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Abstract

Functional neuroimaging (e.g., with fMRI) has been difficult to perform in mice, making it challenging to translate between
human fMRI studies and molecular and genetic mechanisms. A method to easily perform large-scale functional
neuroimaging in mice would enable the discovery of functional correlates of genetic manipulations and bridge with mouse
models of disease. To satisfy this need, we combined resting-state functional connectivity mapping with optical intrinsic
signal imaging (fcOIS). We demonstrate functional connectivity in mice through highly detailed fcOIS mapping of resting-
state networks across most of the cerebral cortex. Synthesis of multiple network connectivity patterns through iterative
parcellation and clustering provides a comprehensive map of the functional neuroarchitecture and demonstrates
identification of the major functional regions of the mouse cerebral cortex. The method relies on simple and relatively
inexpensive camera-based equipment, does not require exogenous contrast agents and involves only reflection of the scalp
(the skull remains intact) making it minimally invasive. In principle, fcOIS allows new paradigms linking human neuroscience
with the power of molecular/genetic manipulations in mouse models.
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Introduction

The development of functional neuroimaging techniques,

particularly functional magnetic resonance imaging (fMRI), has

revolutionized human cognitive neuroscience [1]. However, while

these advances have transformed the ways that researchers study

human brain function, they also have widened the divide between

research in humans and in mouse models. Attempting to replicate

human fMRI findings in mice is prohibitively difficult as the small

size of the mouse brain necessitates exceptionally high signal-to-

noise and spatial resolution. These requirements oblige the use of

technically challenging and expensive small-animal-specific MRI

scanners with very high magnetic field strengths. Conversely, it is

difficult to study fMRI correlates of molecular or genetic

manipulations without functional maps in the same animals in

which the manipulations are derived. Thus, we propose a new

method, functional connectivity with optical intrinsic signal

imaging (fcOIS), as a simple bench-top method to perform

functional mapping of the mouse cerebral cortex using similar

hemodynamic contrast to fMRI, with high resolution, high speed,

and at low cost.

Neuroimaging of resting-state functional connectivity [2,3,4] is a

novel approach which promises to integrate cognitive neu-

roscience with studies of neurological diseases involving patients

and animal models. The discovery that functionally-related areas

have correlated neural and hemodynamic activity even in the

absence of tasks means that brain networks can be studied even in

patients with brain-injury [5,6], those under anesthesia [7], or in

subjects unable to perform detailed cognitive tasks, such as

neonates [8,9]. For example, recent studies highlighted the

promise of clinical functional connectivity MRI (fcMRI) by

showing evidence of the spatial relationships between the brain

regions affected by dementia and resting-state networks [10,11].

Further examination of the molecular basis for such connections,

however, is difficult. While fcMRI has been extended recently to

non-human primates [7] and rats [12,13,14,15,16], with initial

success in some clinical models (for example, of stroke [15,17]),

published fcMRI methods have not been extended to mice, which

would permit more powerful genetic and molecular approaches.

An alternative method for functional neuroimaging in small

animals is optical intrinsic signal imaging (OIS) [18,19,20,21,22]

where changes in reflected light intensity off the surface of the

brain are converted to changes in local hemoglobin concentra-

tions. Thus, neural activity can be measured through the

neurovascular response in much the same manner as in fMRI.

Such systems have demonstrated high spatial resolution [23],

spectroscopic sophistication [24], and high speed [25]. Addition-

ally, OIS is easily amenable to integration with other measure-

ments, for example fluorescence imaging (including two-photon

microscopy) and electrophysiology [22,26,27]. These advantages
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have been highlighted by OIS studies of neurovascular coupling

[28,29,30], spontaneous activity [31], and cortical columns

[31,32].

In this paper, we combine resting-state functional connectivity

and OIS methods to perform novel functional connectivity optical

intrinsic signal imaging (fcOIS) in mice. Using fcOIS, we

demonstrate the first functional connectivity maps in mice

covering almost the entirety of the convexity (from the olfactory

bulb anteriorly to the superior colliculus posteriorly and laterally

through primary somatosensory and auditory cortex). Having

determined the patterns of functional connections, we show their

utility through the use of functional connectivity data to parcellate

the mouse cortex into functional areas. This mapping of the spatial

arrangement and extent of multiple functional networks yields

results in agreement with the expected neuroarchitecture. As

fcOIS relies on simple and relatively inexpensive camera-based

equipment and requires only the reflection of the scalp (making it

minimally invasive), we expect that this method will be a widely

useful tool, giving mouse researchers access to functional

neuroimaging and allowing human neuroimagers to test hypoth-

eses in standardized mouse models.

Results

Functional Connectivity in the Mouse Brain
We mapped functional connectivity using a custom-built high-

speed (30 Hz) OIS system (Fig. 1a). This set-up captures a large

field of view of the mouse brain visible through the intact skull

(Fig. 1b), from which the brain was manually segmented. Data

from multiple wavelengths were synthesized using a tissue

spectroscopy model to yield time traces of changes in oxy- and

deoxyhemoglobin (HbO2 and HbR, respectively) at all visible

brain locations. Imaging was performed on five mice (all male

ND4 Swiss Webster anesthetized with Ketamine/Xyalzine);

resting-state data were acquired for at least 15 minutes on each

mouse (see Methods for further details of the system and

experimental conditions).

Resting-state functional connectivity methods evaluate spatio-

temporal correlation patterns in spontaneous brain activity (here

viewed indirectly through the neurovascular response) [2,33,34].

The connections of a given region (referred to as a seed) can be

measured by performing a simple Pearson’s correlation analysis

between the seed and other cortical locations (either in a seed-to-

seed analysis or with every pixel in brain). The original discovery

that enabled fcMRI [2] was that functionally-related regions

(specifically motor cortex) had correlated low frequency hemody-

namics even in the absence of a functional task. In addition,

regions in the brain that have opposing functions (for example

attention and default-mode regions in the human brain [35]) have

resting-state time traces that are anticorrelated. Thus, the

examination of resting-state correlation maps (consisting of r-

values between regions of interest and the rest of the brain) can

reveal multiple functional networks. It should be noted that the

interpretation of anti-correlations warrants some caution as the

removal of a global mean signal enforces the presence of

anticorrelated pixels. However, the pattern of the anticorrelations

is entirely data-driven and is still of interest [36]. To determine the

pattern of functional connections in the mouse brain, we extracted

seed time traces from every major cortical region within our field-

of-view: right and left visual, somatosensory, motor, frontal,

cingulate, and retrosplenial cortices as well as the olfactory bulb

and superior colliculus. The coordinates for this analysis were

chosen based on the visualized anatomy and expected positions

from a histological atlas [37]. At each of these locations, the seed

time trace (DHbO2) was made by averaging over a 0.5 mm

diameter circle (approximately 30 pixels) centered at the chosen

coordinate.

fcOIS correlation analysis revealed distinct resting-state net-

works. Comparison of seed time traces showed both high

correlatations (r approaching 1), particularly between contralateral

homotopic seeds, and anticorrelations (negative r), putatively

between functionally-opposed regions (Fig. 2a). An image made by

correlating a seed time trace with every pixel in the image thus

extends this concept to the construction of a full functional

connectivity map (Fig. 2b). Maps for the sixteen seed locations in

Mouse 1 showed bilateral functional connectivity patterns:

correlations with adjacent cortex as well as homotopic contral-

ateral cortex (Fig. 3). Beyond these connections, there are also very

strong correlations between olfactory, frontal, and cingulate

cortices, with anticorrelations to somatosensory regions. In

between the visual and somatosensory seeds (the location of the

mouse’s small parietal cortex), there are regions that show

correlations with both seeds. And, the retrosplenial cortex shows

Figure 1. System for fcOIS. (a) Illumination from sequentially
flashing LEDs in four different wavelengths (478 nm, 588 nm, 610 nm,
and 625 nm) arranged in a ring. Detection by an EMCCD camera is at
120 Hz (30 Hz after decoding of wavelengths). Crossed linear polarizers
(not shown for simplicity) prevent artifacts from specular reflection off
the skull. (b) A false color image of the mouse cortex generated from
the red, yellow, and blue LED channels. The image shows the camera’s
field-of-view (approximately 1 cm2) of the mouse brain with the
cerebral cortex visible through the skull from the olfactory bulb to the
superior colliculus and far laterally on the convexity. In the corners, one
can see the reflected skin flaps. The brain was manually segmented
from the image providing a mask for fcOIS analysis.
doi:10.1371/journal.pone.0016322.g001

Figure 2. Performing functional connectivity with OIS. (a) Time
traces (DHbO2) for three cortical locations: left retrosplenial (blue), right
retrosplenial (green), and right motor (red). The right and left
retrosplenial are functionally related and show time traces with high
correlation (r = 0.88), while the left retrosplenial and right motor cortices
are anticorrelated (r = 20.47). (b) A functional connectivity map made
by correlating the left retrosplenial seed (blue circle) with all other brain
pixels. High correlation values show functional related regions,
including the right retrosplenial (green circle), while other regions are
negatively correlated, including the right motor cortex (red circle).
Correlation values near zero are found in functionally unrelated regions
(frontal and visual cortices).
doi:10.1371/journal.pone.0016322.g002

Functional Connectivity in the Mouse Brain
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a very sharp delineation from adjacent cortical areas including

anticorrelations with the motor seeds.

Similar patterns are visible in all five mice scanned (Fig. S1). In

two mice (Mouse 2 and Mouse 5), the field of view was extended

laterally enough to result in putative bilateral auditory correlations

(Fig. S2). Furthermore, the functional connectivity patterns are

repeatable within the same mouse. Correlation maps made using

two consecutive fifteen minute scans in the same mouse (Fig. S3) or

maps made on two consecutive days (Fig. S4) show very similar

structure. This similarity can be quantified by evaluating the spatial

correlation between two consecutive maps using the same seed

location. In three mice (2, 4, and 5) data were collected for 30 min.

The spatial correlation between maps made from consecutive fifteen

minute segments is 0.86+/20.06 for all cortical seeds. The shapes of

the connectivity patterns vary slightly between mice, while the

connectivity patterns remain more consistent between multiple

scans on the same mouse suggesting that the inter-mouse differences

in functional connectivity reflect differences in the shape and

position of different functional brain regions.

Seed-based functional connectivity maps are biased by the

particular choice of the seed location. To address this issue, we also

evaluated a method that is independent of user input. First we

constructed the full correlation matrix, which contains correlation

values between each pixel and every other pixel in the entire

image. Because this produces many patterns that are essentially

redundant, we used singular value decomposition (SVD) to find

the predominant orthogonal functional connectivity patterns (the

first four singular vectors are shown in Fig. S5). The first four

ordered singular values represent approximately 67% of the total

variance in the pixel-to-pixel correlation matrix, and the first ten

singular values represent 82% of the total variance. The resulting

first four singular vectors show respectively: (1) a very strong

frontal/cingulate network that anticorrelates with the bilateral

sensory areas, (2) the bilateral retrosplenial cortex that antic-

orrelates with the sensory areas, (3) the visual areas and the

superior colliculus, and (4) more medial motor areas. Thus, the

results of the data-driven SVD-correlation matrix analysis strongly

corroborate the seed-based results.

Parcellation
Having found the resting-state connection patterns, we wanted

to use this information to divide the surface of the cortex into its

component regions. Such a method will group cortical pixels based

on similarities in their functional connectivity and will, ideally,

regenerate the map of the expected neuroarchitecture. From the

above functional connectivity maps, one can already observe

borders around highly correlated regions. However, we desired a

method to identify the borders from the maps without need for

user input. Thus, we devised an automated parcellation scheme to

take intuitive interpretations of the connectivity patterns and

recreate them in a data-driven manner (see Methods).

The parcellation method divides up the cerebral surface into

functional zones (Fig. 4a shows the results in Mouse 1) with an

organization familiar from our earlier examination of connectivity

patterns (frontal/cingular, motor, somatosensory, retrosplenial,

parietal, and collicular parcels are all found). These individual

parcels can be combined into larger functional regions (Fig. 4b)

using a clustering algorithm applied to the correlation matrix This

grouping and labeling of the functional structures closely resembles

the histological regions defined using the coordinates from a

histological atlas (Fig. 4c). Once the clustering has ordered the

parcels based on their similarity, larger networks are easily seen in

the parcel-to-parcel correlation matrix (Fig. 5). The pattern of

regions is robust and an inherent result of the functional

connectivity networks and is not a random effect of the

parcellation method, as very similar borders can be found using

alternate initial conditions (Fig. S6).

Performing parcellation analysis on resting-state functional

connectivity data from multiple mice yields similar maps (Fig. 6).

In every mouse, we can distinguish frontal/olfactory/cingulate,

retrosplenial, motor, somatosensory, and visual/superior colliculus

networks. Additionally, in some mice, lower regions in the brain

stem (putatively inferior colliculus) form their own network

uncorrelated with the rest of the networks. Similarly, putative

parietal areas are also seen in most of the mice.

Although the exact shape of each region’s borders differed

between mice, these minor variations are consistent with the slight

differences seen in the seed-based correlation maps (Fig. S1).

Parcellations performed on two consecutive fifteen minute scans in

the same mouse show a consistent division of functional regions

(Fig. S7). With this analysis, we can estimate the precision with

which we can determine borders. Most of the borders can be

localized to within 150 mm. In some regions (between somatosen-

sory and motor and between frontal and motor), the borders are

Figure 3. Seed-based fcOIS. Correlation maps for seeds chosen manually using the expected cortical positions of various functional areas (Mouse
1). Seed positions and sizes are shown with black circles. The scale for all correlation maps is from r = 21 to 1. Maps are shown overlaid on the ‘‘white
light’’ image of the brain. Note the bilateral patterns for all seed locations.
doi:10.1371/journal.pone.0016322.g003

Functional Connectivity in the Mouse Brain
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very precise, with an estimated localization uncertainty on the

order of 50 mm. In other regions that are more difficult to parcel

(e.g., the region where cingulate, motor, somatosensory, and

retrosplenial all meet) precision is poorer; the estimated un-

certainty is approximately 250 mm.

Discussion

We have shown (to our knowledge) the first results using optical

intrinsic signal imaging to measure functional connectivity, and

the first published mapping of functional connectivity in mice with

resting-state hemodynamics. The findings of fcOIS were repea-

table in time and also robust across multiple mice. These results

satisfy our original goals of determining functional connections

within the mouse brain in the resting state and of using the

patterns of connections to generate a map of functionally distinct

parcels. The functional neuroarchitecture found with fcOIS

matches our expectations from previous studies in rats, primates,

and humans as well as expectations that distinctions between

functional regions should correspond to histological patterns [37].

Bilaterally symmetric functional connectivity is a prominent

feature of our mapping results in visual, somatosensory, motor,

frontal, cingulate, and retrosplenial cortices, as well as the olfactory

bulb and the superior colliculus (these being all of the major parts

of the brain within our field-of-view; for an equivalent human

result see Salvador et al. [38]). We did not observe widely

distributed anterior-posterior functional connectivity, as typically

found in humans (e.g., Fox et al. [35]), possibly because large-scale,

integrative functional processing is unlikely to occur in the mouse.

The frontal, olfactory, and cingulate regions were all highly

correlated with each other, and the visual cortices were weakly

correlated with the superior colliculus. These patterns resemble

those previously found in rats with fcMRI [14]. Similar network

patterns were obtained using the data driven SVD analysis.

Improved statistical methodology is possible to more fully

determine which correlations are the most significant and how

their location varies between mice. The standard of practice in

human fcMRI is to submit multi-subject datasets to statistical tests

of significance using fixed effects [35] or random effects [39]

analyses. However, such procedures depend on the availability of a

standardized reference head space (known as an atlas) [40,41].

Once standardized functional OIS atlasing methods for the mouse

brain have been agreed upon, these statistical analyses would be

straightforward extensions of the work in this paper and would be

useful in many fcOIS applications.

Once we were able to demonstrate the presence of resting-state

functional connectivity networks in the OIS data, our goal was to

use this data to recreate the functional divisions within the mouse

cortex and to recreate parcellations found in histological atlases.

Our iterative parcellation scheme followed by clustering is able to

divide the brain into networks in a data-driven manner. This

method robustly parcellates the brain into similar functional

regions as are found in the histological atlas [37].

In addition to the sensory and motor cortices, we also found

functional connectivity (and associated parcellations) of higher-

order cortical areas. Identifying these networks with resting-state

neuroimaging is particularly noteworthy as developing task-

paradigms to activate ‘‘cognitive’’ regions is difficult in the mouse.

The olfactory, frontal, and cingulate cortices are all limbic areas

[42], hence, it is expected that they would be highly correlated in

the resting state. The functional network including the retro-

splenial region most likely represents the murine equivalent of the

primate default mode network [7,43]. As in humans, mouse

retrosplenial cortex, an evolutionary older structure, shows strong

anti-correlations with more recently developed neocortical regions

(e.g., somatomotor and visual cortex). The retrosplenial network in

the mouse lacks certain human default-mode network components

(e.g., dorsal medial prefrontal and lateral parietal cortex) but this is

expected, as these regions are hypothesized to be later evolu-

tionary additions [44].

While, in the present analysis, we have focused on comparisons

of large-scale functional distinctions (e.g., between retrosplenial

and somatomotor regions), future methodological development

could provide robust finer distinctions (e.g., between subdivisions

of visual cortex). That such further differentiation might be

possible is suggested by the interesting finding that the multiple

parcels in somatosensory cortex (as in Fig. 4a) correlate most

highly with their putative contralateral homologue. Thus, for

example, medial left somatosensory cortex correlates most highly

with medial right somatosensory cortex (see Fig. 5).

Several potential improvements of fcOIS correlation mapping

technique can be identified. For example, in this paper we used

only DHbO2 as a contrast. While previous functional connectivity

studies with optical techniques have shown similar mapping results

using different hemoglobin species as contrasts [4], the high

resolution, event-related OIS functional mapping literature

provides evidence for differences in the spatial extent of functional

maps derived from different contrasts (HbO2, HbR or HbT)

[45,46,47,48], which should be explored within the resting state.

Optical imaging’s ability to image multiple contrasts simulta-

neously can provide estimates of metabolic variables (such as

Figure 4. Iterative parcellation of fcOIS data. (a) The results of
iterative parcellation using the first twenty singular vectors from the
correlation matrix as an initial condition. We see clear delineation of a
frontal/olfactory/cingulate (limbic) network (oranges), a motor network
(reds), a somatosensory network (greens), a visual network (blue), the
retrosplenial cortex (magenta), and the superior colliculus (light blues).
Numbers on the parcels are arbitrary designations from the initial
condition. (b) Dendrogram showing clustering of the parcels from their
correlations. Each terminal branch is a parcel (numbered to match the
parcellation image and color-coded based on functional assignments);
parcels that are more closely related (i.e., that share similar correlation
maps have branches that meet lower on the tree. Note the tight
correlations within the frontal network, in turn connecting to first
medial and then lateral motor areas. In total, there are main branches
for all of the main networks we expect. (c) The Paxinos atlas applied to
this mouse brain for comparison with the functional parcellation. (For
the names of the different cytoarchitectural regions shown in the atlas,
see Fig. S8).
doi:10.1371/journal.pone.0016322.g004

Functional Connectivity in the Mouse Brain
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oxygen extraction fraction and cerebral metabolic rate of oxygen)

[49]. The role of these parameters in functional connectivity (with

their perhaps tighter coupling to the underlying neuronal

physiology) remains to be studied.

Additionally, while we used the same functional connectivity

frequency band as in previous human and rat studies, the

dependence of murine fcOIS on temporal filtering remains a

question for future investigation. The use of different frequency

bands could potentially capture fast vs. slow correlations that

reveal the structure of the brain’s information processing, as has

been recently attempted in human fcMRI [50]. Additionally,

different frequencies might capture information about different

vascular compartments, similar to looking at different temporal

windows in task-activation studies [47,48,51].

Numerous studies have also shown that functional connectivity

persists, albeit in modified form, under anesthesia [7,52]. We

chose ketamine/xylazine because it is a relatively simple prepara-

tion and therefore well suited to a proof of principle demonstration

of the ease of the fcOIS method. However, recent activation

studies have shown that neurovascular coupling is more consistent

Figure 5. Correlation matrix between parcels after iterative parcellation. Each row and column corresponds to a parcel (labeled with a
functional assignment, anatomic location, and a number that matches the scheme in Fig. 5). We see a block-diagonal pattern showing how the
clustering has arranged the parcels into networks (dashed boxes shown for added visualization). Off-diagonal elements show the relationships
between networks; in particular, note the anticorrelations between frontal and somatosensory and between retrosplenial and motor. The left parietal
region correlates with both visual and somatosensory regions. Also note how each somatosensory parcel correlates most highly with its similarly
named homologue in the opposite hemisphere.
doi:10.1371/journal.pone.0016322.g005

Figure 6. fcOIS Parcellations in multiple mice. Different networks have been color-coded (green for somatosensory; red, motor; orange, frontal/
cingulate/olfactory; magenta, retrosplenial; blue, visual; gray-blue, parietal; light blue, superior colliculus; purple, inferior colliculus; pink, auditory).
Note that overall the patterns are similar across all the mice though there are slight individual differences in borders of the functional areas.
doi:10.1371/journal.pone.0016322.g006

Functional Connectivity in the Mouse Brain
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under a-chlorolose [53]. Further, recent fcMRI rat studies have

shown improved functional connectivity mapping under a-

chlorolose compared to isofluorane and medetomidine [52]. We

tested the stability of our fcOIS maps by splitting datasets into

separately analyzed halves and observed good reproducibility in

individual mice (see Figs. S3 and S7). This consistency suggests

stable depth of anesthesia over the duration during which these

mice were imaged. Further studies with a-chlorolose may improve

the precision of the functional border locations and reduce the

modest differences in parcellations observed across imaging

sessions (as in Fig. S7).

Future work is also needed to address fcOIS accuracy through

direct comparisons to histology. The most direct comparison

would be with activation studies using somatosensory (e.g.,

whisker, forelimb, hindlimb), auditory, or visual stimuli, as in the

seminal report of Biswal et al. [2]. This evaluation would have the

advantage of comparing two hemodynamically derived maps

within the same mouse. However, a comprehensive mapping of all

functional areas would be considerably involved, and some (such

as cingulate) would be difficult to localize with stimulus paradigms.

Alternatively, comparison could be made to histological staining

in order to comprehensively define all functional brain regions,

which would be the gold standard for quantifying differences in

brain organization between mice. In such an analysis, if fcOIS

maps were to differ from the histological atlas, steps would be need

to be taken to determine whether the divergence was due to

variation in the arrangement of cytoarchitecture, noise in the

imaging method, or functional connectivity borders differing from

histological borders. Although the parameter space for both the

optimization and validation of fcOIS is large, these studies will be

critical in establishing a firm foundation for fcOIS as a tool for

routine mouse neuroscience.

Additionally, a focus of current fMRI research is how closely

functional and structural connectivity are connected. In humans,

structural connectivity can be assessed only indirectly using

diffusion tensor imaging (DTI). While studies comparing fcMRI

and DTI have shown reasonable agreement [54,55], it is difficult

for networks to be comprehensively assessed. In mice, neuronal

connections could be directly visualized using invasive axonal

tracing studies. Such studies, combined with fcOIS could help

elucidate the role of multi-synaptic connections in resting-state

functional connectivity and how functional networks evolve with

the development of structural neural connections.

We expect that advances in MRI technology and methods will

eventually allow fMRI-based functional connectivity mapping in

mice. However, the need for high-field MRI scanners will most

likely restrict its use to dedicated neuroimaging researchers and

centers. In contrast, fcOIS provides a combination of high

resolution, low cost, and ease of use (a simple intraperitoneal

injection of anesthetic and no thinning of the skull) that should

enable many laboratories that previously did not consider

functional neuroimaging to connect with on-going studies of

human disease. One physical limitation of OIS (due to light

scattering) is the restriction of the field-of-view to the cortical

surface (,1 mm), which precludes direct mapping of deep brain

structures (e.g., the thalamus and hippocampus). Thus, we expect

the two methods to eventually play a complementary role where

interesting results can be found ‘‘at the benchside’’ using fcOIS,

and then a subsequent fcMRI study could be done to visualize

deep brain structures and compare with high-resolution anatomic

scans [56,57].

In summary, we have demonstrated functional connectivity

mapping with OIS in mice. Because we have determined that

fcOIS is able to map both functional regions and their

connections, this methodology should be a powerful tool for

detecting when functional connectivity networks are disrupted

(either in the distribution of the neuroarchitecture or in the pattern

of connections). Thus, one could examine the functional

consequences of disease models including genetic[58] and

surgical[59,60] disruptions. Imaging the development of neuro-

degenerative disease (e.g., Alzheimer’s and Huntington’s) in mouse

could provide a less circumstantial link between the molecular

mechanisms and the tendency for disease to target specific cortical

networks[10,11] providing better insight into both pathophysiol-

ogy and therapeutic targets[61]. We expect that fcOIS could be a

useful tool to connect the intriguing neuroimaging results of

human disease obtained through fcMRI with advances in mouse

models.

Methods

Animal Preparation
All procedures were approved by the Washington University

School of Medicine Animal Studies Committee (protocol #
20080216). Male Swiss Webster mice (6–10 weeks of age, 23–32 g,

Harlan Laboratories) were anesthetized with a Ketamine/

Xylazine mixture (86.9 mg/kg Ketamine, 13.4 mg/kg Xylazine)

and allowed 30 minutes for anesthetic transition. Anesthetic effect

was verified by ensuring that the animal was not responsive to a

hind paw pinch. Once induced, the animal was placed on a

heating pad maintained at 37uC (mTCII, Cell Microcontrols) and

its head secured in a stereotactic frame using a nose cone and ear

bars. The scalp fur was shaved and prepped, and a midline

incision was made along the top of the head and the scalp was

reflected, exposing approximately 1 cm2 of the skull. The skull was

kept moist with an application of mineral oil before each scan.

Arterial blood pressure from the left femoral artery was monitored

using a blood pressure analyzer (Digi-Med, BPA 400a) and

measured to be 95610 mmHg (mean blood pressure +/2

standard deviation averaged across mice 2–4; blood pressure data

were not available for mouse 1). Scan times were 15, 30, 20, 30,

and 30 minutes for mice 1–5 respectively.

Imaging System
Sequential illumination was provided at four wavelengths by a

ring (diameter = 7 cm) of light emitting diodes (LEDs; 478 nm,

588 nm, 610 nm, and 625 nm; RLS-5B475-S, B5B-4343-TY,

B5B435-30S, and OSCR5111A-WY, respectively, Roithner

Lasertechnik) placed approximately 10 cm above the mouse’s

head. For image detection, we used a cooled, frame-transfer

EMCCD camera (iXon 897, Andor Technologies) set to acquire

via external triggering. The LED ring and the camera were time-

synchronized and controlled via computer using custom-written

software (MATLAB, Mathworks). To acquire images at a frame-

rate well above the heart and respiration rates (,10 and 2.5 Hz,

respectively), we used a full frame rate of 30 Hz, which, with four

temporally encoded wavelengths, required running the camera at

a frame rate of 120 Hz. To prevent specular reflection from the

surface of the mouse skull, crossed linear polarizers were placed

just in front of the LEDs and the camera lens. A simplified

diagram of the system is shown in Figure 1a.

The secured mouse was placed at the focal plane of both the

camera and the LED ring and held in place with a stereotactic

holder. The field-of-view was adjusted to be approximately 1 cm2

square resulting in a field-of-view that covers the majority of the

convexity of the cerebral cortex with anterior-posterior from the

olfactory bulb to the superior colliculus (Fig. 1b). Data acquisition

at a frame-rate of 120 Hz was made possible by binning on
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camera (464 binning reduced the output image from 5126512

pixels to 1286128 pixels) and spooling the data directly to disc (a

5-minute scan at 120 Hz produces 1.2 GB of data). The resulting

pixels were approximately 80 mm680 mm.

Image Processing
Image light intensity was interpreted using the Modified Beer-

Lambert Law: W(t) = W0*exp(-Dma(t)*L). Here W(t) is the

measured light intensity, W0 is the baseline light intensity (with

no hemodynamic perturbation), Dma(t) is the change in absorption

coefficient due to changes in blood volume, and L is the path

length of the photons in the tissue. With resting-state activity there

is no pre-stimulus baseline and instead we normalized relative to the

average light intensity: DW (t) = -ln(W(t)/,W0(t).) = Dma(t)*L. If

we are only interested in intensity changes at a single wavelength,

then there is no need to correct for the multiplicative constant, L.

In order to perform spectroscopy, and recover Dma(t), we used path

length factors calculated using the analytical formula given by

Arridge [62] (specifically, Equation 34 in that reference), resulting

in differential measures of absorption at different wavelengths:

Dma,l(t) = -ln(Wl(t)/, W0l(t).)/Ll.

We then converted absorption coefficient data to hemoglobin

concentration changes using the spectroscopy matrix: the system

of equations, Dma,l (t) = El,i D[Hbi](t) (where E is the extinction

coefficient matrix and i runs over hemoglobin species) inverted to

find the least-squares solution to the changes in oxy- and deoxy-

hemoglobin at each pixel at each time. The hemoglobin extinction

values were taken from Prahl [63]. Images in each contrast were

smoothed with a Gaussian filter (565 pixel box with a 1.3 pixel

standard deviation).

To create a false color ‘‘white light’’ image of the mouse brain,

the first images from the red (625 nm), yellow (588 nm), and blue

(478 nm) LED channels were normalized to a maximum value of

one and then stored in the red, green and blue channels of an

RGB image (Fig. 1b). This image was viewed in Adobe Photoshop

and all regions not corresponding to brain were manually painted

white. The image was loaded back into MATLAB and was used to

create a brain mask. All further analysis was performed only on

those pixels labeled as brain.

Atlas Construction
To guide seed placement, an atlas of the locations of cortical

functional regions (as viewed from a superior projection of the

convexity) was constructed using a histological atlas [37]. In every

coronal slice, the lateral extent of every cortical area viewable from

above was noted, and these coordinates were used to construct

polygons surrounding each region. This procedure was repeated

using sagittal slices. From these two sets of polygons, a smoothed

‘‘consensus’’ atlas segmentation was produced (Fig. S8).

In the atlas, we noted the position of the junction between the

olfactory bulb and cerebrum along the midline and the position of

the fissure between the superior colliculus and the cerebrum along

the midline (which is also the position of lambda). These two

points also were found in the ‘‘white light’’ mouse brain images.

Using these two points, the atlas was affine-transformed to brain

coordinates; this transform used only one stretch component (the

anterior-posterior stretch was also used for the medial-lateral

stretch). Then, every pixel in the mouse brain (as defined by the

earlier mask) could be assigned to segmented cortical polygons

from the atlas (as in Fig. 4c). Note that gaps were purposely left in

the atlas segmentation between regions so that brain regions would

be smooth. Thus, not every pixel in the OIS image is assigned a

putative cortical region.

Functional Connectivity
Since previous functional connectivity studies [4] with diffuse

optical tomography showed similar maps using either HbO2, or

HbR contrast, here we used only DHbO2 data for the connectivity

analyses. Data were filtered to the functional connectivity band

(0.009–0.08 Hz) following previous human functional connectivity

algorithms [35]. While one might expect the frequencies involved

in functional connectivity to scale with the size of the animal (as

does heart and respiratory rate), studies of fcMRI in rat have used

the same frequencies as found in humans [13,16,64]. Our results

also demonstrate that low frequency fluctuations in mice

predominately exist below 0.1 Hz. A representative power

spectrum for a pixel’s time trace before and after processing is

shown in Fig. S9. After filtering, each pixel’s time series was

resampled from 30 Hz to 1 Hz for further analysis. The time

traces of all pixels defined as brain were averaged to create a

global brain signal. This global signal was regressed from every

pixel’s time trace to remove global sources of variance.

Using the atlas as a reference, seed locations were chosen at

coordinates expected to correspond to the left and right visual,

motor, somatosensory, frontal, cingulate, and retrosplenial cortices

as well as the right and left superior colliculi and olfactory bulbs. A

0.5 mm diameter circle at each seed location was averaged to

create a seed time trace. These seed traces were correlated against

every other brain pixel to create functional connectivity maps.

Because seed-based methods are dependent on the seed location,

we also used seed-independent methods for determining con-

nectivity patterns. The time traces in every pixel were correlated

against every other pixel to create an N6N connectivity matrix

(where N is the number of pixels defined as brain). This matrix

contains all the functional connectivity information that could be

gained from seed-based analysis, but has too much data to

examine all at once. Taking the SVD of this matrix will yield an

ordered set of orthogonal singular vectors that represent the spatial

connectivity patterns. The associated singular values indicate the

extent to which a particular singular vector contributes to the total

variance in the data. The first few singular vectors thus

demonstrate the most dominant connectivity patterns.

Iterative Parcellation
With the goal of regenerating the atlas divisions in a data-driven

manner, we parcellated the brain into functional regions using the

resting-state brain signals and an iterative strategy. Similar

methodology has been used to parcellate the human cingulate

cortex on the basis of anatomical connectivity assessed by diffusion

tensor tractography[65]. An initial assumption about the organi-

zation of the neuroarchitecture can be refined with a method

consisting of two steps: (1) updated time traces are found for each

parcel by averaging over all pixels in each parcel, (2) updated

spatial arrangements are found for each parcel by calculating the r-

values between the time traces for each pixel and each parcel

(constructing a cross correlation matrix), and then assigning every

pixel to the parcel with which it had the highest correlation

coefficient. New averaged time traces are calculated for each

updated parcel spatial arrangement (a return to Step 1). This cycle

is repeated until no pixel changes regions from one cycle to the

next. If at any point in the iterative scheme, a parcel had fewer

than ten pixels (0.04 mm2), it was eliminated from the analysis,

thus preventing the development of overly small parcels (a pixel

will have the highest possible correlation coefficient with a parcel

consisting solely of itself).

Results obtained by iterative techniques potentially depend on

the details of initialization. Accordingly, we explored three initial

parcellation conditions. The first initial condition was derived from
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the first ten singular modes of the connectivity matrix (after SVD)

with pixels assigned to whichever singular vector with which they

had the highest positive or negative coefficient. The pixels that had

high positive or negative coefficients with a given parcel were then

split into two different parcels, yielding twenty total parcels. While

a relatively large amount of high-frequency noise is present, this

initial parcellation shows the expected structure of cingulate,

retrosplenial, motor, somatosensory, visual and superior colliculus

(Fig. S10a). Second, we used the seeds defined above for the seed-

based maps that were chosen from expected anatomy (Fig. S10b).

Third, the 1286128 pixel map was divided into 25625 pixel

squares. Pixels outside of the brain were eliminated from these

regions and the remaining full or partial squares were then used as

initial seed regions (Fig. S10c). The first and third methods are

thus completely data-driven.

Once we had stable parcellations, we investigated the network

membership of the obtained regions (the numerical labels assigned

to each region being completely arbitrary) using a clustering

algorithm. First, we correlated every parcel against every other

parcel to create a parcel-to-parcel correlation matrix. Clustering

was then performed using a linkage function (MatlabTM) with the

distance between any two regions defined as 1-r (where r is the

correlation coefficient). These clusters then were used to define

functional connectivity networks and assign putative functional

borders.

Supporting Information

Figure S1 Seed-based fcOIS correlation maps for all
mice. Seed positions and sizes are shown with black circles. The

scale for all correlation maps is from r = 21 to 1. Maps are shown

overlaid on the ‘‘white light’’ image of the brain.

(EPS)

Figure S2 Correlation maps of the auditory seeds
placed in Mouse 2 and Mouse 5. Seed positions and sizes

are shown with black circles. The scale for all correlation maps is

from r = 21 to 1. Maps are shown overlaid on the ‘‘white light’’

image of the brain.

(EPS)

Figure S3 Correlation map from two consecutive fifteen
minute scans in the same mouse. Note the similarity in the

bilateral patterns for all seed locations in the full scan compared

with the two scan halves.

(EPS)

Figure S4 Correlation map in the same mouse imaged
on two consecutive days.
(EPS)

Figure S5 Singular value decomposition (SVD) of the
full-field correlation matrix. The first four singular vectors

strongly corroborate the seed-based correlation analysis: 1) a very

strong frontal/cingulate network that anticorrelates with the

bilateral sensory areas, 2) the bilateral retrosplenial cortex that

anticorrelates with the sensory areas, (3) the visual areas and the

superior colliculus, and (4) more medial motor areas.

(EPS)

Figure S6 Parcellation results of Mouse 1 using three
different initial conditions. The iterative parcellation proce-

dure converges to very similar results independent on the initial

conditions. The final parcellations are compared to a histological

atlas (initial conditions shown in Fig. S10 and the labeled atlas

shown in Fig S8)

(EPS)

Figure S7 Parcellations from two consecutive fifteen
minute scans in the same mouse.
(EPS)

Figure S8 Manually constructed atlas. Atlas of the

locations of cortical functional regions (as viewed from a superior

projection of the convexity) constructed using the Paxinos

histological atlas [37].

(EPS)

Figure S9 Representative resting-state power spectrum
of a seed time trace in an anesthetized mouse. The upper

plot shows spectral power of raw data (DHbO2) with a peak at

2.5 Hz (pulse). Data are filtered (0.009 Hz–0.08 Hz), regressed,

and resampled (1 Hz) before correlation analysis. The spectral

data of the processed signal is shown in the lower plot.

(EPS)

Figure S10 Initial conditions used for the parcellation
procedure. a) The first initial condition was derived from the

first ten singular modes of the connectivity matrix (after SVD) with

pixels assigned to whichever singular vector with which they had

the highest positive or negative coefficient. While high-frequency is

noise present, this initial parcellation shows the expected structure

of cingulate, retrosplenial, motor, somatosensory, visual and

superior colliculus. b) The seeds chosen from expected anatomy.

c) Seeds from a square tiling of the field-of-view. The 1286128

pixel image was divided into 25625 pixel squares with pixels

outside of the brain eliminated. The remaining full or partial

squares were then used as initial seed regions. The first and third

methods are thus completely data-driven.

(EPS)
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