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Abstract

Background: It was known that the insulin resistance in skeletal muscle is a major pathogenic factor in diabetes mellitus.
Therefore prevention of metabolic disorder caused by insulin resistance and improvement of insulin sensitivity are very
important for the therapy of type 2 diabetes. In the present study, we investigated the ability of marine oligosaccharides
oligomannuronate and its chromium (III) complexes from brown alga to enhance insulin sensitivity in C2C12 skeletal muscle
cells.

Methodology/Principal Findings: We demonstrated that oligomannuronate, especially its chromium (III) complexes,
enhanced insulin-stimulated glucose uptake and increased the mRNA expression of glucose transporter 4 (GLUT4) and
insulin receptor (IR) after their internalization into C2C12 skeletal muscle cells. Additionally, oligosaccharides treatment also
significantly enhanced the phosphorylation of proteins involved in both AMP activated protein kinase (AMPK)/acetyl-CoA
carboxylase (ACC) and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathways in C2C12 cells, indicating
that the oligosaccharides activated both the insulin signal pathway and AMPK pathways as their mode of action. Moreover,
oligosaccharides distributed to the mitochondria after internalization into C2C12 cells and increased the expression of
transcriptional regulator peroxisome proliferator-activated receptor c coactivator-1a (PGC-1a), carnitine palmitoyl
transferase-1 (CPT-1), and phosphorylated acetyl-CoA carboxylase (p-ACC), which suggested that the actions of these
oligosaccharides might be associated with mitochondria through increasing energy expenditure. All of these effects of
marine oligosaccharides were comparable to that of the established anti-diabetic drug, metformin. In addition, the
treatment with oligosaccharides showed less toxicity than that of metformin.

Conclusions/Significance: Our findings indicate that oligomannuonate and its chromium (III) complexes improved insulin
sensitivity in C2C12 skeletal muscle cells, and acted as a novel glucose uptake stimulator with low toxicity, and could be
used as dietary supplementary or potential drug for type 2 diabetes mellitus.
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Introduction

Diabetes mellitus is the most common metabolic disease and its

prevalence is increasing in both developed and developing

countries. More than 90% of diabetes patients suffer from non-

insulin-dependent diabetes mellitus (NIDDM, type 2 diabetes) [1].

Type 2 diabetes is associated with two principal physiological

defects: resistance to the action of insulin and deficiency in insulin

secretion [2]. Insulin resistance in skeletal muscle is a major

pathogenic factor in type 2 diabetes mellitus [3].

Previous studies have indicated that glucose transport is the rate-

limiting step for glucose metabolism in skeletal muscle [4], a major

site of glucose disposal during the insulin-stimulated state in vivo [5].

GLUT4 is the main insulin-responsive glucose transporter and is

expressed primarily in skeletal and cardiac muscle tissues [6,7].

AMPK is an important enzyme in the regulation of cellular energy

status and plays a key role in regulating plasma glucose levels [8]. In

skeletal muscle, AMPK is activated during contraction that leads to

recruitment of GLUT4 to the plasma membrane [9]. It is now known

that metformin (dimethylbiguanide) can activate AMPK and that, at

least in part, explains its anti-diabetic activity [10]. Gastrointestinal

side effects are the most common adverse events of metformin,

occurring in 20,30% of patients [11]. Therefore, an alternative anti-

diabetic drug with low toxicity and side effect is needed.

In recent years, lots of poly-/oligosaccharides have been

investigated and showed antidiabetic activities [12]. For example,
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hypoglycemic activities have been demonstrated for chito-

oligosaccharides and its derivatives [13], oligosaccharides from

Amorphophallus konjac [14] and Rehmannia glutinosa [15]. In addition,

the recognized role of chromium (III) in glucose homeostasis has

lead to the investigation of chromium (III) complexes, especially

oligosaccharides-chromium (III) complexes, for use as insulin-

enhancing approaches for the treatment of type 2 diabetes mellitus

[16,17].

Marine brown algae contain a wide variety of acidic

polysaccharides such as the alginate and the fucoidans. Alginate,

a water-soluble linear polymer, is an anionic heteropolysaccharide

comprised of b-D-mannuronic acid (M) and a-L-guluronic acid

(G) [18]. Alginate oligosaccharides have attracted lots of scientific

interest owning to their various biological activities, such as

promoting root growth in higher plants [19,20], antitumor

[21,22], and neuron protection effects [23,24]. Moreover, some

alginate-derived oligosaccharide and its sulfate showed a better

anti-diabetes activity [25,26].

In the present work, we prepared oligomannuronate (OM) and

two kinds of oligomannuronate-chromium (III) complexes (OM2

and OM4) from marine brown alga Laminaria japonica, and their

insulin sensitizing effects in C2C12 skeletal muscle cells were

studied. The results showed that all oligosaccharides, especially

oligomannuronate-chromium (III) complex OM2 could enhance

glucose uptake in the C2C12 cells without obvious toxicity. The

improvement effect might be attributed to the upregulated

expression of IR mRNA and GLUT4 mRNA levels by activating

both PI3K/Akt and AMPK pathways. Moreover, those oligosac-

charides also distributed to the mitochondria in C2C12 cells and

increased the expression of PGC-1a and CPT-1, which suggested

the actions of these oligosaccharides might be associated with

mitochondria. Therefore, the oligomannuronate-chromium (III)

complexes could be used as potential anti-diabetes drugs for

improving the insulin sensitivity.

Results

Enhancement of glucose uptake by oligomannuronate
and its chromium (III) complexes

Prior to evaluate the effects of oligomannuronate and its

chromium (III) complexes on glucose uptake in C2C12 cells, their

cytotoxicity profiles were determined by MTT assay. Each of the

oligomannuronate and its chromium (III) complexes showed no

significant cytotoxicity up to 500 mM (Figure 1A), but in contrast,

metformin demonstrated milder cytotoxic at 100 mM. Interesting-

ly, both OM2 and OM4 showed higher cell viability than OM at

the same concentrations, and this was particularly pronounced at

the concentration of 5000 mM (Figure 1A).

In order to examine whether oligomannuronate and its

chromium (III) complexes could affect insulin stimulated-glucose

uptake in mouse C2C12 skeletal muscle cells or not, 100 nM

insulin were added to the oligosaccharides treated group, and their

glucose uptake were compared with the non-insulin treated group

(control). As shown in Figure 1B, the marine acidic oligosaccharide

OM, and its chromium (III) complexes OM2 and OM4

apparently increased glucose uptake at the concentrations from

1 to 100 mM. Compared with the untreated (control) group, OM

increased 20% insulin stimulated-glucose uptake, whereas OM2

and OM4 increased the insulin-stimulated glucose uptake by 30%

and 25% at 50 mM, respectively (Figure 1B). Moreover, as shown

in Figure 1B, the most effective concentration of oligomannur-

onate and its chromium (III) complexes to enhance insulin

stimulated glucose uptake was 50 mM, and OM2 was the most

effective compound among the oligosaccharides.

Effects of oligomannuronate and its chromium (III)
complexes on the mRNA expression of IR and GLUT4

GLUT4 is the main insulin-responsive glucose transporter in

skeletal muscle [27]. The expression levels of IR and GLUT4

were quantitatively analyzed in C2C12 cells by real time RT-PCR.

The C2C12 cells were incubated in the media containing 50 mM

oligosaccharides (OM, OM2, and OM4) for 24 h. Total RNA was

extracted and the real-time RT-PCR of IR and GLUT4 mRNAs was

performed. As shown in Figure 2, the IR mRNA levels of C2C12 cells

were increased by each of the treatments compared to the control

group, the maximal effect observed with the OM2-treated group

where IR mRNA level increased to about 125% of that of control

group (Figure 2A). Similarly, the mRNA expression of GLUT4, the

insulin-dependent glucose transporter, was also increased by each of

the treatments compared to the control group (Figure 2B). In

conclusion, all oligosaccharides OM, OM2 and OM4 enhanced the

mRNA expression levels of IR and GLUT4 in C2C12 cells.

Activation of PI3K/Akt pathway by oligomannuronate
and its chromium (III) complexes

It is well known that insulin plays a central role in glucose

homeostasis, and it accelerates glucose transport via activation of

phosphatidylinositol 3-kinase (PI3K) and Akt, leading to glucose

transporter 4 (GLUT4) translocation to the membrane in muscle

cells [28,29].

Therefore we determined whether marine acidic oligosaccha-

ride and its chromium (III) complexes could affect insulin signal

pathway in C2C12 skeletal muscle cells. The C2C12 cells were

treated with oligomannuronate and its chromium (III) complexes

or metformin for 45 min, then the content of phosphorylated

proteins in insulin pathway was measured by ELISA assay. As

shown in Figure 3, the phosphorylated IR (p-IR) protein level

increased significantly after the treatment of oligosaccharides at

50 mM compared to the non drug treated control group.

Moreover, the phosphorylated PI3K (p-PI3K) and phosphorylated

Akt (p-Akt) protein levels were also increased by marine

oligosaccharides treatment (Figure 3). These results suggested that

oligomannuronate and its chromium (III) complexes activated

PI3K/Akt pathway in skeletal muscle cells, especially OM2.

Activation of AMPK signaling pathway by
oligomannuronate and its chromium (III) complexes

The activation of AMPK was reported to be beneficial in

ameliorating insulin resistance and type 2 diabetes [9,30].

Therefore we determined whether marine acidic oligosaccharide

and its chromium (III) complex derivatives could affect AMPK

activity in skeletal muscle cells. The C2C12 cells were treated with

oligomannuronate and its chromium (III) complexes or metformin

for 45 min, then the content of phosphorylated AMPK (p-AMPK)

protein was measured by western blot assay. As shown in

Figure 4A, the three marine oligosaccharides all could increase

the phosphorylation of AMPK when treated at the concentration

of 50 mM. Moreover, the effects of OM2 and OM4 were even

better than that of metformin (Figure 4B).

Furthermore, the results of ELISA assay also showed that the p-

AMPK protein level increased dramatically after the treatment of

oligomannuronate and its chromium (III) complexes at 50 mM

compared to the non drug treated control group. Moreover, OM2

increased the production of p-AMPK to about 150% of that of

control group, which as even better than the effect induced by

metformin (120%) (Figure 4C). The result suggests that oligo-

mannuronate and its chromium (III) complexes activated AMPK

in skeletal muscle cells.

Oligosaccharides Improve Insulin Sensitivity
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Internalization of FITC-labeled oligomannuronate and its
chromium (III) complex into skeletal muscle cells

FITC-labeled oligosaccharides (OM, OM2) were used to

investigate whether they could enter into C2C12 cells or not. We

found that the fluorescence intensity was increased with prolonged

incubation of the cells with the oligosaccharides (Figure 5), indicated

OM and OM2 are taken up by C2C12 cells. The internalization of

oligosaccharides occurred within 15 min (Figure 5A and C), and

more oligosaccharides were observed at 24 h (Figure 5B and D).

These results suggested the internalization of oligomannuronate and

its chromium (III) complex into C2C12 cells might be associated

with the insulin-stimulated glucose uptake.

Furthermore, the exact intracellular distribution of OM and

OM2 was also investigated by living cell imaging. After treated

with FITC-labeled OM and OM2 for 24 h, the C2C12 cells were

incubated with Mito-tracker to label mitochondria before imaging.

As shown in Figure 5E and F,oligosaccharides OM and OM2 all

were co-localized with mitochondria obviously after internaliza-

tion into C2C12 cells,which suggested that these oligosaccharides

could distribute to mitochondria in C2C12 cells. Taken together,

these data indicated that the insulin sensitizing effects of marine

oligosaccharides might be associated with the functions of

mitochondria after internalization into skeletal muscle cells.

Effects on energy metabolism of oligomannuronate and
its chromium (III) complexes

The above results indicated that marine oligosaccharides were

co-localized with mitochondria and enhanced the phosphorylation

Figure 1. The cytotoxicity and effects of compounds on insulin stimulated glucose uptake in myoblasts C2C12 cells. (A) C2C12 cells
were incubated with oligomannuronate and its chromium (III) complexes (OM, OM2, OM4) at indicated concentrations for 24 h. The cell viability was
evaluated by MTT assay as described in materials and methods. Values are mean 6 SD of four replicates. (B) C2C12 cells were treated with or without
different concentrations of indicated compounds for 24 h. Then after washed with PBS, cells were stimulated with insulin for 30 minutes before
performing glucose transport assay. The radioactivity amount for untreated cells (control) were assigned values of 1 and the results presented as
mean 6 S.D. (n = 4). Significance: *P,0.05 and **P,0.01 versus controls without treatment.
doi:10.1371/journal.pone.0024598.g001
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of AMPK, so we investigated the effects of oligosaccharides on

cellular energy metabolism by evaluating the expression of PGC-

1a in C2C12 cells. As shown in Figure 6A, the oligosaccharides

OM2 and OM4 all significantly increased the production of PGC-

1a, especially for OM4 which increased the expression of PGC-1a
to about two times more than that in non drug treated control cells

(Figure 6B). Moreover, the oligosaccharides treatment also

enhanced the phosphorylation of ACC protein and increasd the

mRNA expression of CPT-1, which suggested that these

oligosaccharides could enhance the oxidation of fatty acid in

C2C12 cells (Figure 6C and D). Taken together, the marine

oligosaccharides could regulate the energy metabolism to

attenuate insulin resistance.

Discussion

Recently some reports indicated that marine derived polysac-

charides can stimulate the insulin secretion in vitro, especially for

the low molecular weight oligosaccharides around 3 kDa [31].

In this study, we investigated the insulin sensitizing effects

and mechanisms of the marine acidic oligosaccharide and its

chromium (III) complexes (,3 kDa) in skeletal muscle cells. The

results showed that both the marine acidic oligosaccharide and its

chromium (III) complexes significantly enhanced insulin-stimulat-

ed glucose uptake in C2C12 cells. The oligomannuronate-

chromium (III) complexes (OM2 and OM4) had better effect

than the original oligosaccharide OM, especially for OM2 that

contains 2% (w/w) chromium (III) in the oligosaccharide. It was

reported that complexes of chromium (III) with organic ligands

rather than in the form of inorganic salt generally showed low

toxicities [32], which was also verified in this experiment

(Figure 1A). Moreover, the most effective concentration of

oligomannuronate and its chromium (III) complexes to improve

glucose uptake was 50 mM, which is much lower than that of

metformin (2000 mM).

In muscle cells, there are two important signal pathways to

regulate glucose transport and metabolism, the insulin signaling

pathway [33] and AMPK pathway [34]. Insulin signaling is

mediated by cascades of phosphorylation/dephosphorylation

events. Insulin signal transduction in skeletal muscle is mediated

by a series of phosphorylation cascades linking initial activation of

the insulin receptor (IR), a tyrosine kinase receptor, to downstream

substrates [35]. Extensive studies have indicated that the ability of

the receptor to autophosphorylate and phosphorylate intracellular

substrates is essential for its mediation of the complex cellular

responses to insulin [36]. IR plays an important role in the

regulation of whole body metabolism and pathogenesis of diabetes.

In the present study, we evaluated the mRNA expression of IR by

quantitative RT-PCR analysis and the protein level of p-IR by

ELISA assay, respectively. As we supposed, the mRNA and

protein levels of IR in OM and OM2 treated groups dramatically

increased compared to that in control group (Figure 2 and

Figure 3), contributing to the improved insulin sensitivity.

Activated IR transduces the insulin signal by activating PI3K/

Akt pathway to promote glucose uptake. Current research seeks to

ameliorate insulin resistance by finding ways to increase PI3K/Akt

activity and restore insulin sensitivity [37,38]. Activated Akt

phosphorylates and regulates the activities of many downstream

proteins involved in multiple aspects of cellular physiology. Here,

ELISA results of p-PI3K and p-Akt indicated that the oligoman-

nuronate and its chromium (III) complexes stimulated the

activation of proteins in the PI3K/Akt signaling pathway, to an

extent similar with insulin, and had an effect on glucose uptake.

The PI3K/Akt pathway has been demonstrated to be able to

regulate GLUT4 translocation. The importance of GLUT4 in

glucose homeostasis has been studied extensively in recent years.

GLUT4-mediated glucose transport in muscle is essential to the

maintenance of glucose homeostasis [39]. Results indicated that

the mRNA expression of GLUT4 increased in C2C12 cells after

oligosaccharides treatments (Figure 2). Moreover, the increased

production of GLUT4 might directly enhance the insulin

stimulated glucose uptake. So the oligomannuronate and its

chromium (III) complexes might be able to upregulate the insulin

signaling to promote glucose transport through the PI3K/Akt

pathway after internalization.

AMPK is considered a promising drug target for type 2 diabetes

[40]. Activation of the enzyme in the liver or skeletal muscle with

the cell-permanent AMP analog AICAR is associated with

diminished gluconeogenesis [41] and enhanced glucose uptake

[42], respectively. In skeletal muscle, AMPK activation may be

involved in the effects of repeated exercise to improve insulin-

sensitive glucose uptake, because of its ability to increase

expression of GLUT4 and perhaps other effects [43]. In this

study, we evaluated the effects of oligomannuronate and its

chromium (III) complexes on AMPK activation in C2C12 cells by

assessing the phosphorylation state of AMPK using western blot

and ELISA assay. The treatment of oligomannuronate and its

chromium (III) complex significantly increased the production of

p-AMPK in C2C12 cells, and OM2 had better effect than the

other two oligosaccharides and metformin. Combined with the

Figure 2. Effects of oligosaccharides treatments on the mRNA
expression of IR and GLUT4 in C2C12 cells. Skeletal muscle cells
were left untreated or treated with 50 mM oligomannuronate and its
chromium (III) complexes (OM, OM2, OM4) in DMEM media for 24 h.
The mRNA levels of IR (A) and GLUT4 (B) were analyzed by RT-PCR as
described in the text. The mRNA levels for untreated cells (control) were
assigned values of 100. Values are mean 6 SD of the results from at
least four independent experiments. Significance: *P,0.05, **P,0.01
versus controls.
doi:10.1371/journal.pone.0024598.g002
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upregulation of IR and GLUT4 mRNA expression, the increased

production of phosphorylated AMPK by oligomannuronate and

its chromium (III) complexes enhanced the GLUT4 expression to

improve the glucose uptake. Further studies need to be carried out

to decipher the intracellular targets of oligomannuronate and its

chromium (III) complex both in vitro and in vivo.

A published report showed that polysaccharides could enter into

liver cells by receptor-mediated endocytosis (RME) [44]. We found

FITC-labeled OM and OM2 could enter into the C2C12 cells

(Figure 5) within 15 min. The molecular mechanism of OM and

OM2 internalization and its association with insulin related signaling

pathway will be an interesting future research subject. Moreover,

these two oligosaccharides distributed to mitochondria after

internalization into C2C12 cells. These results suggested that the

insulin sensitizing effects of marine oligosaccharides might be

associated with the functions of mitochondria in skeletal muscle cells.

Insulin resistance was reported to be associated with impaired

skeletal muscle oxidation capacity and reduced mitochondrial

Figure 3. The influence of oligosaccharides on insulin signal pathway. C2C12 cells were treated with 50 mM oligomannuronate and its
chromium (III) complexes (OM, OM2, OM4) or 2000 mM metformin at 37uC for 45 min. The cells were then lysed and the content of phosphorylated IR
(A), PI3K (B) and Akt (C) in the cell lysates was evaluated by ELISA assay. Values are mean 6 SD of the results from at least four independent
experiments. Significance: *P,0.05, **P,0.01 versus controls without drug treatment.
doi:10.1371/journal.pone.0024598.g003
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number and function [45]. AMPK increases GLUT4 expression

by a PGC-1a-dependent pathway [46,47]. Here we showed that

the oligosaccharides significantly increased the production of

PGC-1a, and enhanced the phosphorylation of ACC protein,

which suggested that these oligosaccharides could enhance the

fatty acid oxidation in skeletal muscle cells. Combined with the

result that the oligosaccharides distributed to the mitochondria, we

suppose that these oligosaccharides could improve the functions of

mitochondria to attenuate the insulin resistance by regulating

energy metabolism.

Chromium (III) is a cofactor for insulin function that increases

insulin binding [48], the number of insulin receptors [49], and

insulin receptor phosphorylation [50], resulting in enhanced

glucose transport into liver, muscle, and adipose tissue. Further-

more, it was suggested that Chromium (III), like insulin, affects

protein phosphorylation-dephosphorylation reactions [51]. The

IR tyrosine kinase, responsible for the phosphorylation, can be

activated by Chromium (III), to increase insulin sensitivity [52].

Moreover, chromium picolinate was reported to activate AMPK

signaling pathway in cardiac and skeletal muscle [53]. Here we

showed that the oligomannuronate-Chromium (III) complex OM2

had a better effect on increasing insulin sensitivity than the original

oligosaccharide OM, which suggested the introduction of Chro-

mium (III) to the oligosaccharide might be able to increase the

phosphorylation of AMPK and PI3K in the signaling pathway.

However, the insulin sensitizing effect of OM4 was lower than that

Figure 4. Effects of marine oligomannuronate and its derivatives on the production of phosphorylated AMPK (p-AMPK). (A)C2C12
cells were incubated with 50 mM oligomannuronate and its chromium (III) complexes (OM, OM2, OM4) or 2000 mM metformin at 37uC for 45 min.
Then the cell lysates were separated by SDS-PAGE and blotted for p-AMPK expression by Western blotting. Blots were also probed for b-actin protein
as loading controls. (B) Quantification of immunoblot for the ratio of p-AMPK protein to cellular b-actin. The ratio for non-drug treated cells (control)
were assigned values of 1 and the results presented as mean 6 SD (n = 3). (C) C2C12 cells were treated with 50 mM oligomannuronate and its
chromium (III) complexes (OM, OM2, OM4) or 2000 mM metformin at 37uC for 45 min. The cells were then lysed and the content of phosphorylated
AMPK in the cell lysates was evaluated by ELISA assay. Values are mean 6 SD of the results from at least four independent experiments. Significance:
*P,0.05, **P,0.01 versus controls without drug treatment.
doi:10.1371/journal.pone.0024598.g004
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of OM2 although it had higher content of chromium (III) than

OM2, which indicates that the content of chromium is not the

major reason for the observed insulin sensitizing effect and the

oligomannuronate-Chromium (III) complex OM2 itself has best

insulin sensitizing effect.In conclusion, we found that oligoman-

nuronate and its chromium (III) complexes, which were less

cytotoxic than metformin, enhanced glucose uptake in C2C12

cells. The improvement of insulin sensitivity might be attributed to

upregulation of the expression of IR and GLUT4 by activating

both insulin signal (PI3K/Akt) and AMPK signal pathways in

skeletal muscle. Moreover, oligosaccharides distributed to the

mitochondria in C2C12 cells and increased the expression of

PGC-1a, which suggested that the actions of these oligosaccha-

rides might be associated with mitochondria. Furthermore,

introduction of Chromium (III) to the marine oligosaccharide

increased its bioactivity to some extent. Therefore the oligoman-

nuronate-chromium (III) complex could be considered a potential

agent in the treatment of type 2 diabetes due to its activation of

PI3K/Akt and AMPK. This is the first report to suggest a possible

mechanism by which the oligomannuronate-chromium (III)

complex improves insulin sensitivity. We conclude that the

oligomannuronate-chromium (III) complex might provide the

basis for an adjuvant therapy of type 2 diabetes by enhancing

insulin sensitivity with a lower toxicity profile than that of

metformin.

Materials and Methods

Materials
The marine-derived oligomannuronate and its chromium (III)

complexes named OM, OM2 and OM4 were provided by

Glycoscience and Glycoengineering Laboratory, school of Med-

icine and Pharmacy, Ocean University of China. The molecular

masses of OM, OM2 and OM4, measured by high performance

gel permeation chromatography, were 2.8, 3.0 and 3.2 kDa,

respectively.

Bovine insulin was purchased from Calbiochem (USA). [3H]-2-

deoxy-D-glucose was purchased from Sigma Chemical Company

(USA). Other reagents were obtained from Sigma Chemical

Company (USA). Anti-Phospho-AMPKa (Thr172) and Anti-

PGC-1a antibodies were from Cell signaling Technology, Inc

(USA). Anti-b-actin and anti-a-tubulin antibodies were obtained

from Santa Cruze Biotechnology, Inc (USA). HRP-linked

secondary antibodies were purchased from Cell signaling Tech-

nology, Inc (USA).

Cell culture
The C2C12 myoblast cell line from mouse skeletal muscle was

purchased from the ATCC Global Bioresource Center (USA).

Cells were maintained in Dulbecco’s Modified Eagle’s medium

(DMEM, GibcoBRL, USA) supplemented with 10% fetal bovine

Figure 5. Internalization of FITC-labeled oligosaccharides. (A-B) C2C12 cells were incubated with FITC-labeled OM at 50 mM for 15 min and
24 h before fluorescence visualization. (C-D) C2C12 cells were incubated with FITC-labeled OM2 at 50 mM for 15 min and 24 h before fluorescence
visualization with confocal microscopy. Scale bar represents 20 mm. (E-F) C2C12 cells were incubated with FITC-labeled OM (E) or OM2 (F) at 50 mM for
24 h before fluorescence visualization with confocal microscopy. The cells were also incubated with Mito-tracker for 30 min before imaging. Scale bar
represents 20 mm.
doi:10.1371/journal.pone.0024598.g005
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serum (FBS) (GibcoBRL), and containing 4.5 g/L glucose, 25 mM

HEPES, 100 U/ml penicillin, and 100 mg/ml streptomycin at

37uC in a humidified 95% air and 5% CO2 atmosphere.

Cytotoxicity assay
The cytotoxicity of compounds was measured by the MTT (3-

[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide;

Sigma-Aldrich, USA) assay. Confluent C2C12 cell cultures in

96-well plates were exposed to different concentrations of

compounds in triplicate for 24 h at 37uC under 5% CO2

atmosphere. Next, 20 mL of PBS containing MTT (final

concentration: 0.5 mg/mL) was added to each well. After 4 h

incubation at 37uC, the supernatant was removed and 200 mL of

DMSO was added to each well to solubilize the formazan crystals.

After vigorous shaking, absorbance values were measured in a

microplate reader (Bio-Rad, USA) at 570 nm.

Insulin-stimulated glucose transport assay
Briefly, C2C12 myoblast cells were incubated with various

concentrations of indicated drugs for 24 hours in culture medium.

After treatment, cells were washed three times with PBS, and then

incubated with or without 100 nM insulin in the KRP buffer for

30 minutes, and the assay was initiated via the addition of

nonmetabolizable glucose analog [3H]-2-deoxyglucose (finally

0.5 U Ci/mL) to each of the wells for 10 minutes at 37uC. The

assay was terminated by the addition and subsequent washing of

the cells with ice-cold PBS. The cells were then lysed in 100 mM

NaOH. Radioactivity was evaluated via scintillation counting of

the lysates, while total protein contents were determined by the

Bradford procedure (Bio-Rad Laboratory, Richmond, CA, USA).

The values were corrected for non-specific glucose uptake (the

cytochalasinB cpm (counts per minute) values). The results were

expressed as fold stimulation of the controls.

Real-time RT-PCR assay
After incubation with different concentrations of oligosaccha-

rides for 24 h, C2C12 cells were washed twice with ice-cold PBS.

Total RNA was isolated using the TRIzol reagent (Invitrogen,

USA) and 1 mg RNA was reverse-transcribed into cDNA using

PrimeScriptH One Step RT-PCR Kit (Takara, Japan). The

following primer pairs were used as reported previously [45]:

Insulin receptor (IR): Forward:59-AATGGCAACATCACA-

CACTACC-39, Reverse: 59-CAGCCCTTTGAGACAATAATC-

C-39; Glucose transporter 4 (GLUT4): Forward: 59-CAACGT-

GGCTGGGTAGGCAAGGT-39, Reverse: 59-CGGAGAGAGC-

CCAGAGCGTAG TA-39; Carnitine palmitoyltransferase 1

(CPT-1): Forward: 59-CGTGACGTTGGACAGATC-39, Re-

verse: 59-TCTGCGTTTATGCCTATC-39; 18S rRNA: Forward:

59-AGGAAGTCCCTCACC CTCCCAAAA-39, Reverse: 59-CA-

GAAGCAATGCTGTCACCTTCCC-39. Target cDNA levels

were quantified by RT-PCR using the ABI PRISM 7500 sequence

detection system (Applied Biosystems, USA) utilizing SYBR green.

All reactions were performed in triplicate. The mouse 18S rRNA

gene served as the endogenous reference gene. The evaluation of

relative differences of PCR product among the treatment groups

was carried out using the DDCT method. The reciprocal of 2CT

(using CT as a base 2 exponent) for each target gene was

normalized to that for 18S rRNA, followed by comparison with

Figure 6. The influence of oligosaccharides on energy metabolism in C2C12 cells. (A) C2C12 cells were incubated with 50 mM
oligomannuronate and its chromium (III) complexes (OM, OM2, OM4) or 2000 mM metformin at 37uC for 45 min. Then the cell lysates were separated
by SDS-PAGE and blotted for PGC-1a expression by western blot analysis. Blots were also probed for a-tubulin protein as loading controls. (B)
Quantification of immunoblot for the ratio of PGC-1a protein to cellular a-tubulin. The ratio for non-drug treated cells (control) were assigned values
of 1 and the results presented as mean 6 SD (n = 3). (C) C2C12 cells were treated with 50 mM oligomannuronate and its chromium (III) complexes
(OM, OM2, OM4) or 2000 mM metformin at 37uC for 45 min. The cells were then lysed and the content of phosphorylated ACC in the cell lysates was
evaluated by ELISA assay. Values are mean 6 SD of the results from at least four independent experiments. (D) C2C12 cells were left untreated or
treated with 50 mM oligomannuronate and its chromium (III) complexes (OM, OM2) or 2000 mM metformin in DMEM media for 24 hours. The mRNA
levels of CPT-1 were analyzed by Real time RT-PCR as described in the text. The mRNA levels for untreated cells (control) were assigned values of 100.
Values are mean 6 SD (n = 4). Significance: *P,0.05, **P,0.01 versus controls without drug treatment.
doi:10.1371/journal.pone.0024598.g006

Oligosaccharides Improve Insulin Sensitivity

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e24598



the relative value in control cells. Final results are presented as a

percentage of control.

Living cell imaging by confocal microscopy
The oligomannuronate and its chromium (III) complex (OM and

OM2) were labeled by fluorescein isothiocyanate (FITC) as

described before [44]. C2C12 cells grown on glass coverslips

overnight were first treated with FITC-labeled OM and OM2 for

15 min and 24 h at their maximum efficient concentration (50 mM).

The cells were then washed four times with ice-cold PBS (pH 7.4).

For co-localization assay, the cells were incubated with Mito-tracker

for 30 min before imaging. The green fluorescence of FITC-OM

and FITC-OM2 was measured at 520620 nm by Laser Scanning

Confocal Microscope (Zeiss LSM 510, GER).

ELISA assay
The C2C12 cells (56105 cells per well) were trypsinized and

then transferred to a 6-well culture plate containing 2 mL

DMEM-FBS (10%) solution. After incubation for 24 h, 50 mM

of oligomannuronate-chromium (III) complex (OM, OM2, OM4)

or 2000 mM metformin were separately added and incubated for

45 min at 37uC. At last, C2C12 cells were rinsed twice with PBS,

and then treated with 100 mL of lysis buffer (Beyotime Biotech-

nology, China) for 30 min on ice. The lysates were collected and

centrifuged (12000 g; 5 min; 4uC), and the protein content was

measured using BCA assay. The ELISA assays were performed

according to the manufacturer’s protocol of the p-IR, p-PI3K, p-

Akt, p-AMPK, and p-ACC assay kit, respectively (Jingtian

Biotech, Shanghai, China).

Western blot assay
As previously described [54], C2C12 cells were rinsed twice

with ice-cold PBS after drug treatment for 45 min, and then

scraped into with ice-cold 100 mL of lysis buffer (20 mM Tris

pH 7.5, 150 mM NaCl, 1% Triton X-100, 1 mM sodium

pyrophosphate, 1 mM EDTA, 1 mM Na3VO4, 1 mg/mL

leupeptin, 1 mM phenylmethylsulphonyl fluoride) for 30 min on

ice. After vortex-mixed and centrifuged (12000 g; 5 min; 4uC), the

protein content was measured using BCA assay. Total protein

extracts (50–80 mg) were subjected to SDS-PAGE on 10%

polyacrylamide gels and transferred to nitrocellulose (NC)

membranes. After transferring, the filters were blocked with 5%

non-fat dry milk in TBS containing 0.1% Tween 20 for 1.5 h at

room temperature, and subsequently subjected to immunoblot

analysis by incubation with primary antibodies overnight at 4uC:

phospho-AMPK-a (Thr172) (1:1000 dilutions), PGC-1a (1:1000

dilutions), b-actin (1:5000 dilutions), a-tubulin (1:5000 dilutions).

The NC filters were then washed three times for 15 min each time

with TBST followed by 1 h of incubation with secondary antibody

conjugated to horseradish (1:5000 dilutions) (Cell Signaling

Technology, Beverly, MA). After that, the filters were washed

three times and subsequently exposed to an enhanced chemilu-

minescence detection (Super Signal* West Pico, Thermo Scien-

tific, USA).

Statistical analysis
All experiments were performed in triplicate. Data were

presented as mean 6 S.D. Statistical significance was evaluated

by unpaired Student’s t-test for comparison of means. Differences

were considered statistically significant at P,0.05.
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