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Abstract

Extreme-drug-resistant (XDR) Acinetobacter baumannii is a rapidly emerging pathogen causing infections with unacceptably
high mortality rates due to inadequate available treatment. New methods to prevent and treat such infections are a critical
unmet medical need. To conduct a rational vaccine discovery program, OmpA was identified as the primary target of
humoral immune response after intravenous infection by A. baumannii in mice. OmpA was .99% conserved at the amino
acid level across clinical isolates harvested between 1951 and 2009 from cerebrospinal fluid, blood, lung, and wound
infections, including carbapenem-resistant isolates, and was $89% conserved among other sequenced strains, but had
minimal homology to the human proteome. Vaccination of diabetic mice with recombinant OmpA (rOmpA) with aluminum
hydroxide adjuvant markedly improved survival and reduced tissue bacterial burden in mice infected intravenously.
Vaccination induced high titers of anti-OmpA antibodies, the levels of which correlated with survival in mice. Passive
transfer with immune sera recapitulated protection. Immune sera did not enhance complement-mediated killing but did
enhance opsonophagocytic killing of A. baumannii. These results define active and passive immunization strategies to
prevent and treat highly lethal, XDR A. baumannii infections.
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Introduction

Antibiotic resistance is recognized as one of the greatest threats to

human health on the planet [1,2,3,4,5]. In the last decade,

Acinetobacter baumannii has emerged as one of the most common

and highly antibiotic-resistant pathogens in the United States (US)

and throughout the world [6,7,8]. Indeed, 50–70% of A. baumannii

clinical isolates are now extensively drug resistant (XDR; i.e. resistant

to carbapenems and all other antibiotics except colistin or

tigecycline), reflecting a .15-fold increase in just the past 10 years

[9,10,11,12,13]. Infections caused by XDR A. baumannii are

associated with prolonged hospitalization, tremendous health care

costs, and high rates of death despite treatment [6,8,12,14,15,16,17].

Even more concerning is the increasing resistance of A. baumannii to

both colistin and tigecycline [8,15,18,19,20]. Such pan-drug resistant

(PDR) A. baumannii infections are resistant to every FDA approved

antibiotic, and are hence untreatable.

Since risk factors for A. baumannii infections are understood

[21,22,23,24,25], vaccination of acutely at-risk patients is a

promising method to prevent such infections, and antibody-based

immunotherapy has promise to improve outcomes from infection.

To identify a lead antigenic target for active and passive

immunization against A. baumannii, a rational screening mecha-

nism was used to identify a candidate vaccine. OmpA was found to

be a predominant target of humoral immunity during sublethal A.

baumannii infection in mice. Recombinant OmpA was an effective

vaccine immunogen, protecting mice against lethal infection, and

also induced protective antibodies when administered as passive

immunization against lethal A. baumannii infection.

Results

Specific anti-A. baumannii antibodies are generated
during infection in mice

As a basis for identifying lead antigenic candidates for vaccine

development, the humoral immune response to surface proteins

from A. baumannii was determined after natural infection.
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Individually marked Balb/c mice were bled via tail-vein nicking to

determine baseline, pre-immune anti-A. baumannii cell membrane

protein antibody titers. Mice were then infected via the tail-vein

with survivable inocula (106) of six clinical isolates of A. baumannii,

five of which were carbapenem resistant (Table 1 and Table S1).

Two weeks post-infection, paired immune sera were obtained from

the mice. ELISA of paired pre-immune vs. immune sera

confirmed that mice infected with all of the strains generated

substantial increases (10–100-fold) in anti-A. baumannii cell

membrane protein IgG-antibody titers by 2 weeks post-infection

(Figure 1).

Having demonstrated a specific humoral immune response to

the organism, the immunodominant antigenic target of that

response was sought. A. baumannii cell membrane protein

preparations from all six strains used to infect mice were separated

by two dimensional gel electrophoresis and stained by western blot

using paired pre-immune and immune sera from the above

infected mice. The two dimensional gels demonstrated effective

separation by size and isoelectric focusing (IEF) of membrane

proteins from all six clinical isolates (Figure 2A). In all cases, post-

immune serum identified a limited number of unique spots not

recognized by pre-immune serum (Figure 2B).

The same three spots (Figure 2B) were selected for identification

by MALDI-TOF analysis across blots from three different A.

baumannii isolates representing different strain types (Table 1). The

protein found in all spots was identified by matrix assisted laser

desorption/ionization-time of flight (MALDI-TOF) analysis as

OmpA, which is known to be a predominant component of the

outer cell membrane of A. baumannii [47]. Anti-OmpA antibody

titers were determined in paired pre-immune vs. immune sera

from mice infected with A. baumannii. As for total anti-A. baumannii

antibodies, anti-rOmpA IgG titers increased in most mice infected

with A. baumanniii (Figure 3), confirming that OmpA is a target of

adaptive humoral immunity post-infection.

OmpA as a potential vaccine antigen
Ideal antigens for vaccine development should be conserved

across clinical isolates and should not be homologous to the

human proteome. The ompA gene was sequenced in the six clinical

isolates used for infection. The predicted protein sequence had

99% identity across all clinical isolates (Figure 4), which were

harvested 58 years apart (1951 to 2009) from varied clinical

sources (cerebrospinal fluid, lung, blood, wound; Table 1).

Alignment against 14 other sequences from A. baumannii in

PubMed revealed 89% identity across all sequences (Figure S1).

In contrast, PubMed BLAST search of the human proteome using

the ATCC 17978 OmpA sequence revealed only 7 sequences with

minimal homology (E values ranging 0.53 to 6.2). Thus OmpA is

conserved across a broad array of clinical isolates of A. baumannii

but shares minimal homology with human proteins.

To determine in vivo efficacy, a lethal infectious model was

desired. However, A. baumannii bacteremia spontaneously clears in

mice unless a host defect is present [39]. Similarly, in our initial

pilot experiments, a lethal iv infectious inoculum could not be

identified in normal Balb/c mice, unless inocula were so high that

they induced overwhelming infection resulting in death within

24 h (e.g., $109 bacilli). While neutropenia has been used to make

mice susceptible to lethal infection caused by A. baumannii

[39,40,41], neutropenia is a rare clinical risk factor for patients

with A. baumannii infections [12,21,22,23,42,43,44,45]. Thus an

alternative means to immunocompromise mice was sought. By

multivariate analysis, diabetes mellitus has been shown to be a risk

factor for acquisition of and worse outcomes from A. baumannii

infection [23,24,46], so a diabetic mouse model of mucormycosis

[28] was adapted for in vivo study of A. baumannii infections. In pilot

studies, an inoculum of 2 to 36107 of strain HUMC1 was found to

cause lethal iv infection in diabetic Balb/c mice (data not shown).

rOmpA was expressed in E. coli and purified by nickel-agarose

binding to a His tag. In the initial experiment, retired breeder (.6

months old) mice were vaccinated and boosted with rOmpA in

0.1% aluminum hydroxide (Al(OH)3). Diabetes was induced after

the boost and two weeks later, diabetic mice were infected via the

tail-vein with A. baumannii HUMC1. Vaccinated mice had

significant improvements in survival compared to adjuvant control

mice (Figure 5A). The experiment was repeated using juvenile

mice and again the vaccine improved survival compared to

adjuvant control mice (Figure 5B).

To determine the impact of vaccination on bacterial burden,

juvenile mice were vaccinated, made diabetic, and infected as

above. On day 2 post-infection (the day the control mice were

predicted to die based on the previous experiment), mice were

euthanized and organs harvested to determine tissue bacterial

burden. Vaccination reduced by approximately 10-fold the tissue

bacterial burden in all organs evaluated except for the lungs,

which had a non-significant (p = 0.08) 3-fold reduction in bacterial

burden (p,0.01 bacterial burden in vaccinated vs. control mice

for all other organs) (Figure 5C).

Antibodies in vaccine-mediated protection
The relationship between antibody titers and survival in

vaccinated mice was evaluated. In two separate experiments,

mice were vaccinated with rOmpA plus adjuvant or adjuvant

alone, boosted, and antibody titers were determined pre-infection.

Vaccination with 3 mg of rOmpA induced marked increases in

anti-rOmpA IgG antibody titers compared to control mice

(median [range] titers = 204,800 [102,400–409,600] for vaccinat-

Table 1. Bacterial Strains.*

Strain Strain Type Source Carbapenem Resistant? Comments

ATCC 17978 ST112 ATCC; cerebrospinal fluid isolate No Isolated in 1951 from a 4 month old with fatal
meningitis [54]

HUMC1 ST206 HUMC, blood and sputum isolate Yes Bacteremic VAP

HUMC4 ST208 HUMC, deep endotracheal aspirate Yes VAP

HUMC5 ST208 HUMC, bronchoalveolar lavage Yes VAP

HUMC6 ST208 HUMC, sputum Yes VAP

HUMC12 ST208 HUMC, wound infection Yes Infected diabetic stump wound

*HUMC = clinical isolates from in-patients at Harbor-UCLA Medical Center in 2009; VAP = ventilator associated pneumonia. Susceptibility results shown in Table S1.
doi:10.1371/journal.pone.0029446.t001

Acinetobacter Vaccine
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ed vs. 800 [800–2,000] for adjuvant control mice, p,0.0001).

Vaccination again protected mice from lethal infection (note

slightly lower inoculum for these experiments, 1.46107 and

1.66107 for the repeat experiments, vs. 26107 and 2.46107 in the

previous survival experiments) (Figure 6A). Antibody titers

correlated with survival (Figure 6B) when analyzing both

vaccinated and control mice combined (p,0.0001, rho = 0.5) or

just analyzing vaccinated mice without control mice (p = 0.001,

rho = 0.6 by Spearman Rank test). An IgG titer threshold of

$204,800 was maximally accurate at distinguishing survivors from

non-survivors when analyzing both vaccinated and control mice

(96%) or when analyzing just vaccinated mice (85%).

To confirm the activity of immune antibodies, serum was

harvested from donor vaccinated or control mice (rOmpA

titers = 1:409,600 from vaccinated vs. 1:3,200 from control sera).

Diabetic mice were treated ip with 0.5 ml of immune or control

serum and infected 2 hours later with A. baumannii HUMC1. Mice

treated with immune serum had markedly enhanced survival vs.

mice treated with control serum (Fig. 7A). To define the

mechanism of antibody-induced protection, A. baumannii was

cultured in the presence of immune vs. non-immune serum. A.

baumannii numbers doubled or tripled relative to growth controls

(absent serum) after 1 hour culture in both immune and non-

immune sera at both 10% and 40% (data not shown), excluding

complement-mediated killing as a mechanism of protection.

Immune serum also did not reduce CFUs relative to control

serum (Fig. 7B). However, immune serum did enhance opsono-

phagocytic killing of A. baumannii (Fig. 7B).

Discussion

Over the past decade A. baumannii has emerged to become one

of the most antibiotic-resistant causes of infections all over the

world. It is critical that new strategies are developed to prevent and

Figure 1. A. baumannii infection induces specific humoral immune response. Ten mice were infected with ATCC 17978 (top) and 2 mice
each were infected with clinical isolates from Harbor-UCLA Medical Center (HUMC) (bottom). Paired pre-immune & immune serum IgG anti-A.
baumannii cell membrane protein titers are shown. M1 = mouse 1; M2 = mouse 2.
doi:10.1371/journal.pone.0029446.g001
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treat such infections. Therefore, a rational discovery program was

undertaken to identify a candidate antigen for an A. baumannii-

targeted vaccine. Antigen discovery was based on identification of

the immunodominant targets from A. baumannii membrane protein

preparations following systemic infection. rOmpA was identified as

a promising candidate for active and passive immunization based

on humoral immunodominance during infection in mice. OmpA

was highly conserved across multiple clinical isolates, and shared

minimal homology with the human proteome. Substantial efficacy

was seen in lethal murine models in immunocompromised,

diabetic mice when administered with Al(OH)3 adjuvant.

Individual mouse antibody titers correlated with survival and

immune serum was effective during passive immunization. It has

been previously reported that A. baumannii can be resistant to

complement-mediated killing [48,49], however the complement

resistance in A. baumannii appears to be strain dependent [50]. In a

previous study, complement susceptible strains were reported to

decrease in quantity by 5 to 10-fold after 1 hour of incubation in

serum, whereas resistant strains increased during that hour by a

similar amount [50]. In the current study, the A. baumannii strains

tested doubled or tripled after 1 hour of culture in the presence of

serum (immune and non-immune), ruling out a direct comple-

ment-mediated effect. Hence, antibodies to OmpA did not

overcome the innate resistance of the organism to complement-

mediated killing. However, immune serum from vaccinated mice

did enhance opsonophagocytic killing of the organism. Collec-

tively, these results confirm that enhanced uptake and killing of A.

baumannii by antibody-based opsonophagocytosis lead to more

effective clearance of A. baumannii from tissue. Thus, phagocytic

killing of A. baumannii can be enhanced by antibodies targeting

OmpA.

A. baumannii OmpA has been found to have a variety of

interesting biological properties in in vitro model systems. For

example, OmpA has been shown to bind to eukaryotic cells,

Figure 2. A. baumannii infection induces specific anti-rOmpA antibody response. (A) Membrane protein preparations from A. baumanni
clinical strains (ATCC 17978 & HUMC1, 4, 5, 6, & 12) were run on 2 D gels stained with Coomassie Blue. (B) Western blots of those 2D gels were stained
with paired sera obtained from mice before infection (pre-serum) and after recovery from non-lethal iv infection (post-serum) with A. baumannii. 2D
gels were run at least twice for all strains, and representative figures are shown. Spots uniquely identified by post-immune serum were seen at
conserved locations. Spots selected for protein identification by MALDI-TOF analysis are marked with white arrows—these all contained OmpA.
doi:10.1371/journal.pone.0029446.g002

Figure 3. Anti-OmpA IgG antibodies were generated after infection with multiple strains of A. baumannii. Ten mice were infected with
ATCC 17978 (top) and 2 mice each were infected with HUMC clinical isolates (bottom). Paired pre-immune & immune serum IgG anti-rOmpA cell
membrane protein titers are shown.
doi:10.1371/journal.pone.0029446.g003
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translocate to the nucleus, and induce cell death [47,51].

Furthermore, OmpA binding to Factor H may be responsible

for the resistance of A. baumannii to complement-mediated killing

[48,49]. However, as mentioned, in the current study antibodies

targeting OmpA did not overcome serum resistance of the

organism. Rather, anti-OmpA antibodies enhanced opsonopha-

gocytic killing of the organism.

Recently, a whole cell, killed A. baumannii vaccine was

described which protected mice from infection [52]. The

investigators prepared crude cell membrane protein preparations

and found that the immunologically active components of the

whole cell vaccine were found in the cell membrane [53]. The

crude membrane preparation contained at least 61 separate

proteins, and the resulting mixture protected mice from lethal A.

baumannii infection. These results underscore the potential for A.

baumannii vaccines to be effective, and are complementary to the

current study, which defines one antigen as a promising lead

candidate to develop a recombinant protein based vaccine, as

opposed to a crude cell membrane extract. In contrast to the

previous study, which found that antibodies were raised against

numerous antigens when a crude membrane preparation was

used to immunize mice [53], the current study defined humoral

immune response after iv infection with viable, pathogenic

organisms, rather than immunization with membrane protein

preparations. While OmpA was identified as a predominant

protein target of humoral immunity after iv infection, the current

results cannot exclude a broader immune response to other

proteins as well.

Figure 4. OmpA was highly conserved across clinical isolates of A. baumannii. The OmpA gene was sequenced from each strain and the
predicted amino acid sequences demonstrated .99% identity.
doi:10.1371/journal.pone.0029446.g004
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Figure 5. Vaccination with rOmpA protected mice from lethal A. baumannii infection in a disseminated sepsis model. A) Survival of
retired breeder (.6 mo) diabetic Balb/c mice vaccinated with 3 mg of rOmpA plus aluminum hydroxide (AlOH3) adjuvant, or with adjuvant alone
(n = 6 adjuvant control and 8 vaccinated) and infected with 26107 A. baumannii HUMC1. B) Survival of juvenile (8–10 weeks, n = 18 mice per group)

Acinetobacter Vaccine
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In summary, rOmpA is a promising candidate for active and

passive immunization to prevent XDR/PDR A. baumannii

infections. Efficacy has been established at feasible doses with a

translatable adjuvant. Use of the vaccine elucidated opsonopha-

gocytic antibodies as the mechanism of adaptive host defense that

protected against A. baumannii infection. Anti-OmpA antibody titer

was identified as a surrogate marker of protection. These results

underscore the translational potential of rOmpA as a target for

active and passive immunization against this highly antibiotic-

resistant, rapidly emerging pathogen.

Materials and Methods

Organism and mouse strains
Six clinical isolates of A. baumannii were used (Table 1 and Table

S1). Five of the strains were resistant to all antibiotics except for

colistin. Strain typing was performed by multi-locus sequence

typing as previously described [26,27]. Balb/c mice were used for

all experiments. For some experiments, retired breeder mice

(.6 mo old) were used, whereas for other experiments juvenile (6–

10 weeks old) Balb/c mice were used. Diabetes was induced by

intraperitoneal injection of 200 mg/kg streptozotocin in 0.2 ml

citrate buffer 10 days prior to infection. Glycosuria and ketonuria

were confirmed in all mice 7 days after streptozotocin treatment,

as previously described [28].

Cell Membrane Preparations, Western Blots, 2
Dimensional Gel Imaging, and Protein Identification

A. baumannii cell membrane preparations were produced by a

modification of a standard, published method [29,30]. In brief,

diabetic Balb/c mice vaccinated with 3 mg of rOmpA plus adjuvant or adjuvant alone and infected with 26107 A. baumannii HUMC1. C) Tissue
bacterial burden in vaccinated (3 mg) or control diabetic mice (n = 10 control and 13 vaccinated) infected with 107 A. baumannii HUMC1. Median and
interquartile ranges are shown. * p,0.05 vs. adjuvant control.
doi:10.1371/journal.pone.0029446.g005

Figure 6. Anti-rOmpA antibody titers correlated with survival
in infected mice. A) Survival of juvenile diabetic Balb/c mice
vaccinated with 3 mg of rOmpA plus adjuvant or adjuvant alone
(n = 20 mice per group from 2 experiments) and infected with 1.4 or
1.66107 A. baumannii HUMC1 in the sequential experiments. The
experiments were terminated at 28 days with all remaining mice
appearing clinically well. B) Antibody titers of individual vaccinated
(n = 26) and control (n = 28) mice vs. day of death.
doi:10.1371/journal.pone.0029446.g006

  

 

Figure 7. Passive immunization with immune serum from
rOmpA-vaccinated mice protected recipient mice from lethal
infection. A) Survival of juvenile diabetic Balb/c mice (n = 10 per
group) treated ip with immune (from OmpA vaccinated donor mice) or
non-immune (from adjuvant treated donor mice) serum 2 hours before
tail-vein infection with 26107 A. baumannii HUMC1. The experiments
were terminated at 28 days with all remaining mice appearing clinically
well. *p = ,0.0001 vs. non-immune serum. B) Opsonophagocytic killing
of A. baumannii HUMC1 by immune (from OmpA vaccinated mice) or
control (from adjuvant treated mice) serum incubated without or with
RAW 247.6 macrophages. Median and interquartile killing is shown,
normalized to the control serum. Results are from 8 to 12 samples per
group, from 3 separate experiments. *p,0.05 vs. all other groups.
doi:10.1371/journal.pone.0029446.g007

Acinetobacter Vaccine

PLoS ONE | www.plosone.org 8 January 2012 | Volume 7 | Issue 1 | e29446



A. baumannii strains were grown overnight at 37uC with shaking in

tryptic soy broth (TSB). The bacteria were passaged to mid-log-

growth at 37uC with shaking, washed, and the resultant pellet was

resuspended in disintegration buffer (7.8 g/L NaH2PO4, 7.1 g/L

Na2HPO4, 0.247 g/L MgSO4 7.H2O+protease inhibitor mix (GE

Healthcare, USA)+nuclease mix (GE Healthcare, USA)) and

sonicated on ice for 3 periods of 5 min. The unbroken cells were

separated by centrifugation at 1,500 g. The supernatant was

centrifuged for 30 min at 4uC at 4,500 rpm and was passed

through a 0.45 mM filter (Milipore, USA) to remove cell debris. An

equal volume of ice-cold 0.1 M sodium carbonate (pH 11) was

added to the resulting supernatant and the mixture was stirred

slowly overnight, on ice. The carbonate treated membrane

proteins were collected by ultracentrifugation at 100,000 g for

45 min at 4uC, and the membranes were re-suspended in 500 ml

H2O. Finally, the protein extract was processed with a 2-DE

Cleanup Kit (Bio-Rad, USA).

Two dimensional SDS/10%-PAGE gels of A. baumannii cell

membrane preparations were used to separate proteins by size and

isoelectric focusing (IEF), as described by Pitarch et al [31,32]. For

isoelectric focusing (IEF), the Bio-Rad-PROTEIN IEF system was

used (Bio-Rad, USA) with 4–7 pH gradient strips (ReadyStrip IPG

strips, Bio-Rad, USA). Proteins were solubilized in 8 M urea, 2%

(w/v) CHAPS, 40 mM DTT and 0.5% (v/v) corresponding

rehydrated buffer (Bio-Rad, USA). The strips were rehydrated

overnight and underwent electrophoresis at 250 V for 20 min,

4000 V for 2 h, and 4,000 V for 10,000 V-h, all at room

temperature. Prior to the second dimension (SDS-PAGE), the

focused IPG strips were equilibrated with buffer I and II for

10 min (ReadyPrep 2-D Starter Kit, Bio-Rad, USA). The proteins

were separated on 8–16% Criterion Pre-cast Gel (Bio-Rad, USA)

and transferred to immune-Blot PVDF membranes (Bio-Rad,

USA). Membranes were treated with Western Blocking Reagent

(Roche) overnight and probed with pre-immune or immune A.

baumannii infected-mice serum. Membranes were washed and

incubated with secondary, HRP-conjugated goat anti-mouse IgG

(Santa Cruz Biotech, USA). After incubation with SuperSignal

West Dura Extended Duration Substrate (Pierce, USA), signals

were detected using a CCD camera.

Protein spots of interest were excised and sent to the UCLA W.

M. Keck Proteomic Center for identification on a Thermo LTQ-

Orbitrap XL mass spectrometer (San Jose, CA) equipped with an

Eksigent (Dublin, CA) NanoLiquid chromatography-1D plus

system and an Eksigent autosampler. Proteins within the spots

were in-gel tryptic digested as described by Shevchenko et al.

[33,34]. The eluted peptides were loaded onto a CVC Microtech

(Fontana, CA ) 35 mm length, 100 mm ID C18 pre-Trap column

and washed for 10 min with 100% Buffer A (2% acetonitrile

containing 0.1% formic acid) at a flow rate of 5 ml/min. The

peptides were separated on a 15 cm New Objective ProteoPep

IntegraFrit column (Woburn, MA) using a flow rate of 300 nl/min.

The following elution gradient was used: 0–15 min 0–30% Buffer B

(98% acetonitrile containing 0.1% formic acid), 15–20 min 30–80%

Buffer B and 20–22 min 80% Buffer B. The column was then re-

equilibrated for 13 min with Buffer A. The eluting analytes were

sprayed in positive mode into the LTQ-Orbitrap MS using

electrospray ionization voltage of 2300 V, capillary voltage of

45 V, tube lens of 130 V, and capillary temperature of 200uC.

Information dependent acquisition was performed where the 6 most

intense ions were selected in the m/z range of 300–1600 using a

60 K resolution FTMS scan and subjecting them to MS-MS using

broadband collision induced disassociation of normalized collision

energy of 35 and LTQ detection. Peaks were excluded from further

MS-MS for a period of 60 sec.

The resulting MS/MS spectra was searched against the

Acinetobacter baumannii strain ATCC 17978 database (http://gib.

genes.nig.ac.jp/single/blast2/main.php?spid = Abau_ATCC17978)

using the Matrix Science MASCOT Daemon search engine (Boston,

MA). The following search parameters were used: peptide tolerance:

610 ppm, MS/MS tolerance 60.3 Da, maximum missed cleavag-

es: 2, fixed modifications: carboxymethyl (C) and variable modifi-

cations: deamidization (ND) and oxidation (M). Proteins identified

within a particular included those with a minimum of two unique

peptides that are ranked as number 1 and with an ion scores with a

p,0.05.

rOmpA Production and Immunization
His-tagged rOmpA (amino acids 2 to 347) was produced in an

Escherichia coli pQE-32 expression system (Qiagen) as previous

described [35,36]. Briefly, ompA was amplified from A. baumannii

17978 genomic DNA with primers OmpA-F CATCACCATGG-

GATCCTTGTTGCTGCTCCATTAGCT and OmpA-R CTAAT-

TAAGCTTGGCTGCAGTTATTGAGCTGCTGCAGGA and cloned

into QE-32 by using In-Fusion 2.0 Dry-Down PCR Cloning Kit,

per the manufacturer’s instructions (Clontech Laboratories). The

6X-His tagged protein was purified over a Ni-agarose affinity

column according to the manufacturer instructions (Qiagen).

Endotoxin was removed from rOmpA by using Detoxin Gel

Endotoxin Removing Columns (Norgen Biotek, Canada), and the

endotoxin level was determined with Limulus Amebocyte Lysate

endochrome (Charles River) per manufacturer’s instruction. Using

this procedure, endotoxin was reduced to 1 to 4 EU per 3 mg dose

used for vaccination. Mice were immunized by subcutaneous

injection of 3 mg of rOmpA in 0.1% Al(OH)3 (Alhydrogel,

Brenntag Biosector, Frederikssund, Denmark) in phosphate

buffered saline (PBS). Control mice received adjuvant alone on

the same schedule. Mice were immunized 5 weeks prior to

infection and again 2 weeks prior to infection. Four days after the

boost (10 days prior to infection), mice were rendered diabetic as

described above.

Mouse model of infection
A. baumannii strains were grown overnight at 37uC with shaking

in TSB broth. The bacteria were passaged to mid-log-growth at

37uC with shaking. Cells were washed twice with PBS and

resuspended at the appropriate concentration for infection. The

final concentration was confirmed by quantitative culturing of the

inocula. Mice were infected iv via the tail-vein with sublethal (106)

or lethal (targeted 26107) inocula in PBS. All animal work was

conducted after approval by the Institutional Animal Use and

Care Committee at the Los Angeles Biomedical Research Institute

(project 012447), in compliance with the recommendations in the

Guide for the Care and Use of Laboratory Animals of the National

Institutes of Health.

Two days after infection (the day on which control mice were

anticipated to begin dying), organs were harvested and homog-

enized in sterile PBS. Homogenized organs from individually

marked mice were quantitatively cultured to determine tissue

bacterial burden.

ELISAs
A previously published ELISA assay [37,38] was adapted for

detection of antibodies against A. baumannii cell membrane

preparations and rOmpA. In brief, ELISA plates were coated

with 100 ml per well of 5 mg/ml of rOmpA or cell membrane

preparation. Coated wells were blocked with bovine serum

albumin, incubated with mouse sera, washed, and stained with

goat anti-mouse secondary antibody conjugated with horseradish
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peroxidase. Wells were washed again and incubated with o-

phenylenediamine substrate with H2O2. The color was allowed to

develop for 20 min after which the reaction was terminated by

adding equal volume of 3N HCl and the optical density (OD) was

determined at 490 nm in a microtiter plate reader. Negative

control wells received an irrelevant isotype control monoclonal

antibody rather than mouse serum. The ELISA titer was taken as

the reciprocal of the last serum dilution with an OD read-

ing$(mean OD of negative control samples+(standard deviation *

2)).

Complement and Opsonophagocysis Assays
A. baumannii HUMC1 was cultured overnight in tryptic soy

broth (TSB) at 37uC, passaged to mid-log growth, rinsed, and

aliquoted into 96 well microtiter plates. For complement studies,

10% or 40% non-immune or immune sera were added to the wells

for 1 hour. Well contents were quantitatively cultured at baseline

and again at 1 h. The opsonophagocytic kill assay was based on a

modification of a previously used method [25–26]. Murine RAW

264.7 macrophage cells (American Type Culture Collection,

Rockville, MD) were cultured at 37uC in 5% CO2 in RPMI 1640

(Irvine Scientific, Santa Ana, CA) with 10% fetal bovine serum

(FBS), 1% penicillin, streptomycin, and glutamine (Gemini

BioProducts), and 50 mM b-mercaptoethanol (Sigma-Aldrich, St.

Louis, MO). RAW 274.7 cells were activated by 3 days of

exposure to 100 nM PMA (Sigma-Aldrich). Activated RAW 264.7

macrophages were harvested after scraping with BD Falcon cell

scrapers (Fischer Scientific) and added to the microtiter wells at a

20:1 ratio of macrophages to bacteria. After a 1 hour incubation

with gentle shaking, aliquots from the wells were quantitatively

plated in tryptic soy agar (TSA). Colony forming units (CFU) of

individual tubes were normalized to the average CFUs in tubes

with control serum, and percent killing was calculated as 12(CFUs

from the individual tube/average CFU in tubes with control

serum).

Statistics
Survival was compared by the non-parametric Log Rank test.

Antibody titers and bacterial burden were compared with the

Wilcoxon Rank Sum test for unpaired comparisons or the

Wilcoxon Signed Rank test for paired comparisons, as appropri-

ate. Multiple comparisons were corrected by the Tukey non-

parametric test. Correlations were determined by the Spearman

Rank test. All statistics were run using Kyplot. Differences were

considered significant if the p value was ,0.05.

Supporting Information

Figure S1 Homology of rOmpA to A. baumannii strains.
OmpA is .99% homologous at the amino acid level across the six

clinical isolates of A. baumannii used in the current study, including

carbapenem-susceptible and carbapenem-resistant strains. C) 14

additional with sequences in Pubmed Genbank.

(TIFF)

Table S1 Susceptibility Testing for Strains Studied.

(DOC)
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