Table 3, chi-square test, P = 0.0189).

Matching positive and negative detections for fish and water were

more common (9 sites) than expected assuming no association (6

sites). Also, VHSV was not detected in water samples at any site

where VHSV was not detected in fish. The zero value for one cell

in Table 3 violates an assumption of chi-square tests, but an

alternative test for such counts (Fisher Exact Test) provided the

same conclusion.

Seven of the 30 sampling sites were in known invasion hotspots

(Figure 1) [18,27] of the Great Lakes. The distribution of VHSV

positive sites was not associated with these hotspots (Table 3, chi-

square test, P = 0.3001) and most of the VHSV positive sites

(Figure 2) were not in invasion hotspots. The first detection of

VHSV in the Great Lakes (2005 in northeast Lake Ontario,

Figure 1) was not in an invasion hotspot. Afterward, positive test

results using archived fish from 2003 were from a hotspot (Lake St.

Clair, Figure 1). Most subsequent VHSV detections were outside

hotspot areas. Together, our results and the timeline of VHSV

occurrence in the Great Lakes provide strong evidence that VHSV

distribution was unrelated to invasion hotspots in 2008.

VHSV occurrence in fish and water at the sampling sites

showed no relation to sites classified as commercial shipping

harbors, recreational boating centers, and open shorelines

(Table 4). A chi-square test of association between VHSV

presence and absence and site class yielded a P of 1.000 because

the counts were perfectly independent for both fish and water

samples. The distribution of VHSV across sample sites shows

nearly the maximum distributional range with the appearance of

an even spread across the system (Figure 2). Therefore, we

obtained very strong evidence that shipping and boating sites are

independent of VHS distribution in 2008.

Tests for differences between VHSV presence and absence in

samples using factors for lake, water temperature, and sampling

date were not significant for fish (MANOVA, P = 0.8896) or water

samples (P = 0.3800). Testing each attribute individually (i.e.,

water temperature differences among positive and negative

samples) provided the same results using an ANOVA (P.0.51

Table 1. VHSV detection in fish and water using qRT-PCR and cell culture assays shown by site, type of site, and number of fish
tested.

Site # Body of water Site Type
Invasion
hotspot

Fish
tested

VHSV
positive fish

Cell culture
positive fish

VHSV detected
in water

1 St. Lawrence River Recreational 60 0 0

2 St. Lawrence River Open shore 22 1 0 Yes

3 St. Lawrence River Shipping 22 0 0

4 Lake Ontario Shipping 23 2 0 Yes

5 Lake Ontario Recreational 60 2 0 Yes

6 Lake Ontario Open shore 56 5 0

7 Lake Erie Shipping Yes 21 1 0

8 Lake Erie Recreational 72 4 0

9 Lake Erie Open shore 36 1 0 Yes

10 Lake Erie Recreational 21 0 0

11 Lake Erie Open shore 14 0 0

12 Lake Erie Shipping 103 3 0

13 Lake Erie Open shore Yes 24 4 0

14 Lake Erie Recreational 23 1 0 Yes

15 Lake Erie Open shore Yes 35 1 0 Yes

16 Detroit River Recreational Yes 44 1 1

17 Detroit River Shipping Yes 38 2 0 Yes

18 Lake Erie Shipping Yes 68 2 0 Yes

19 Lake Erie Recreational 36 2 1 Yes

20 Lake Erie Shipping 35 0 0

21 Lake Erie Open shore 36 0 0

22 Lake Huron Open shore 39 0 0

23 Lake Huron Recreational 63 0 0

24 Lake Huron Shipping 34 2 0

25 St. Marys River Shipping Yes 42 0 0

26 Lake Huron Recreational 41 1 0

27 Lake Huron Open shore 21 7 2

28 Lake Ontario Recreational 66 3 0

29 Lake Ontario Shipping 39 2 0

30 Lake Ontario Open shore 27 8 0

doi:10.1371/journal.pone.0010156.t001
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for fish; P.0.08 for water). Therefore, we can conclude there is no

evidence that VHSV detection was related to sample site attributes

in the study period and region.

Discussion

Our results indicate a broad distribution of VHSV across much

of the Great Lakes system in 2008. Most sites sampled had VHSV

infected fish and many had VHSV detected in water despite the

lack of large outbreaks or mass mortalities. The distribution of

VHSV outbreaks in prior years and our detection of subclinical

infections throughout a broad geographical range indicate that

VHSV is both an enzootic and epizootic pathogen in the Great

Lakes. This pattern of persistence and intermittent effects on

numerous fish has been recognized for VHSV in other freshwater

and marine systems [1,4,30]. Our results and the record of VHSV

in freshwater and marine habitats of Europe and North America

raise the possibility that VHSV was present in the Great Lakes for

perhaps an extended period of years where it may have persisted

in a subclinical form before the increase in infection pressure or

other factors triggered major fish die-offs.

Biological invasions from ballast water introductions are a major

conservation and regulatory concern [13,27,31] and a leading

cause of biotic homogenization, species extinctions, and ecosystem

disruption [20,21,32]. While some detections of VHSV in the

Great Lakes occurred in known invasion hotspots, most fish die-

offs were not concentrated in these areas. Although our data do

not address the way VHSV entered the Great Lakes, our results

indicate no current relation to centers of shipping or boating

activity nor invasion hotspots. VHSV outbreaks have been

associated with high densities, strong recruitment, and stress in

vulnerable species [1]. It appears that once VHSV is established in

a region the virus will become widespread, hosted by fish without

disease symptoms, and capable of persistence at low but detectable

levels. Occasionally epizootics are seen and investigated by natural

resource agencies and pathologists. These periodic, lethal event

associated investigations makes a causal link to any one vector as a

colonization cause difficult to assess. Advance knowledge of

pathogen presence and distribution would provide a solid basis

for judging threats and likely causes of epizootics.

While documenting the cause of fish die-offs commanded

attention in the Great Lakes region, the more important benefits

are establishing pathogen distribution, changes through time, and

associations with epizootic outbreaks. Genomic technologies like

qRT-PCR have been effective for learning about VHSV in

Europe and North America and they provide the option for secure

and fast results. We have also shown in a related study [33] that

our qRT-PCR assay is 100 to 1000 more sensitive at detecting

VHSV than cell culture, although cell culture can evaluate

infectivity and gene variants. This study also demonstrates that

pathogens like VHSV can be detected across a large region at a

level of effort compatible with common environmental monitoring

programs. Routine monitoring of fish for population trends [34]

Table 2. Fish analyzed for VHSV and number of fish determined to be positive with data on fish sizes and known vulnerability to
VHSV.

Common name Scientific name
VHSV
susceptible1

Number
analyzed

VHSV
positive

Median total
length (mm)

Length range
(mm)

Round goby Neogobius melanostomus Yes 710 41 91 45–230

Yellow Perch Perca flavescens Yes 264 6 195 150–240

Rock bass Ambloplites rupestris Yes 69 3 121 65–219

White perch Morone americana Yes 48 2 195 150–240

Banded killifish Fundulus diaphanus No 40 1 73 61–81

Spottail shiner Notropis hudsonius Yes 24 0 124 30–146

White sucker Catostomus commersonii No 22 0 225 211–263

White bass Morone chrysops Yes 15 2 182 157–198

Freshwater drum Aplodinotus grunniens Yes 7 0 164 135–187

Gizzard shad Dorosoma cepedianum Yes 6 0 169 155–204

Walleye Sander vitreus Yes 6 0 240 225–281

Bluegill Lepomis macrochirus Yes 3 0 141 54–164

Channel catfish Ictalurus punctatus Yes 2 0 261 260–263

Logperch Percina caprodes No 2 0 117 100–135

Pumpkinseed Lepomis gibbosus Yes 1 0 135 -

Largemouth bass Micropterus salmoides Yes 1 0 125 -

Golden shiner Notemigonus crysoleucas No 1 0 169 -

1. VHSV susceptibility is reported by the U.S. Department of Agriculture, Animal and Plant Health Inspection Service [12] although other species can be infected.
doi:10.1371/journal.pone.0010156.t002

Table 3. Detection of VHSV in fish and water and the
presence of VHSV positive fish at sampling sites in and
outside of invasion hotspots shown in Figure 1.

Site attribute VHSV present in fish VHSV absent in fish

VHSV in water 9 0

VHSV absent in water 12 9

Invasion hotspot 6 1

Not an invasion hotspot 15 8

doi:10.1371/journal.pone.0010156.t003

VHSV in the Great Lakes
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and contaminants [35] is already well established in the Great

Lakes system. Adding pathogen surveillance would be practical,

cost efficient, and a minor effort addition to these programs. Water

could be used for monitoring although current technology makes

pathogen detection less effective than sampling vulnerable

organisms. Our results show that infected fish must be present

locally to produce detectable levels of VHSV in water samples. In

time, technology may allow efficient monitoring using water

samples which are also widely collected in many forms of

environmental surveillance in the Great Lakes and worldwide.

Genetic research on VHSV has indicated some consistency in

the genotypes of the Great Lakes (IVb), and oceans around North

America [5]. The distinct North American and European VHSV

lineages were thought to have diverged 500 or more years ago

[36,37]. Our results and the genetic findings run counter to the

public thinking on VHSV as a recent development brought on by

Figure 2. Distribution of VHSV positive fish and water at sites classified as commercial shipping harbors, recreational boating
centers, and open shoreline.
doi:10.1371/journal.pone.0010156.g002

Table 4. Detection of VHSV in fish and water at sampling sites classified as commercial shipping harbors, recreational boat centers,
and open shorelines.

VHSV status Commercial harbors Recreational boating centers Open shoreline

Absent in fish 3 3 3

Present in fish 7 7 7

Absent in water 7 7 7

Present in water 3 3 3

doi:10.1371/journal.pone.0010156.t004

VHSV in the Great Lakes
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worldwide shipping in the Great Lakes. However, present

knowledge does not suggest a location from which VHSV was

introduced into the Great Lakes. Pathogen monitoring can

provide environmental agencies with information upon which to

base management and regulatory decisions such as restrictions on

transport of organisms, curtailment of water movement by ships,

or imposition of ship and boat disinfection treatments. More

knowledge of pathogens in the environment could have strongly

affected the debate about VHSV. We demonstrate that this

information can be developed and is clearly needed for aquatic

ecosystem conservation, management of affected populations, and

informed regulation of the worldwide unintended transfer of

aquatic pathogens.

Materials and Methods

Ethics statement
All fish were handled in strict accordance with good animal

practice as defined by the Cornell University Institutional Animal

Care and Use Committee and all fish uses was approved under

protocol number 2008-0045.

Field Sampling
Environmental monitoring that includes field sampling is often

designed to cover one site per day with some time allocated to

travel. Our survey was designed to sample fish and water across

the US coast of three Great Lakes (Ontario, Erie, Huron) and

connecting waters during one six week period of fieldwork in the

Spring of 2008 (1 May to 10 June). Fish and water sampling sites

were selected around a set of 10 commercial shipping harbors

from the St. Lawrence River to Sault Ste. Marie (MI). Commercial

shipping harbors were identified using port classifications reported

in reviews of transoceanic species introductions [19,27]. The

limited number of commercial shipping harbors provided us with

few choices thus almost all were sampled. The same number of

recreational boating centers and open shoreline sites were also

included to make a total of 30 sampling sites. Ten recreational

boating centers were identified using information from beach

monitoring reports, recreation boating facilities, marinas, and

waterfront tourism guides. Bathing beaches and marina facilities

were commonly co-located making recreation sites locations of

concentrated human activity and recreational boating. The third

class of sites was open shoreline classified by coastal land use data

(as in [38,39]) assembled for the International Joint Commission

and the US Army Corps of Engineers. Open shoreline sites had

some public activity because access and boat launching were

needed. Recreational boating centers and open shorelines were

identified within a short drive (couple hours) of selected

commercial shipping harbors; when multiple choices were

available the final selection was random. Sampling sites were

categorized as inside documented invasion hotspots or not using

maps of these areas [18,27].

Fish sampling was aimed at species known to be vulnerable to

VHSV (e.g., round goby, yellow perch) [12] that are often

abundant in shoreline waters of the study lakes, easy to capture,

and small. Our sampling goal was 60 fish but the limitation of one

day per site took precedent. Fish capture methods were minnow

traplines, angling, and small mesh (2.5–5 cm) gill nets generally

deployed simultaneously at each site. Captured fish were frozen

whole in a mobile freezer and periodically delivered to the Aquatic

Animal Health Laboratory at Cornell University. At each field

sampling site, one water sample was collected in or near fish

sampling locations. Water was pumped onto a research boat and

into a 10 L carboy using a dedicated bilge pump. Sediments and

suspended material in the sample was minimized by pumping

from an intake tube pulled vertically through about 2 m of the

water column at locations about 3.5 to 6 m deep. The 10 L of

water collected at each site was shipped overnight to the Aquatic

Animal Health Laboratory at Cornell University. Common site

descriptive data were collected: sampled water depth, water

transparency, conductivity, location coordinates, and water

temperature.

At the start of the fieldwork, our boat and gear was free of

organic material, disinfected, and dried for many months. After

each field day aquatic plants, animals, and mud were removed

from our boat, trailer, equipment and gear. All water was drained

from the boat, motor, bilge, transom wells, as well as from

equipment and gear. The boat, equipment and gear were

disinfected with bleach solution (5%) with 10 minutes of contact

time. The boat and gear were dried between sampling sites; extra

sampling gear was used to allow drying and disinfection.

Laboratory Analyses
Fish were thawed until pliable and tissue samples (spleen, liver,

anterior and posterior kidney, heart) were collected aseptically,

with sterile forceps and dissection scissors, disinfected scalpel blade

handle and sterile scalpel blade for every individual fish. A small

portion (,10 mg) from each tissue of a fish were pooled with

200 mL HBSS and stored at 280uC for RNA isolation. Remaining

tissue from dissected organs of a single fish were pooled and stored

at 280uC for cell culture. Disinfection of dissection surfaces

occurred between each fish with an iodophore solution. Disinfec-

tion of the dissection room occurred between sites. VHSV-qRT-

PCR positive samples were processed for virus isolation using EPC

(epithelioma papulosum cyprini) cells [40]. Cell culture procedures

followed the techniques of the American Fisheries Society [41].

Ten-liter water samples were filtered through a 0.22 um

Tuffryn membrane (Pall Life Sciences) at 8 psi. The effluent was

concentrated to 300 ml by tangential flow through a hollow fiber

cartridge rated at 100,000 NMWC (GE Healthcare). The pressure

was kept at 8 psi throughout the concentration process and a

water temperature of 10uC. The remaining concentrate was

pelleted at 25K RPM in a SW28 rotor for 2 hrs at 7uC. The

resulting pellet was stored at 280uC.

Total RNA was isolated by a modification of the RNA Bee

manufacturer’s Tel-Test protocols. All samples and reagents were

kept on ice or chilled to 10uC. The tissue sampled was combined

with 100–200 ul of autoclaved 16PBS in a sterile 1.5 ml

microcentrifuge tube and homogenized using a sterile plastic

pestle. Guanidine thiocyanate was added to the RNA Bee reagent

at a concentration of 0.2 g/ml. One milliliter of this reagent mix

was added to the homogenized tissue, followed immediately by

0.2 ml of chloroform. The tube was then inverted 20 times and left

on ice for 10 minutes. After centrifugation (Eppendorf 5415D) at

room temperature for 10 minutes at 13,000 rpm, the upper,

aqueous layer was removed and added to 800 ul of isopropanol.

The tube was vortexed briefly and then stored on ice for a

minimum of 20 minutes or overnight. The sample was again

centrifuged at room temperature for 10 minutes at 13,000 rpm

and the supernatant decanted. One milliliter of 75% ethanol was

added to the pellet. Following a final centrifugation at room

temperature for 10 minutes at 13,000 rpm, ethanol was carefully

removed with a pipette and the RNA pellet air dried. The pellets

were resuspended using 100–200 ul of DEPC-treated water. The

resuspended total RNA was then incubated for 10 minutes in a

65uC water bath. The concentration of each sample was

determined using a Beckman DU-40 Spectrophotometer (Beck-

man-Coulter). In preparation for qRT-PCR, dilutions of the total

VHSV in the Great Lakes
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RNA samples were prepared to load 40 ng of total RNA per well

of a 96 well plate.

The primers and probe were designed to target the N gene of

VHSV IVb MI03 isolate [4,5,8,11,33,42,43]. The 400 base pair

conserved region of the N gene was selected for primer and probe

design using Applied Biosystems software [37]: Forward- 59- ACC-

TCATGGACATCGTCAAGG - 39, Reverse- 59 - CTCCCCAA-

GCTTCTTGGTGA - 39, Probe- 59 -/56-FAM CCCTGATGA-

CGTGTTCCCTTCTGACC/36-TAMSp/- 39. The assay was

run on an Applied Biosystems-Prism model 7700 sequence

detector (ABI, Foster City, California) and performed according

to ABI using their TaqMan One-Step RT-PCR Master Mix

reagents. VHSV N gene copy number standards were prepared

and run exactly according to published methods [33] Template

controls were not included for each plate to control for false

positives. There were no false positives in any of the runs.

Fish testing positive by qRT-PCR for VHSV, regardless of

VHSV N gene copy number, were subjected to confirmatory

testing using a standard cell culture assay [41]. Tissue samples

from qRT-PCR positive fish were shipped to the Western Fisheries

Research Center (Seattle Washington) on dry ice. Samples were

thawed, homogenized, supernatant diluted to 1:40 and 1:400.

Inoculum (200 uL) was added to two PEG-treated wells and two

untreated wells, plus 200 uL was added to another well of a

separate plate (MEM-5-tris). In total 1000 uL of each dilution was

applied to wells for detection and isolation. These were incubated

at 15uC and observed for up to 18 days.

Data Analysis
The number of the VHSV IVb N gene copies obtained from

fish and water samples were summarized and then reduced to

VHSV presence (detected) or absence (not detected) because most

results were negative yielding a largely dichotomous data

distribution. The numbers of sites where VHSV was present or

absent were analyzed by chi-square statistics relative to fish and

water, invasion hotspots, and site class (commercial shipping

harbors, recreational boating centers, open shoreline). Using the

data from VHSV detections in fish, differences in sample groups

with the presence or absence of VHSV were analyzed for site

attributes of location, date, and temperature using MANOVA and

ANOVA.
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