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Abstract

Defensins are antimicrobial peptides expressed by plants and animals. In mammals there are three subfamilies of defensins,
distinguished by structural features: a, b and h. Alpha and b-defensins are linear peptides with broad anti-microbial activity
that are expressed by many mammals including humans. In contrast, h-defensins are cyclic anti-microbial peptides made by
several non-human primates but not humans. All three defensin types have anti-HIV-1 activity, but their mechanisms of
action differ. We studied the anti-HIV-1 activity of one defensin from each group, HNP-1 (a), HBD-2 (b) and RTD-1 (h). We
examined how each defensin affected HIV-1 infection and demonstrated that the cyclic defensin RTD-1 inhibited HIV-1
entry, while acyclic HNP-1 and HBD-2 inhibited HIV-1 replication even when added 12 hours post-infection and blocked viral
replication after HIV-1 cDNA formation. We further found that all three defensins downmodulated CXCR4. Moreover, RTD-1
inactivated X4 HIV-1, while HNP-1 and HBD-2 inactivated both X4 and R5 HIV-1. The data presented here show that acyclic
and cyclic defensins block HIV-1 replication by shared and diverse mechanisms. Moreover, we found that HNP-1 and RTD-1
directly inhibited firefly luciferase enzymatic activity, which may affect the interpretation of previously published data.
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Introduction

Small peptides with antimicrobial, antifungal and antiviral

activity have been discovered and classified in various organisms

from plants to humans [1,2,3]. In humans these peptides are

termed defensins. Humans have six a-defensins termed human

neutrophil proteins 1 through 4 (HNP 1–4) and human defensins 5

and 6 (HD 5 & 6). HNP 1–4 are made in granulocytes while HD-5–

6 are made in Paneth cells, which are found in the crypts of the

small intestine [1,3,4,5]. So far four human b-defensins (HBD-1–4)

have been characterized although 28 HBD genes have been found

in the human genome [6]. No human h-defensins have been

isolated to date, but humans have three h-defensin pseudogenes

that contain premature stop codons. In non-human primates, h-

defensins have been isolated from neutrophils and from bone

marrow [7,8]. Synthetic h-defensins based on the human

pseudogenes have been made in vitro and named retrocyclins [9,10].

The anti-HIV-1 activity of a-defensins has been actively studied

since Zhang et al. reported that HNP-1, 2 and 3 were the major

components of CD8+ cell derived soluble anti-viral factor (CAF)

[11]. Subsequent reports found that HNP-1–3 were not produced

by CD8 cells, but were present as a result of contamination with

neutrophils and/or monocytes [12,13,14,15]. Nevertheless, the

anti-HIV-1 activity of HNP-1–3 was confirmed in these studies.

Moreover, it has been suggested that HNP-1 blocks HIV-1

replication by inhibiting protein kinase C [16] and a-defensins

were found to be upregulated in highly HIV-1 exposed,

persistently seronegative individuals [17]. Recently, Furci and

colleagues showed that HNP-1 and HNP-2 block viral fusion by

binding to the gp120 binding domain of CD4 [18]. Our data

support these mechanisms of a-defensin inhibition of HIV-1 and

suggest that other mechanisms may also be operative.

The b-defensins HBD-1, 2 and 3 have been shown to have anti-

HIV-1 activity in vitro at concentrations that are present in vivo

[19,20]. Further evidence that b-defensins are important in

defense against HIV-1 in vivo comes from a study in which a

polymorphism in the HBD-1 gene was associated with HIV-1

infection in a population of children [21]. Beta-defensins-1 and 2

have also been found to be upregulated in the alveolar

macrophages of HIV-1 positive individuals [22] and both HBD-
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2 and HBD-3 specifically downregulate cell-surface expression of

CXCR4 [19,23]. Moreover, b-defensins may be responsible in

part for protection from HIV-1 transmission in the oral cavity

[19,20,24]. Both a- and b-defensins have been found in human

breast milk and have been shown to decrease mother to infant

transmission of HIV-1 [25,26,27,28]. Furthermore, HBD-3 and

the h2defensin RC2 were shown to block influenza viral fusion by

cross-linking cell surface glycoproteins [29], a mechanism that may

confer broad-spectrum antiviral activity.

Theta-defensins are the only known circular peptides in the

animal kingdom, but to date they have only been isolated from non-

human primates [7,8]. Naturally occurring and synthetic h2defen-

sins have anti-HIV-1 activity [9,10,30,31,32]. Moreover, Owen et al

found that synthetic h2defensins were effective against primary

isolates of HIV-1 [33,34]. Theta-defensins have also been shown to

have activity against herpes simplex virus [35]. Since humans

encode h2defensin pseudogenes, but do not produce h2defensins,

highly HIV-1 exposed persistently seronegative individuals were

examined for changes in these pseudogenes, but none were found in

one study [36]. It has been proposed that h2defensins are lectins

and that their anti-viral activity occurs at the level of entry perhaps

by blocking virus-receptor interactions [10,29,32,35]. Both a-

defensins and h-defensins have been shown to bind gp120 and

CD4 [18,37]. Recent studies have shown that h-defensins are able to

interact with viral gp41 to prevent HIV-1 env mediated fusion with

the cytoplasmic membrane by blocking the formation of the six-

helix bundle required for viral fusion [30,31].

Alpha-, b- and h-defensins all show anti-viral activity against

CCR5 tropic (R5) and CXCR4 tropic (X4) HIV-1. Here we

examined the mechanisms of action of one prototypical defensin in

each of the three subfamilies against both R5 and X4 HIV-1. HNP-

1, HBD-2 and rhesus h2defensin-1 (RTD-1) were chosen because

they have activity against HIV-1 and because they are among the

most abundant defensins in their respective classes in vivo. We tested

the anti-HIV-1 activity of each defensin when added to cells at

various times pre- and post-infection and investigated their effect on

HIV-1 entry and reverse transcription to distinguish between

inhibition of early and late steps in viral replication. In addition, we

examined the ability of HNP-1, HBD-2 and RTD-1 to down-

modulate CD4, CCR5 and CXCR4 expression and to directly

inactivate HIV-1 virions or HIV-1 derived vector particles.

Results

HNP-1 and RTD-1 inhibit luciferase activity
Previous studies on defensin activity against HIV-1 have

employed luciferase reporter constructs to monitor HIV-1

replication [12,16,32,33,34,37]. We found that firefly luciferase

activity in a cell lysate was significantly diminished, in a

concentration dependent manner, in the presence of HNP-1 or

RTD-1 (Fig. 1A). This inhibition was manifest with incubation

times as short as 15 minutes in the presence of 10 mg/ml HNP-1

or RTD-1 (Fig. 1B). In contrast HBD-2 had no significant effect on

luciferase activity at the same range of concentrations and

incubation times (data not shown). Our results indicate that

quantitation of defensin-mediated inhibition of HIV-1 infection by

luciferase assay may be unreliable since a- and h2defensins

directly antagonize luciferase enzymatic activity. We also tested

the activity of all three defensins on GFP expression and HIV-1

capsid protein (p24) ELISA. None of the three defensins tested

inhibited GFP or p24 detection (data not shown). In our studies,

Tat-dependent expression of GFP in GHOST cells and p24

ELISA of infected peripheral blood mononuclear cells (PBMC)

were used to evaluate defensin inhibition of HIV-1.

HNP-1, HBD-2 and RTD-1 inhibit HIV-1 replication in a
dose-dependent manner, but are not cytotoxic

In order to determine the anti-HIV-1 potency of HNP-1, HBD-2

and RTD-1, increasing concentrations of HNP-1, HBD-2 or RTD-

1 were added to PBMC one hour prior to infection with R5 or X4

HIV-1 at a multiplicity of infection (MOI) of 0.1. Inhibition of HIV-

1 replication was monitored by determining the amount of viral p24

in tissue culture supernatants three days post-infection. PBMC

treated with each of the three defensins showed a dose-dependent

inhibition of virus replication in comparison with control cells

(Fig. 2A–C). The calculated IC50 values for HNP-1 are 8 mg/ml

(2.3 mM) and 9 mg/ml (2.6 mM), for HBD-2, 30 mg/ml (6.9 mM)

and 25 mg/ml (5.8 mM) and for RTD-1, 7.2 mg/ml (3.5 mM) and

7.5 mg/ml (3.6 mM) respectively for inhibition of X4 and R5 HIV-1

replication. In parallel with the anti-HIV-1 assay, we measured the

metabolic activity of cells treated with different amount of HNP-1,

HBD-2 or RTD-1. None of the defensins caused significant cell

death at active anti-viral concentrations when measured by

metabolic formazan production in an MTS assay (Fig. 2D).

HNP-1, HBD-2 and RTD-1 inhibit HIV-1 replication at
different stages

To determine whether HNP-1, HBD-2 or RTD-1 inhibited

viral entry or later steps in HIV-1 replication, activated PBMC

were infected with R5 or X4 HIV-1 (MOI = 0.1) and HNP-1,

HBD-2 or RTD-1 were added one hour prior to infection or up to

Figure 1. HNP-1 and RTD-1 inhibited luciferase activity in a
concentration dependent manner. (A) 293T cells transfected with
CDM8-luc were lysed 48 hours post transfection and then cell lysates
were incubated with HNP-1 or RTD-1, at 0, 1, 3, or 10 mg/ml on ice for
1 hour and luciferase activity was measured. (B) HNP-1 and RTD-1 were
added to lysates of 293T cells transfected with CDM8-luc. Cell lysates
were incubated with 10 mg/ml HNP-1 or RTD-1 on ice for 15, 30, 60, 90,
or 120 minutes and luciferase activity was measured. The data points in
(A) and (B) represent triplicate samples from two experiments. Error
bars show standard deviations from the mean. Asterisks represent
p,0.01 by Student’s t-test compared to buffer only.
doi:10.1371/journal.pone.0009737.g001
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12 hours post infection and viral replication was measured

72 hours post infection (Fig. 3). HNP-1 was able to inhibit both

X4 and R5 HIV-1 replication when added prior to infection or

when added up to 12 hours after infection. Similarly, HBD-2

inhibited X4 and R5 HIV-1 replication even when added

12 hours after infection but to a lesser degree than HNP-1. Both

HNP-1 and HBD-2 therefore were able to inhibit HIV-1

replication after viral entry although a small amount of entry

inhibition was also evident, particularly for HBD-2. In contrast,

RTD-1 only inhibited HIV-1 replication when present at the time

of infection or four hours post infection when entry was likely still

occurring. When RTD-1 was added 12 hours after infection no

significant inhibition of HIV-1 replication was detected, indicating

that RTD-1 inhibited HIV-1 entry or an early step in viral

replication in this assay.

HIV-1 entry is significantly inhibited by RTD-1 but not by
HNP-1 or HBD-2

We used an enzyme-based flow cytometric HIV-1 entry assay

developed by Cavrois et al to measure inhibition of HIV-1 entry by

HNP-1, HBD-2 and RTD-1 [38]. The assay utilized a b-

lactamase-Vpr (BlaM-Vpr) fusion protein that was incorporated

into virions. Target cells were loaded with CCF2, whose

fluorescence emission is changed from 520 nm to 447 nm upon

cleavage of a b-lactam moiety. Entry of HIV-1 virions bearing b-

lactamase-Vpr fusion protein into target cells containing CCF2

was detected by an increase in fluorescence at 447 nm. The virtue

of the assay is that it is specific for viral entry into cells but the

fluorescent signal is relatively weak so the percent of cells infected

was likely underestimated. All three defensins inhibited R5 and X4

HIV-1 entry into stimulated PBMC to some degree when present

at 10 mg/ml (Fig. 4A and 4B). Only RTD-1, however, inhibited

HIV-1 entry in a statistically significant manner in this assay.

HIV-1 replication is inhibited prior to reverse
transcription by RTD-1 and after reverse transcription by
HNP-1 and HBD-2

To further determine the stage at which HIV-1 replication is

inhibited by HNP-1, HBD-2 and RTD-1, we added 10 mg/ml of

each of the three defensins to PHA-stimulated PBMC and

incubated for one hour, then infected the cells with R5 HIV-1

(MOI = 0.1), and harvested them 48 hours later. The cells were

lysed and DNA was isolated to evaluate the synthesis of HIV-1

cDNA by real-time quantitative PCR. The LTR-R region and

packaging site primers M667 and M661 were chosen to detect

completed HIV-1 cDNA molecules. Copies of HIV-1 were

normalized against copies of b2globin to control for differences

in cell number between samples. RTD-1 blocked HIV-1 cDNA

formation, while HNP-1 and HBD-2 did not significantly affect

the level of HIV-1 cDNA molecules in HIV-1 infected cells

(Fig. 4C). This difference implies that HNP-1 and HBD-2

inhibited HIV-1 replication after reverse transcription was

completed, but RTD-1 inhibited HIV-1 replication prior to or

during reverse transcription.

HNP-1, HBD-2 and RTD-1 downmodulate the chemokine
receptor CXCR4

We assayed the ability of each defensin to downmodulate CD4,

CCR5 and CXCR4. GHOST-R5X4 cells or PBMC were

Figure 2. HNP-1, HBD-2 and RTD-1 inhibited HIV-1 replication in PBMC. PBMC were incubated for one hour with 0, 3, 10 or 30 mg/ml HNP-1
(A), HBD-2 (B) or RTD-1 (C) and then infected with either X4 HIV-1 (NL4-3; solid symbols) or R5 HIV-1 (JR-CSF; open symbols) both at an MOI of 0.1.
Three days post infection cell culture supernatants were collected and analyzed for HIV-1 capsid, p24, by ELISA. Data shown for HNP-1 and HBD-2 are
from three experiments done in triplicate and data for RTD-1 are from two experiments done in triplicate. Error bars show standard deviations from
the mean. (D) To test the cytotoxicity of defensins, PBMC were incubated with HNP-1, HBD-2 or RTD-1 at 3, 10 or 30 mg/ml for two days and then
formation of colored formazan products after addition of MTS was measured at 490 nm on a spectrophotometer. Data are from a single experiment
done in triplicate and normalized to untreated cells. Error bars show standard deviations from the mean. No statistically significant changes in cell
viability were detected (p,0.05).
doi:10.1371/journal.pone.0009737.g002
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incubated for three hours in serum free media with 0, 3, 10 or

30 mg/ml HNP-1, HBD-2 or RTD-1 at 37uC or on ice. Cells were

then washed and incubated with CD4-PerCP, anti-CCR5-APC

and anti-CXCR4-PE monoclonal antibodies. The mean fluores-

cence intensity in each channel was measured by flow cytometry.

HNP-1, HBD-2 and RTD-1 all downmodulated CXCR4

expression in a dose dependent manner in both GHOST-R5X4

cells (Fig. 5A) as well as in PBMC (Fig. 5B) only when incubated at

37uC. In contrast, there was no significant downmodulation of cell

surface expression of CD4 or CCR5 with any of the three

defensins (data not shown). Incubation of GHOST-R5X4 cells or

PBMC with defensins on ice did not alter detection of CD4,

CCR5 or CXCR4 indicating that antibody binding was not

blocked by defensins.

Defensins inactivate HIV-1
To address whether defensins act only on cells or also inhibit

infection by interacting directly with HIV-1, we performed virus

inactivation studies. R5 or X4 HIV-1 was incubated for one hour

on ice with HNP-1, HBD-2 or RTD-1 in serum free media and

then the virus and defensin were separated on a G-25 Sephadex

column. Virus collected from the columns was incubated with

activated PBMC or GHOST-R5/X4 cells. PBMC were then

incubated 48 hours and the supernatants were collected for p24

ELISA. GHOST cells were collected 36 hours post infection for

flow cytometric analysis of GFP expression. For comparison, cells

were incubated for one hour with HNP-1, HBD-2 or RTD-1 and

then washed prior to infection with virus that was not incubated

with defensin. As a control for loss of viral infectivity during the

experimental protocol, cells were infected with R5 or X4 HIV-1

that was incubated for one hour on ice in the absence of defensin

and then eluted from a G-25 column (mock treatment, labeled

‘‘None’’ in Fig. 6A and 6B). Statistical significance was determined

by a two-tailed Student’s t-test. HNP-1 significantly inactivated

both R5 and X4 HIV-1 in this assay. HBD-2 also inactivated both

X4 and R5 HIV-1, but only the X4 HIV-1 replication was

inhibited to a statistically significant level. In contrast, RTD-1

inactivated X4 HIV-1, but did not inactivate R5 HIV-1.

We generated envelope pseudotyped lentiviral vectors which

express HIV-1 Tat and GFP and tested the ability of HNP-1,

HBD-2 or RTD-1 to inactivate the pseudotyped HIV-1 based

vectors. Vesicular stomatitis virus glycoprotein (VSV-G), X4 HIV-

Figure 3. HNP-1, HBD-2 and RTD-1 inhibited HIV-1 replication depending on the time of addition. HNP-1, HBD-2 or RTD-1 (10 mg/ml)
were added to PHA-stimulated PBMC one hour prior to infection or four or twelve hours after infection with JR-CSF (A) or NL4-3 (B) in triplicate wells,
at an MOI of 0.1. The results shown are from p24 ELISA of the media at seventy-two hours post infection. Error bars show the standard deviations of
triplicate samples. Asterisks denote significant differences from the no defensin control by Student’s t-test (p,0.01). The results shown are
representative of three experiments performed in triplicate.
doi:10.1371/journal.pone.0009737.g003
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1 and R5 HIV-1 envelopes were used to pseudotype the vectors.

HNP-1, HBD-2 or RTD-1 were incubated with the pseudotyped

vectors for one hour on ice and then defensin and lentiviral vectors

were separated on a G-25 Sephadex column as described above.

The pseudotyped vectors collected from the column were then

used to infect GHOST-R5X4 cells. Cellular GFP expression was

analyzed by flow cytometry 48 hours later (Fig. 6B). HNP-1 and

HBD-2 did not inactivate VSV-G pseudotyped vectors, but did

inactivate X4 and R5 HIV-1 Env pseudotyped vectors. Inhibition

of the R5 pseudotyped vector by HBD-2, however, was not

statistically significant by a two-tailed Student’s T test. RTD-1 was

able to inactivate VSV-G and X4 HIV-1 pseudotyped vectors, but

did not inactivate R5 HIV-1 pseudotyped vector. This finding is

consistent with the inactivation of X4 but not R5 HIV-1 strains by

RTD-1 shown in Fig. 6A.

Discussion

The roles of a-, b- and h-defensins in antiviral innate immunity

have been analyzed in several recent studies [12,16,29,32,39,40] a

number of which relied on luciferase-based reporter assays. As

shown here, some defensins are potent inhibitors of firefly

luciferase, thereby complicating attempts to quantify antiviral

activity using luciferase reporter assays. To circumvent these

limitations, we used an HIV-1 capsid protein (p24) ELISA of

infected PBMC or GFP expression from an indicator cell line

(GHOST cells) to test the anti-HIV-1 activity of HNP-1, HBD-2,

and RTD-1.

HNP-1 and HBD-2 significantly inhibited HIV-1 replication at

concentrations near or below their reported physiological

concentrations in human breast milk (,10 mM) and they may

therefore limit vertical transmission of HIV-1 via this route [41].

In contrast, the concentration of HNP-1 in plasma has been

reported to be at least an order of magnitude lower than the IC50

against HIV-1 that we determined, so HNP-1 is unlikely to be

effective against HIV-1 in plasma [42]. The total concentration of

HNP-1 in the circulation, however, including the amount

contained within leukocytes and in plasma, is sufficient to inhibit

HIV-1 [42]. Moreover, defensin concentrations encountered by

HIV-1 in physiologic microenvironments within phagocytic cells,

or in extracellular spaces, may be substantially higher. Similarly,

HBD-2 is found at approximately 10 mM in oral tissue [43], and

Figure 4. Defensins inhibit viral fusion at different levels. Viral fusion was inhibited by the addition of defensins for JR-CSF (A) and NL4-3 (B)
virus. Using ANOVA for comparison single asterisk is p,0.05 and double asterisks is p,0.01. Only RTD-1 significantly reduced viral fusion. Panel C.
RTD-1 blocked HIV-1 reverse transcription, but HNP-1 and HBD-2 did not. HNP-1, HBD-2 or RTD-1 (10 mg/ml) were added to PHA-stimulated PBMC
and incubated for one hour, followed by infection with HIV-1 (JR-CSF at an MOI of 0.1). Forty-eight hours later the cells were lysed and DNA was
isolated for real-time quantitative PCR to evaluate the synthesis of HIV-1 cDNA. The primers M667 and M661 were chosen to detect complete viral
cDNA. Copies of HIV-1 DNA were normalized against copies of beta-globin. Error bars indicate the standard deviations of triplicate samples. The
results shown are representative of two experiments performed in triplicate. The asterisk denote p,0.05 by Student’s t-test compared to the no
defensin control.
doi:10.1371/journal.pone.0009737.g004
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its mRNA is induced by HIV-1 infection [19], so HBD-2 and

other b-defensins are likely effective against HIV-1 in the oral

cavity and may contribute to preventing oral transmission. Like

HNP-1 in humans, RTD-1 is found in rhesus macaque neutrophils

at sufficient concentration to inactivate HIV-1 [7]. RTD-1 and

related h-defensins may therefore play a role in innate immunity to

SIV in rhesus macaques and in other non-human primate species

including baboons if their activity against the relevant SIV is

similar to their activity against HIV-1.

HNP-1 and HBD-2 may inhibit HIV-1 replication by more

than one mechanism in vivo. Both defensins directly inactivated R5

and X4 HIV-1 when incubated with virus and both HNP-1 and

HBD-2 inhibited HIV-1 replication when added to cells many

hours after the initiation of HIV-1 infection. When added to cells,

HNP-1 and HBD-2 inhibited virion production after reverse

transcription was complete. These results suggest at least two

mechanisms of inhibition. Chang et al published similar results for

HNP-1 in a different cell type [16]. Moreover, the results of

Quinones-Mateu et al with HBD-2 are consistent with our data

except that they found R5 HIV-1 to be less sensitive to HBD-2

than X4 HIV-1, perhaps because they used oral epithelial cells

while we used PBMC [16].

RTD-1 may also inhibit HIV-1 replication by more than one

mechanism, but in contrast to HNP-1 and HBD-2, RTD-1

inactivated X4 but not R5 HIV-1 and inhibited HIV-1 replication

only when added to cells prior to, at, or near the time of infection.

Moreover, RTD-1 significantly inhibited HIV-1 entry while HNP-

1 and HBD-2 did not. These results imply that at least one of

RTD-1’s mechanisms of action is different from those of HNP-1

and HBD-2. Furthermore, our results with RTD-1 are consistent

with the results of others showing that h2defensins bind the HIV-

Figure 5. HNP-1, HBD-2 and RTD-1 cause down modulation of
CXCR4. (A) HNP-1, HBD-2 or RTD-1 were incubated with GHOST-R5X4
cells, at 0, 3, 10 or 30 mg/ml for 3 hours at 37uC in Iscove’s media
without serum. The cells were then stained with an anti-CXCR4-PE MAb
and analyzed by flow cytometry. Data represent the average of two
experiments performed in triplicate. (B) PBMCs were incubated with 0,
3, 10 or 30 mg/ml of HNP-1, HBD-2 or RTD-1 for 3 hours at 37uC in
Iscove’s media without serum. Two monoclonal antibodies against
CXCR4 were used to stain the cells to be analyzed by flow cytometry in
different experiments. Results from six assays, three for each antibody,
are shown as a percentage of untreated samples. Error bars show
standard deviations from the mean. Asterisks represent p,0.05 by
Student’s t-test compared to the no defensin control.
doi:10.1371/journal.pone.0009737.g005

Figure 6. HIV-1 inactivation by HNP-1, HBD-2 and RTD-1. (A) JR-
CSF (R5 HIV-1) or NL4-3 (X4 HIV-1) sufficient for an MOI of 0.1 were
incubated with 10 mg/ml HNP-1, HBD-2, or RTD-1 for one hour on ice.
The virus and defensin mixture was then centrifuged over a Sephadex
G-25 column to remove defensin. The defensin-free virus was then
added to PBMC or GHOST-R5X4 cells (labeled in graph as virus/
defensin). Alternatively, defensin was incubated with PHA-stimulated
PBMC or GHOST-R5X4 cells for one hour at 37uC and washed away prior
to the time of infection at an MOI of 0.1 with JR-CSF or NL4-3 (labeled in
graph as cells/defensin). PBMC supernatants were collected three days
after infection and analyzed by ELISA for the presence of viral capsid,
p24. GHOST-R5X4 cells were harvested 36 hours after infection and
analyzed by flow cytometry for GFP expression. PBMC were used for
HNP-1 and HBD-2 assays while GHOST-R5X4 cells were used for RTD-1
assays. Values were normalized to show percent infection compared to
the uninhibited control. Data shown are the average of three
experiments done in triplicate. Error bars represent the standard
deviation from the mean. Asterisks represent p,0.05 calculated using
Student’s t-test. (B) Lentiviral vectors pseudotyped with VSV-G, R5 or X4
HIV-1 envelope were incubated with 10 mg/ml HNP-1, HBD-2, or RTD-1
for one hour on ice. The viral vector and defensin mixture was then
centrifuged over a Sephadex G-25 column to remove defensin. The
defensin free vector was then added to GHOST-R5X4 cells at an MOI of
0.1. Cells were harvested thirty-six hours after infection and GFP
expression was analyzed by flow cytometry compared to the
uninhibited control. Data shown are the average of four experiments
done in triplicate; error bars represent the standard deviation from the
mean. Asterisks represent p,0.05 calculated using Student’s t-test.
doi:10.1371/journal.pone.0009737.g006
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1 surface glycoprotein gp120, as well as the HIV-1 receptor CD4

and block HIV-1 entry into cells [10,29,32,35].

The acyclic a- and b-defensins, HNP-1 and HBD-2 respective-

ly, were able to inactivate both X4 and R5 HIV-1 strains, while

the cyclic h-defensin, RTD-1, only inactivated X4 HIV-1. This

result was found to hold true for pseudotyped lentiviral vectors as

well as replication competent HIV-1, although inhibition of R5

HIV-1 and vector by HBD-2 did not reach significance. RTD-1

was also able to inactivate VSV-G pseudotyped vectors, while the

linear defensins could not.

Defensins have been reported to bind to glycoproteins including

CD4, and gp120 as well as polysaccharides and glycans

[10,29,32]. Moreover, CXCR4 was shown to be internalized

and surface expression downregulated following b-defensin

binding [19,23,44]. GHOST cells uniformly expressing CD4,

CCR5 and CXCR4 (80%, 89% and 90% positive respectively) as

well as PBMC were incubated with HNP-1 HBD-2, or RTD-1 for

three hours and then CD4, CCR5 and CXCR4 expression was

analyzed by flow cytometry. All three defensins downmodulated

the expression of CXCR4 in a dose-dependent manner in both

types of cells, but no significant effect on the expression of CD4 or

CCR5 was observed. Our data are in agreement with and extend

previous studies that used PBMC and a similar protocol. Down

modulation of cell surface CXCR4 needed by X4 HIV-1 to enter

the cell is therefore another possible mechanism of inhibition of

X4 HIV-1 by defensins. This is likely not the primary mechanism

of HIV-1 inhibition by HNP-1, HBD-2 or RTD-1, however, since

relatively high levels of defensin are needed for CXCR4 down

modulation and since R5 HIV-1 replication was inhibited as well

as X4 HIV-1 replication.

In summary, HNP-1, HBD-2 and RTD-1 are potent inhibitors

of HIV-1 replication at physiological concentrations. Both acyclic

and cyclic defensins likely inhibit HIV replication by multiple

mechanisms. For therapeutic use, defensins may have a role as

topical virucides to prevent transmission. Moreover, boosting a-

and b-defensin responses to HIV-1 infection in patients may help

slow the course of disease progression. Continuing studies should

seek to define the mechanisms of defensin mediated inhibition of

HIV-1 replication, which may guide their use as potential

prophylactics or therapeutics and will increase our knowledge of

innate immunity to HIV-1 infection. Moreover, future studies

should include diverse primary HIV-1 isolates from all major

clades to assess the generality and clinical utility of defensins.

Materials and Methods

Defensins
HNP-1 was purified from human neutrophils as previously

reported [45,46]. The purity of the peptide was confirmed by

reversed-phase high performance liquid chromatography (HPLC)

and acid–urea polyacrylamide gel electrophoresis (PAGE). A

synthetic version of RTD-1 was produced by solid-phase synthesis

as previously described [7]. HBD-2 was purchased from

Chemicon International. (Temecula, CA). All defensin stocks

were 1 mg/ml in 10 mM acetic acid.

HIV-1 stocks
Plasmids pNL4-3 and pSV-JR-CSF bearing full-length infec-

tious molecular clones of HIV-1 NL4-3 and JR-CSF respectively

were used to transfect 293T cells (obtained from ATCC) by

calcium phosphate transfection. Briefly, 30 mg of plasmid DNA

was mixed with 2 M CaCl2 and 10 X NTE buffer then added to

an equal volume of 2 X HEPES and phosphate buffered saline.

The resulting DNA-calcium phosphate coprecipitate was then

incubated with 293T cells in the presence of 25 mM chloroquine

for five hours and then washed away. Media was changed

24 hours later to Iscove’s complete media with 2% fetal bovine

serum and virus from transfected cells was collected on day three

or four post transfection. Virus stocks were titered for seven days

on PHA activated PBMC and infection was monitored by p24

ELISA as previously described [47]. HIV-1 stocks were used to

infect cells at an MOI of 0.1.

Purification of PBMC
Whole blood was collected with written informed consent from

healthy donors at the UCI blood bank or at the UCI General

Clinical Research Center. Whole blood or enriched leukocytes

were mixed one to one with PBS and then layered over ficoll-

hypaque. PBMC were isolated by centrifugation for thirty minutes

at 1150 RPM, then removed and washed in PBS. Red blood cells

(RBC) were lysed by suspension in 0.8% NH4Cl with 0.1 mM

EDTA. After RBC lysis, PBMC were washed twice in PBS and

then cultured in RPMI supplemented with 10% FBS and 4 mg/ml

PHA. After three days PHA was removed from the media.

Luciferase assay
293T cells were transfected by calcium phosphate co-precipi-

tation as described above with CDM8-luc plasmid. After five hours

media was aspirated and replaced with fresh media. Thirty-six or

48 hours later 293T cells were lysed according to the manufac-

turer’s protocol, using a Promega (Madison, WI) luciferase assay

system. Lysates were incubated on ice for one hour with 1, 3 or

10 mg/ml of HNP-1. HBD-2, or RTD-1 and then luciferase

activity was measured with a luminometer. Alternatively, 293T

CDM8-luc lysates were incubated with 10 mg/ml of HNP-1 or

RTD-1 for 15, 30, 60, 90 or 120 minutes and then luciferase

activity was measured by luminometer. 293T cells were main-

tained in Iscove’s modified Dulbecco’s media (IMDM) supple-

mented with 10% fetal bovine serum (FBS), 200 mM L-glutamine,

50 mg/ml gentamicin, and 500 mg/ml G418. During and after

transfection, Iscove’s media without FBS or G418 was used.

Determination of inhibition of HIV-1 replication
PBMC were washed free of media containing fetal bovine

serum (FBS), then infected with NL4-3 or JR-CSF at an MOI of

0.1 in the presence of varying concentrations of HNP-1, HBD-2 or

RTD-1 by centrifugation for ninety minutes at 2500 RPM and

25uC (spinfection) in RPMI media without serum followed by

culture in RPMI supplemented with 5% FBS [48]. Supernatants

from PBMC were harvested three days post infection and

analyzed by p24 ELISA. For the time of addition studies, HNP-

1, HBD-2 or RTD-1 were added to activated PBMC one hour

prior to infection at an MOI of 0.1 or at various times post

infection. PBMC were washed free of media containing FBS and

resuspended in RPMI only, defensin was added to some wells.

Virus was added to all wells and the plates were spinfected. Cells

were washed twice in PBS and re-plated in RPMI supplemented

with 5% FBS. HNP-1, HBD-2 or RTD-1 were added back to the

wells that were preincubated with each, or added at various times

post infection. Seventy-two hours later, the supernatant was

harvested and assayed for p24 by ELISA.

p24 ELISA
p24 ELISA kits were purchased from Perkin Elmer (Boston,

MA). The assay was performed according to the manufacturer’s

protocol. Alternatively p24 expression levels were determined by

an ELISA protocol using a p24 monoclonal antibody (183-H12-
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5C) and pooled human anti-HIV immunoglobulin G [49]. The

p24 antibody was obtained from the AIDS Research and

Reference Reagent Program and was contributed by Bruce

Chesebro. Samples were diluted 1:100 at the time of assay. To

test the effects of defensins on the ELISA, HIV-1 capsid protein,

p24, was diluted to 400, 200, or 100 pg/ml. After two hours of

incubation, ELISA plates were washed and incubated with biotin-

labeled pooled human anti-HIV-1 immunoglobulin G. After one

hour incubation and washing, streptavidin-peroxidase was added

followed by o-phenylenediamine dihydrochloride (OPD) to obtain

a color change. Sulfuric acid was added to a final concentration of

220 mM to stop the reaction and assay results were read at

490 nm with a reference filter at 610 nm.

Cell viability
Cell viability was tested using the Promega (Madison, WI) MTS

assay according to the manufacturer’s protocol. Briefly, PBMC

were incubated for 48 hours with defensins in media without FBS,

subsequently the cells were assayed for viability. MTS is a

tetrazolium salt that is bioreduced to a formazan product in living

cells. MTS (2 ml) was mixed with phenazine methosulfate (100 ml)

and then 20 ml of the mixture was added to wells of 96 well plates

each containing 106 cells in 100 ml media. The plate was then

incubated for 3 hours and read on a spectrophotometer at

490 nm. Formazan production in cells treated with defensins

was normalized to that of untreated cells.

HIV-1 entry assay
The BlaM-Vpr fusion assay was carried out as previously

described [38]. Briefly, one hour prior to infection PHA stimulated

PBMC were incubated with 10 mg/ml of either HNP-1, HBD-2 or

RTD-1 or with media alone. After 1 hour at 37uC the PBMC

were infected with either X4 HIV-1-BlaM-Vpr or R5-HIV-1-

BlaM-Vpr for 2 hours at 37uC. Subsequently, the PBMC were

washed in Iscove’s medium and loaded with CCF2-AM (Invitro-

gen) according to the manufacturer’s protocol. After loading, the

cells were incubated for one hour at room temperature in Iscove’s

medium containing 10% FBS. Cells were then washed in PBS and

resuspended in PBS containing 2% paraformaldehyde for flow

cytometric analysis. Cells were analyzed using an LSR-II flow

cytometer and FlowJo software.

Quantitative real-time PCR
HNP-1, HBD-2 or RTD-1 was added to PHA-stimulated

PBMC at 10 mg/ml and incubated for one hour. Next, the PBMC

were infected with HIV-1 (JR-CSF) by spinfection [48], then

48 hours later 3.06106 cells were lysed in 100 ml of 100 mg/ml

proteinase K in 10 mM Tris–HCl, pH 8.0 at 56uC for 1 hour,

followed by heat inactivation at 95uC for 10 min. Each PCR

reaction contained 15 ml SYBR green PCR master mix (Applied

Biosystems), 5 ml of cell lysate, 0.3 mM of each primer in a 30 ml

reaction volume. HIV-1 specific primers M661, CCTGCG-

TCGAGAGAGAGCTCCTCTGG (nts 695–672) and M667,

GGCTAACTAGGGAACCCACTG (nts 496–516) were used to

detect complete cDNA. Copies of HIV-1 DNA were normalized

against copies of b-globin using primers LA1, ACACAAC-

TGTGTTCACTAGC and LA2, CAACTTCATCCACGTT-

CACC directed to b-globin.

Receptor down modulation studies
GHOST-R5X4 cells (obtained from NIH AIDS Research &

Reference Reagent Program) were trypsinized, washed and

counted, then 56105 cells were placed into microfuge tubes in

IMDM without FBS and without G418. Cells were incubated with

0, 3, 10, or 30 mg/ml of HNP-1, HBD-2 or RTD-1 for 3 hours at

37uC or on ice. Cells were washed twice with PBS + 0.02% sodium

azide and stained with monoclonal antibodies to CXCR4 (clone

12G5-PE, BD Pharmingen, San Diego, CA), CCR5 (clone 3A9-

APC, R & D systems, Minneapolis, MN) and CD4-PerCP (BD

Pharmingen, San Diego, CA). Cells were analyzed by 3-color flow

cytometry. Ghost cells were maintained in IMDM supplemented

with 10% FBS, 200 mM L-glutamine, 50 mg/ml gentamicin, and

500 mg/ml G418. Receptor downmodulation studies on PBMC

were performed with freshly purified samples. PBMC were plated in

a 96 well plate at 56105 cells/well in IMDM without any additives.

HNP-1, HBD-2 or RTD-1 were added to a final concentration of 0,

3 10 or 30 mg/ml. After a three hour incubation with defensins at

either 37uC or 4uC, cells were washed three times with PBS + 2%

FBS. Monoclonal antibodies against CXCR4 (clone 12G5-PE,

CalTag, Burlingame, CA or clone 12G5-biotin, BD Pharmingen,

San Diego, CA), CCR5 (clone 3A9-APC, R & D systems,

Minneapolis, MN) and CD4 (clone S3.5-Alexa 488, CalTag,

Burlingame, CA) were used to measure receptor expression.

Streptavidin-PE (CalTag, Burlingame, CA) was also used to

visualize CXCR4 expression when the biotin conjugated antibody

was used. Stained cells were then analyzed by 3-color flow

cytometry. Since two different antibodies were used to stain

CXCR4 the results were normalized and are shown as a percentage

of the mean fluorescence intensity (MFI) of untreated cells.

Generation of pseudotyped lentiviral vectors
Pseudotyped HIV-1 derived vectors were made by CaPO4

triple transfection of 293T cells with a packaging plasmid

(pCMVDR8.2), a transfer vector (pHR-Tat-IRES-eGFP) and

an envelope plasmid (pHCMV-VSV-G or pCMV-JR-CSFenv

(32D2 V1–V3) or pCMV-JR-CSFenv (B-SI V1–V3). Media was

changed to DMEM + 2% FBS, 5–8 hours post transfection and

supernatants were collected 48 hours later and frozen in 500 ml

aliquots at 280uC until time of infection.

Viral inactivation studies
Virus or pseudotyped viral vectors in media without serum,

sufficient for an MOI of 0.1 were incubated on ice with or without

10 mg/ml defensin for one hour, then the defensins were removed

by centrifugation over a Sephadex G-25 (Sigma, St. Louis, MO)

column. Sephadex G-25 was prepared according to the manufac-

turer’s protocol. Eluted virus was then spinfected onto GHOST-

R5X4 cells. Some GHOST cells were incubated for one hour with

defensins at 37uC prior to spinfection with virus [48]. Thirty-six

hours post infection, the GHOST cells were harvested and GFP

expression was analyzed by flow cytometry. For HNP-1 and HBD-

2 the same procedure was done in activated PBMC with NL4-3

and JR-CSF viruses. Supernatants were collected seventy-two

hours later and analyzed by p24 ELISA. All viral vector infections

were performed in GHOST-R5X4 cells.
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