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Abstract

It is increasingly evident that human diseases are not isolated from each other. Understanding how different diseases are
related to each other based on the underlying biology could provide new insights into disease etiology, classification, and
shared biological mechanisms. We have taken a computational approach to studying disease relationships through 1)
systematic identification of disease associated genes by literature mining, 2) associating diseases to biological pathways
where disease genes are enriched, and 3) linking diseases together based on shared pathways. We identified 4,195
candidate disease associated genes for 1028 diseases. On average, about 50% of disease associated genes of a disease are
statistically mapped to pathways. We generated a disease network which consists of 591 diseases and 6,931 disease
relationships. We examined properties of this network and provided examples of novel disease relationships which cannot
be readily captured through simple literature search or gene overlap analysis. Our results could potentially provide insights
into the design of novel, pathway-guided therapeutic interventions for diseases.
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Introduction

The combination of genetics and molecular biology has greatly

facilitated the identification of candidate genes for human diseases

[1,2]. More recently, with the completion of human genome

sequencing, genome-wide association, transcriptomic and proteo-

mic expression studies further accelerated the pace of disease gene

hunt [3–6]. It has become evident that very often multiple genes

collectively contribute to the etiology and clinical manifestations of

human diseases including both classic Mendelian diseases and

complex diseases such as T2DM and cancers [7]. Understanding

how different diseases relate to each other will not only provide us

with a global view of human diseasome, but also provide

potentially new insights into the etiology, classification, and design

of novel therapeutic interventions. Network biology has been

proposed as a platform to understand relationships among disease

genes and how they contribute to clinical phenotypes [7,8]. Goh

et. al have taken a step to study relationships among diseases by

constructing a human disease network where two disease are

linked if they share at least one gene based on disease/gene

relationships in the Online Mendelian Inheritance in Man

(OMIM) database [9]. Today, it is well accepted that genes within

a cell do not function alone. They interact with each other to form

complexes or pathways to carry out biological functions [10]. For

some diseases, it has been shown that disease candidate genes are

functionally related in the form of protein complexes or biological

pathways [11]. Thus, defects in different genes lead to similar

clinical phenotypes. Based on this observation, we set out to

investigate disease relationships based on their shared pathways.

First, we took a systematic approach to extract disease associated

genes. Literature mining has been extensively used to generate

relationships between entities (keywords, genes, concepts, diseases,

etc) that co-occur in publications [12–15]. We performed

systematic literature mining to extract genes that are significantly

associated with human disease terms from Medical Subject

Headings (MeSH) in Pubmed abstracts. We then connected

diseases to biological pathways through overlapping genes. Finally

we built a disease network by connecting diseases when they share

common pathways.

Results

We collected 1,028 disease MeSH terms that are associated with

MEDLINE abstracts as Major MeSH Headings and contain at

least 1 disease associated gene (Materials & Methods). On average,

a disease is associated with 12 genes (median = 7) and 2,455

publications (median = 1,044). In total, 4,195 unique disease

associated genes were identified. With a list of diseases and their

associated genes, we set out to associate diseases to biological

pathways. We mapped 2,167 pathways to 605 diseases and

generated 7,151 significant disease-pathway associations (Materi-

als&Methods). To estimate the background distribution of disease-

pathway association, we randomized the disease genes and

repeated the association process 1000 times (Materials &

Methods). The background distribution follows a normal distri-

bution (mean = 104, s.d. = 11). Therefore, the observed disease-

pathway associations (7,151) were significantly higher than those

would be observed by chance (P-value,0.001). On average, a

disease is associated with 12 pathways (median = 6) and a pathway

is associated with 3 diseases (median = 2) (Figure 1a and 1b). For

each disease, the fraction of disease associated genes statistically

mapped to pathways was calculated and its distribution over 605

diseases is shown in figure 1c. On average, 50% of genes from

each disease were statistically associated with pathways (P-
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value,0.001), suggesting that we can use biological pathways to

functionally characterize diseases. Together, these results indicated

that many disease associated genes are related to each other in the

form of biological pathways and are consistent with the modular

view of disease genes [8,11].

Under the assumption that pathways could be used to represent

the underlying biology of disease, we ranked diseases based on the

number of associated pathways. Since many pathways display

redundancy, to certain degree, among themselves, we chose to

rank diseases based on their pathway content index (Materials &

Methods). As shown in table S1, the top 20 list consists of a diverse

array of diseases from 15 MeSH disease categories. On the other

hand, some diseases are connected to only a few pathways and are

therefore likely caused by defects in few specific biological

processes. For example, Myoclonic epilepsies, Turner syndrome,

and Wegener granulomatosis are all mapped to one pathway.

Another way to analyze pathway representation of diseases is to

look at the biological diversity of associated pathways. We

computed the D score (Materials & Methods) to measure the

diversity of the associated pathways for a disease. For example,

nervous system lysosomal storage diseases (D = 0) is linked a group

of highly related pathways: cellular monovalent inorganic cation

homeostasis, intracellular pH reduction, lysosomal lumen acidifi-

cation, monovalent inorganic cation homeostasis, PH reduction,

regulation of cellular pH, regulation of intracellular pH, regulation

of pH, all of which are highly related to each other. On the other

hand, some diseases are associated with a diverse array of

pathways. For example, inborn errors metabolism (D = 0.94) is

linked to 13 different pathways: aspartate and asparagine

metabolism, benzoate degradation via COA ligation, coenzyme

biosynthetic process, cofactor transport, fatty acid biosynthesis

path 2, glutamate metabolism, mitochondrial transport, regulation

of fatty acid metabolic process, response to corticosteroid stimulus,

response to glucocorticoid stimulus, synthesis and degradation of

ketone bodies, vitamin B7 (biotin) metabolism, and vitamin

transport, consistent with the heterogeneous nature of this

disorder. It is evident that many of the above pathways are

distinct from each other. We also ranked pathways in terms of

their associated diseases (Table S2). The top of the list is mostly

represented by signaling pathways involved in inflammation and

immune response as well as P53 and death receptor signaling

pathways which are involved in many different biological

processes. Note that a pathway can be linked to a set of very

different diseases, indicating the existence of a common biological

mechanism despite of diverse clinical phenotypes. For example,

heterocycle metabolic process (GO BP) is linked to 4 different

diseases: hepatic porphyries, inborn errors purine pyrimidine

metabolism, major depressive disorder, and neural tube defects.

We next built disease relationships based on their associations with

pathways. We reasoned that two diseases are potentially related to

Figure 1. Disease pathway mapping. A) Distribution of the number of mapped pathways per disease. B) Distribution of the number of mapped
diseases per pathway. C) Distribution of the fraction of disease associated genes mapped to pathways.
doi:10.1371/journal.pone.0004346.g001
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each other if they share at least one commonly associated pathway.

We generated a disease network (DN) which consists of 591 nodes

(diseases) and 6,931 edges (disease relationships) based on a default E

score cutoff (Materials & Methods). Among 591 diseases, 587 formed

a giant connected component. DN is a scale-free (data not shown)

and a densely connected network. Average clustering coefficient is

0.61 and on average, any two diseases are 2.8 steps away from each

other. All 22 top MeSH disease categories (C01–C21 and F03) were

represented in DN. About 38% of edges linked diseases sharing the

same MeSH category (versus 19% in random disease networks, P-

value,1e-04). This result suggests that, at the global level, diseases

from the same MeSH category tend to associate with themselves. We

further studied the topology of individual MeSH categories in DN by

calculating within-category distance (WD) (Materials & Methods). A

small WD value indicates that diseases for a category lie closer to each

other in DN. Among 22 categories, 13 showed significant WD results

(P-value,0.05). As shown in table S3, diseases from the following

categories lie closer to each other in DN: Parasitic, Immune, Mental,

Virus, Hemic/Lymphatic, Cardiovascular, Environmental, Respira-

tory, Skin/Connective, and Neoplasms. More interestingly, Congen-

ital Hereditary Neonatal and Nervous System are the two categories

where diseases are more separated from each other than would be

expected by chance, indicating that they are diffusely distributed in

the DN and are more likely linked with other categories than with

themselves.

Figure 2 shows a filtered version of DN where 1383 disease

relationships were selected based on a more stringent E score cutoff

(E.4). These relationships covered 367 disease nodes. All but 5

nodes formed a giant connected component (figure 2a) which

displays readily discernable clusters. Two of them were displayed in

detail. One consists of a core of kidney-related diseases plus

hypertension, diabetes, and epilepsy (figure 2b). The other (figure 2c)

reveals a central theme of abnormality in lipid metabolism, but also

contains amyloidosis, alzheimer disease, diabetes (type 2), wolff

Parkinson white syndrome, arthritis, and crohn diseases.

Among 6,931 disease relationships, at least 60% of them can be

readily discovered by literature mining: they either share at least

one common publication or gene. The rest of them are potential

candidates for novel disease relationships since they can only be

linked together based on shared pathway(s). Table 1 shows

Figure 2. Disease network. A) A filtered disease network where disease relationships with the E score.4 are displayed. Disease nodes are colored
according to their MeSH disease categories as follows: Neoplasms, red; Congenital_Hereditary_Neonatal, green; Nervous_System, blue;
Cardiovascular, pink; Nutritional_Metabolic, yellow; Female_Urogenital_Pregnancy, aqua; Hemic_Lymphatic, light pink; Musculoskeletal, black;
Digestive, light green; Skin_Connective, olive; all other categories: gray. B) and C) Two examples of disease clusters isolated from the network in A.
doi:10.1371/journal.pone.0004346.g002
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examples of potentially novel relationships. For example, drug-

induced dyskinesia and amyotrophic lateral sclerosis are linked

together through FOSB Pathway (BioCarta). In this case, 4 out of

5 genes from FOSB pathway were mapped to the above 2 diseases:

CDK5 and GRIA2 to amyotrophic lateral sclerosis and, FOSB

and PPP1R1B to drug-induced dyskinesia. In another example,

Crohn’s diseases and In-born errors of lipid metabolism are linked

together through the Carnitine transport pathway.

Discussion

We presented here a novel way of discovering relationships

among human diseases based on their associations with biological

pathways. We based our approach on two observations. First, for

many diseases, multiple genes have been identified to collectively

account for clinical phenotypes [7]. Secondly, genes do not

function alone. They coordinate their activities in the form of

complexes or pathways. Therefore, pathways could be used to

represent the underlying biology of diseases. To achieve this goal,

we first identified 4,195 disease associated genes for 1,028 human

diseases through literature mining. For each disease, we identified

pathways where there is a significant enrichment of disease

associated genes. On average, over 50% of associated genes of a

disease are statistically mapped to pathways. This finding re-

enforces the notion that disease genes are related to each other in a

form of functional entity such as pathways or protein complexes

[7,11]. Furthermore, it provides us with an opportunity to

investigate the role of other genes from the same pathway in the

disease development. In majority of cases, the relationship

between diseases and pathways is many-to-many, e.g. a disease

is linked to many different pathways and a pathway is linked to

many different diseases. This observation suggests that a single

pathway can be involved in several different diseases whereas a

disease may have defects in several different biological processes. If

a compound is already available to treat a disease through

modulating the activity of a pathway, then it could potentially be

used to treat other diseases that are tightly associated with the

same pathway. On the other hand, when a disease has defects in

multiple pathways representing distinct biology, a pathway-guided

combination therapy may be employed in the clinic.

We further built a disease network based on disease-pathway

associations. It is a densely connected, small-world, scale-free

network. Overall, diseases from the same MeSH category are more

likely connected to each other. However, at individual category

level, some categories such as Parasitic, Cardiovascular, and Mental

disorders are distributed more densely in the DN, whereas

categories such as Nervous system and Congenital Hereditary

Neonatal are more diffusely distributed. This network could reveal

potentially novel disease relationships that are solely based on

pathway association and cannot be readily identified through

literature search. Currently there are about 40% of disease

relationships in DN that fall into this category. However, given

the stringent criteria used to generate DN, it’s likely that the number

of truly novel disease relationship might go lower. Nonetheless,

these novel relationships could offer new insights into disease

etiology, classification, and pathway-based design of novel thera-

peutic opportunities for medicines on the current market.

Materials and Methods

Identification of disease associated genes
We collected 313K names and aliases for human genes. We

collected 1,314 MeSH terms that are related to human diseases, i.e.,

their top MeSH Tree categories fall into C01–C21 and F03. About

Table 1. Examples of novel disease relationships.

Disease 1 Disease 2 Pathway

Drug induced dyskinesia Amyotrophic lateral sclerosis FOSBPATHWAY

Inborn errors lipid metabolism Crohn disease Carnitine transport

Leukemia Ehlers danlos syndrome Role of PBX in fibroblasts signaling pathways

Acute erythroblastic leukemia Hepatic porphyrias AHSPPATHWAY

Tuberous sclerosis Neural tube defects Neural tube closure

Precancerous conditions Listeria infections Immune response MIF in innate immunity response

Crohn disease Neural tube defects Cofactor transport

Hyperhomocysteinemia Von willebrand disease BLOOD CLOTTING CASCADE

Pulmonary hypertension Precancerous conditions Development Endothelin-1/EDNRA signaling

Asthma Ataxia telangiectasia Regulation of DNA recombination

Atherosclerosis Contact dermatitis LDL metabolism during development of fatty streak lesion

Wolff parkinson white syndrome Inborn errors metabolism Regulation of fatty acid metabolic process

Respiratory syncytial virus infections Adenoma Transcription Role of AP-1 in regulation of cellular metabolism

Pulmonary hypertension Endometrial neoplasms Development Endothelin-1/EDNRA signaling

Colitis Inborn errors metabolism Response to glucocorticoid stimulus

Respiratory syncytial virus infections Ataxia telangiectasia Regulation of DNA recombination

Syndactyly Hair diseases Odontogenesis of dentine-containing tooth

Pulmonary eosinophilia Ataxia telangiectasia Regulation of DNA recombination

Glomerulonephritis Pneumocystis pneumonia Regulation of phagocytosis

Hereditary neoplastic syndromes Autoimmune diseases Negative regulation of mononuclear cell proliferation

Column 3 indicates the pathway which has the greatest overall association strength with both diseases.
doi:10.1371/journal.pone.0004346.t001
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2.6 million abstracts from MEDLINE published from 1998 to 2007

were analyzed for co-occurrence of gene names and disease MeSH

terms. The disease MeSH terms must be associated with the

abstracts as Major MeSH Headings. PubMed identifiers corre-

sponding to each disease were retrieved using eUtils (from NCBI);

these were then locally analyzed to map to gene names [16]. For

each disease, the PubMed query ‘‘Disease [majr:noexp]’’ was used.

This restricted the analysis to articles with a disease as a major

MeSH annotation, and ‘‘noexp’’ excluded terms that were

descendants of the disease in the MeSH tree. The reason for the

exclusion was to deemphasize obvious relationships between parent

terms and their children (such as Diabetes Mellitus and Type II

Diabetes Mellitus). Statistical significance of co-occurrence was

assessed using a one-sided Fisher Exact test [15] where a 262

contingency table was constructed for each gene/disease pair with

the following values: c, g-c, d-c, and t, where c denotes the number

of abstracts where a gene name and a disease MeSH term co-occur,

g denotes the number of abstracts where the gene is found, d

denotes the number of abstracts where the disease is found, and t

denotes the total number of abstracts we analyzed. Raw P-values

were adjusted using false discovery rate (FDR) Benjamini-Hochberg

(BH) procedure [17]. The cutoff of adjusted P-value was set to 0.05.

A total of 4,195 unique genes were associated with 1,028 diseases.

Biological pathways
We collected pathways from BioCarta, GenMAPP, GeneGo,

and Ingenuity. We also included gene sets from Gene Ontology

(GO) Biological process (BP) and Cellular Component (CC) as

pathways in our analysis since these gene sets represent groups of

biologically related genes. For each ontological term in the GO

tree, we included as members any genes that were either

associated with that term or a gene that was associated with an

‘‘is_a’’ descendant of the term. We downloaded BioCarta and

GenMAPP from GSEA MSigDB database v2.5 [18]. Pathways

from GeneGo and Ingenuity were licensed. After excluding

pathways with less than 3 genes or more than 100 genes, we ended

up with 4,323 pathways covering a total of 10,204 unique genes.

Disease-pathway association
Overlap between a disease and a pathway in terms of their

constituent genes was evaluated using a one-sided Fisher Exact

test. Raw P-values were subsequently adjusted using the FDR BH

procedure. Disease-pathway pairs with adjusted P-value,0.05

were collected for further analysis. To estimate the background

distribution of disease-pathway association, we adopted a

randomization-based approach. For each disease, we replaced

each disease associated gene with a randomly selected gene that is

associated with similar number of diseases. Once all diseases were

randomized, they were tested for pathway association. This

process was repeated 1,000 times to generate the background

distribution.

When a disease is associated with several pathways, we

evaluated biological diversity among those pathways based on

their constituent genes by calculating a D score as follows:

D~1{

P
i=j

Pi\Pj

min Pi ,Pjð Þ
n n{1ð Þ

2

,

Pi,Pj[pathways associated with a disease,

where n denotes the number of pathways associated with a disease,

n(n-1)/2 is the total number of unique pathway pairs, Pi\Pj

denotes number of genes shared by pathways Pi and Pj, and

min Pi,Pj

� �
denotes the size of the smaller pathway between Pi

and Pj. A high D score indicates a high degree of gene diversity

among a group of pathways. It equals 1 for a set of non-

overlapping pathways and 0 for completely redundant pathways.

The pathway content index (PCI) was calculated as:

PCI~
Pj j

T Pð Þ
U Pð Þ

,

where P denotes a set of pathways associated with a disease, T(P)

denotes the total number of genes from set P, and U(P) denotes the

number of unique genes from set P. When there is no gene

redundancy among associated pathways, the PCI equals the size of

P, and when pathways are completely redundant, PCI equals 1.

When a pathway is associated with several diseases, a similar

measurement, called DCI (disease content index) was calculated in

the similar fashion to capture the diversity of associated diseases.

Network analysis
The largest connected component was first extracted from the

network and used for all subsequent network analysis. Standard

graph-based procedures were used to compute shortest path (SP)

profile and clustering coefficient (CC) for all nodes. Visualization

was done through Cytoscape [19]. When a disease is associated

with multiple MeSH categories, the category that is represented by

most other diseases is chosen for the coloring purpose (figure 2a).

Disease network (DN)
A DN was generated where a node represents a disease and an

edge between two diseases indicates that both share at least one

associated pathway. Note we excluded from DN the disease pairs

where one disease is a descendant of the other in the MeSH tree

since our goal is to capture relationships between different

diseases. We calculated an E score to assess the strength of the

edge (relationship) between two diseases d1 and d2 as follows:

Ed1,d2~{log10tmax
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pd1,i|Pd2,i

p� �
s,

i[pathways associated with both disease d1 and d2,

where Pd1,i, Pd2,i denote P-value for the association between d1

and pathway i, d2 and pathway i, respectively. The default cut-off for

the E score was set to 2log10(0.05) for an edge to be included in

the final network.

The topological distribution of top MeSH disease categories in

the DN was measured by within-category distance (WD). WD for

a given category was calculated as the mean shortest path (SP)

length between all pairs of diseases belonging to that category. We

calculated WD for category c as

WDc~

P
d i,jð Þ

n n{1ð Þ
2

, i,j[c

where n denotes the number of diseases from category c in DN and

n(n-1)/2 is the total number of unique disease pairs for c, d i,jð Þ
denotes the SP distance between disease i and j.

To assess the statistical significance of WD, disease node labels

were randomized and WDs were re-calculated. This process was

repeated 10,000 times. WD results with P-value,0.05 were shown

in table S3.

Pathway-Based View of Disease
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Supporting Information

Table S1 Top connected diseases. Column 2 indicates the top

MeSH disease categories which a disease belongs to. Multiple

categories are separated by;. Column 3 indicates the number of

disease associated genes for each disease. PCI (Materials&-

Methods) measures the number of distinct pathways associated

with each disease.

Found at: doi:10.1371/journal.pone.0004346.s001 (0.05 MB

DOC)

Table S2 Top connected pathways. Column 3 indicates the

number of disease associated genes for each pathway. DCI

(Materials&Methods) measures the number of distinct diseases

associated with each pathway.

Found at: doi:10.1371/journal.pone.0004346.s002 (0.05 MB

DOC)

Table S3 Within-category (WD) distance of disease categories in

DN. Expected WD was calculated as the average WD of 10000

random disease networks. Categories highlighted in blue are the

ones whose observed WD is significantly higher than expected.

Yellow color indicates the opposite.

Found at: doi:10.1371/journal.pone.0004346.s003 (0.04 MB

DOC)
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