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Abstract

The glutamate transporter GLT-1 is responsible for the largest proportion of total glutamate transport. Recently, it has been
demonstrated that ceftriaxone (CEF) robustly increases GLT-1 expression. In addition, physiological studies have shown that
GLT-1 up-regulation strongly affects synaptic plasticity, and leads to an impairment of the prepulse inhibition, a simple form
of information processing, thus suggesting that GLT-1 over-expression may lead to dysfunctions of large populations of
neurons. To test this possibility, we assessed whether CEF affects cortical electrical activity by using chronic
electroencephalographic (EEG) recordings in male WKY rats. Spectral analysis showed that 8 days of CEF treatment
resulted in a delayed reduction in EEG theta power (7–9 Hz) in both frontal and parietal derivations. This decrease peaked at
day 10, i.e., 2 days after the end of treatment, and disappeared by day 16. In addition, we found that the same CEF
treatment increased motor activity, especially when EEG changes are more prominent. Taken together, these data indicate
that GLT-1 up-regulation, by modulating glutamatergic transmission, impairs the activity of widespread neural circuits. In
addition, the increased motor activity and prepulse inhibition alterations previously described suggest that neural circuits
involved in sensorimotor control are particularly sensitive to GLT-1 up-regulation.
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Introduction

The amino acid L-glutamate (Glu) is the major excitatory

neurotransmitter in the mammalian central nervous system, and is

involved in most aspects of normal brain function, including fast

excitatory signaling, synaptogenesis, and synaptic plasticity [1,2].

Extracellular Glu levels are regulated by a group of Glu

transporters (GluTs) that take up Glu from extracellular space,

preventing its accumulation. Five GluTs have been characterized

in the mammalian central nervous system: GLAST (EAAT1;

SLC1A3), GLT-1 (EAAT2; SLC1A2), EAAC1 (EAAT3;

SLC1A1), EAAT4 (SLC1A6) and EAAT5 (SLC1A7); of these,

GLT-1 exhibits the highest level of expression, is responsible for

the largest proportion of total Glu transport and its functional

inactivation raises extracellular Glu to toxic levels [2–9]. GLT-1 is

expressed by astrocytes [10–14], and, albeit at lower levels, by

neurons [13–17]. In both astrocytic processes and axon terminals,

most GLT-1a is perisynaptic, i.e. in the plasma membrane region

extending 200–250 nm from the edge of the active zone [13], a

position suitable for modulating Glu concentration in the cleft.

Due to its localization, GLT-1 controls the glutamatergic

transmission by regulating the activation of the receptors mainly

expressed at perisynaptic sites, thus playing an important role in

synaptic physiology and pathophysiology [9,18]. Several diseases

indeed have been associated to changes of GLT-1 expression

[1,19–21], and more recent observations suggest that GLT-1

could be an ideal pharmacological target to prevent those

conditions characterized by increased levels of extracellular Glu

[22–24].

Rothstein and colleagues have recently shown that ceftriaxone

(CEF) increases robustly and specifically GLT-1 expression and

function [22]. Using this tool, we recently characterized GLT-1

up-regulation in different brain regions, and showed that CEF

robustly increases GLT-1 expression in neocortex, hippocampus,

striatum and thalamus. In addition, physiological studies have

shown that GLT-1 up-regulation strongly affects the efficacy of the

glutamatergic transmission [18], and leads to an impairment of the

prepulse inhibition, a simple form of information processing

[25,26]. Altogether, these data suggest that CEF-induced GLT-1

over-expression has widespread effects on brain’s functions

involving large populations of neurons. To test this possibility,

we assessed whether CEF treatment affects cortical activity by

performing chronic electroencephalographic (EEG) recordings

coupled with videorecordings in rats before and after CEF

treatment.

Results

Ceftriaxone reduces theta (7–9 Hz) power
Analysis of EEG traces did not show pathological elements (e.g.,

epileptic discharges or gross signal modifications) after CEF

treatment (Figure 1). Power spectra analysis carried out on waking

epochs at different time points showed that CEF administration

was associated to a reduction (211.461.2% frontal, 210.961.2%
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parietal) in theta power (7–9 Hz) (Figure 2A). The analysis was

performed by dividing the EEG spectrum in 200 bins (1–200,

frequency range 0.25–50 Hz, resolution 0.25 Hz) and comparing

each bin across the different time points with a repeated-measure

ANOVA. Statistically significant bins were further compared to

the respective baseline value (day 0) by Dunnett’s post-hoc test. The

analysis showed that no significant differences were present at day

1, indicating that CEF did not affect EEG after a single injection.

However, a significant cluster of bins corresponding to frequencies

ranging between 7.5 Hz and 8.5 Hz was evident in both frontal

and parietal channels at day 10 (p,0.05), i.e., two days after CEF

withdrawal. Other frequency bands were not affected. At day 16,

the same analysis did not show any significant difference,

indicating that the effect of CEF on EEG was reversible

(Figure 2B). Extending the analysis to different time points and

taking into account a specific band (7–9 Hz), we showed that CEF

treatment had a significant effect on EEG [F(5,25) = 4.6, p,0.01

frontal channel, F(5,25) = 3.8, p,0.05 parietal channel]. Post-hoc

analysis of single time points compared to the baseline showed that

theta power reduction started at day 8, even if not significantly,

peaked at day 10, persisted for a few days (days 10 and 12 both

p,0.05), and then faded at day 16 (Figure 2C and D). Although

our study was mainly focused on waking, we also analyzed the

EEG power spectra during sleep, and found significant differences

for NREM and REM sleep at day 10. Power spectrum analysis,

performed on frontal and parietal channels, showed a decrease in

power for frequencies ranging between 7 and 13 Hz for NREM

sleep, whereas a theta reduction, similar to the one demonstrated

for waking, was documented for REM sleep (Figure 2E and F).

Ceftriaxone treatment is associated to an increase of
motor activity

Since changes in theta activity are strongly associated to changes

in motor behavior in rats [27–29], we investigated whether our

animals showed motor abnormalities due to CEF treatment.

Firstly, we determined whether CEF treatment modifies the time

spent in waking and sleep, in order to rule out that changes in

motor activity were simply a consequence of changes in wake

duration. To this aim, we performed a quantitative analysis of the

total amount of waking, NREM and REM sleep epochs scored,

and found no significant differences, neither during the 10 days of

treatment nor afterwards [waking: F(5,25) = 0.98, ns; NREM:

F(5,25) = 1.2, ns; REM: F(5,25) = 0.26, ns; Figure 3A].

Since the amount of waking and sleep time did not change with

CEF treatment, we next evaluated whether the type or ‘‘intensity’’

of motor activity have been affected by CEF treatment. We

therefore analyzed both EMG traces and video recordings before

and after treatment, and quantified EMG and Motion activity,

respectively. By setting a threshold equal to 95th percentile of

EMG or Motion activity during all NREM sleep episodes (see

Methods), we assessed the amount of motor activity occurring

during active and quiet waking. For active waking, time-course

analysis of EMG activity during the light period showed a

significant effect of time [F(5,25) = 5.8; p,0.01], and post-hoc

comparisons showed a significant increase on day 10 and 12

compared to baseline (p,0.01 for each time points). In addition,

analysis of EMG activity during the dark period showed a similar

significant effect of time [F(5,25) = 7.4; p,0.001] with a significant

increase on day 10 compared to baseline (p,0.01) at post-hoc

comparisons. For quiet waking, the same analysis carried out for

both dark and light period resulted not significant [light:

F(5,25) = 1.08, ns; dark F(5,25) = 1.04, ns] (Figure 3C). EMG data

were confirmed by video recordings analysis. For active waking,

motion activity measured on the same animals was increased after

the end of treatment for both light and dark periods. Time-course

analysis showed an overall effect of time [F(5,25) = 4.1 p,0.01 for

light period; F(5,25) = 3.93 p,0.01 for dark period] and

subsequent comparisons confirmed a significant increase of

activity at day 10 (p,0.01 for dark period, p,0.05 for light

period) compared to the baseline. On the contrary, motion activity

measured for quiet waking did not change through the course of

the experiment [dark: F(5,25) = 0.93, ns; light: F(5,25) = 1.01, ns]

(Figure 3D). Taken together, these data show that CEF treatment

is associated to a time-limited increase of motor activity after

treatment withdrawal with a peak at day 10. Next, we verified

whether the time course of the increase of motor activity and theta

power reduction were correlated. We found that both EMG and

Motion activity were negatively correlated to theta power decrease

(r = 20.89, p,0.05; r = 20.94, p,0.01, respectively, Figure 3E

and F).

Discussion

The main result reported here is that one week CEF treatment

resulted in a delayed reduction in EEG theta power (7–9 Hz) in

both frontal and parietal derivations. This decrease peaked at day

10, 2 days after the end of treatment, and disappeared by day 16.

In addition, we found that the same CEF treatment increased

motor activity, especially during those experimental days in which

the EEG changes are more prominent.

Since EEG is sensitive to different environmental conditions and

animal manipulations [30], we assessed the effects of CEF by using

a within-subjects design, comparing data before and after CEF

treatment. To rule out the possibility that EEG changes reflected

the chronic effect of i.p. injections and/or treatment withdrawal

rather than the actual effect of CEF, we continued to treat the

animals with daily saline i.p. injections until the end of the

experiment. In this way, the animals were exposed every day to the

same manipulation for the entire length of the experiment,

minimizing possible interferences of animal handling on the EEG

analysis.

Although it has been well documented that CEF treatment can

affect the expression of the major Glu transporter GLT-1 in

rodents [22,25,31,32], we did not measure GLT-1 levels in treated

animals because of our experimental design. Nonetheless, using

the same treatment schedule, we previously showed that CEF-

induced GLT-1 modifications persist for at least four days after the

end of treatment, and return to baseline level eight days after the

end of treatment [25]. The delayed emergence of electrophysio-

logical and behavioral changes relative to GLT-1 up-regulation,

which can be documented at day 8 [25], may indicate that all the

synaptic modifications observed and their functional consequences

[18,26] require time to affect the dynamics of large neuronal

populations and lead to behavioral changes.

In rodents, theta oscillations are easily observed in the

hippocampus, but can also be detected in other cortical and

subcortical brain structures [33–35]. Historically, they have been

associated to learning and memory and voluntary movements [36–

40]. Lesions at different level of the hippocampal formation

correlate to sizeable reductions of the hippocampal theta rhythm

and to impairments of memory tasks [38,41–43]. Parallel

augmentation of long-term synaptic potentiation and theta activity

was described by Maren and collaborators in a contextual fear-

conditioning task [44], and more recent electrophysiological

studies showed an increase of theta rhythm associated with

induction of long-term potentiation [45], thereby suggesting a

close relationship between theta oscillations and long-term

synaptic plasticity [46]. Recently, Omrani and colleagues

Effect of GLT-1 Up-Regulation on EEG Activity
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demonstrated that CEF-induced GLT-1 up-regulation at CA3

synapses impairs long-term plasticity, by preventing perisynaptic

metabotropic receptors activation [18]. It is worth noting that our

results are in line with these findings, and it is therefore

conceivable to hypothesize that changes in synaptic plasticity

can interfere with the normal function of the hippocampus, which

in turn can generate a lower degree of synchronization, visible as a

reduction in EEG theta power. Omrani and colleagues also

showed that baseline fEPSPs were not affected by CEF treatment,

indicating that the glutamatergic function is altered by GLT-1 up-

regulation only when synapses undergo long-term plasticity [18]. It

is therefore conceivable that AMPA receptors activation at the

glutamatergic synapses, even in a condition of reduced synaptic

plasticity, could ensure a normal EEG signal. This might explain

why the observed decrease in theta activity was not associated with

an overall decrease in EEG power over the entire range of

frequencies.

It is worth noting that we also found modifications of NREM

and REM sleep power spectrum at day 10. Specifically, the

analysis of NREM power spectrum showed a significant reduction

of a broad band ranging between 7 and 13 Hz, which includes the

spindle frequency band, suggesting that other pattern generators

beside the hippocampus might be affected by CEF treatment.

Interestingly, in a previous study we found that the GLT-1 is up-

regulated by CEF in several brain regions, including thalamus and

cerebral cortex, brain regions crucial in spindles formation and

propagation [47]. REM sleep normally is characterized by a

robust theta activity in rodents, and several lines of evidence

indicate that modifications in waking theta activity can be reflected

in REM theta activity [48–50]. Along this line, we found a

decrease in theta power during REM sleep resembling the one

observed during waking, although less prominent. The combined

theta reduction in waking and in REM sleep induced by CEF

could be ascribable to an impairment of a common circuit

promoting theta formation in the two behavioral states.

Rats treated with CEF showed an increase of motor activity

occurring after the end of treatment, i.e., when EEG alterations

were clearly evident. Reportedly, theta is the electrical sign of

activity in a forebrain mechanism that is organizing higher

voluntary motor acts [27,51,52]. Evidence suggests that there are

two distinct types of hippocampal theta rhythm in behaving

animals: the first (4–7 Hz) appears when animals are immobile or

during repetitive acts such as sniffing or whiskers movements

[53,54]; the second one is more directly linked to voluntary motor

behaviors (i.e., walking, running, rearing etc) and it is character-

ized by higher frequency (7–10 Hz) [29]. In physiological

Figure 1. Lack of pathological elements after ceftriaxone treatment. A. Schematic description of electrodes location. B. Saline and CEF
Treatment schedule. Day 0 represents the baseline. C. Waking absolute spectra, raw EEG and EMG signals of baseline, day 10 and day 16. Signals
appeared stable across the entire length of the experiment and the signal quality was not affected by CEF treatment.
doi:10.1371/journal.pone.0034139.g001
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conditions, motion speed is associated to the frequency of theta

rhythm, as indicated by studies reporting that the higher is the

speed, the faster is frequency [28,55,56]. Moreover, electrophys-

iological studies demonstrated that theta activity recorded while

the animal was running is larger than during walking, thus

suggesting that the amplitude of theta rhythm increases as the

intensity of movement increases [51]. On the contrary, our results

show a reduction of EEG theta power when motor activity is

increased. By assessing separately motor activity during active and

quiet waking we found that only active waking (mostly

characterized by exploratory behavior) was affected by CEF

treatment, thereby revealing a dissociation between theta power

and motor activity. Of note ketamine, another drug that affects

glutamatergic transmission, when administered to mimic patho-

logical states (i.e., schizophrenia) causes both an increase in motor

activity and a decrease in EEG theta power [57–59]. Thus, it

appears that the reduction of theta power, at least in non-

physiological, drug-induced conditions, can be associated with an

increase in motor activity. In addition, drug-induced motor

activity is often mediated by aberrant activation of basal ganglia

and cerebral cortex [60]. It is therefore possible that glutamatergic

alterations also affecting those structures [25,26] may contribute to

the increase of motor activity we observed. In support to the

possible co-occurrence of theta activity reduction and increased

motor activity, we also asked whether the time courses of those

alterations were correlated. We found indeed a significant

correlation between the EEG changes and the motor modifica-

tions, supporting a link between them, although a causal

relationship still remains to be established.

In addition, there is evidence that theta oscillations play a role in

integrating sensorimotor information [52,61]. It is well known that

a simple measure to evaluate sensorimotor integration in animals

Figure 2. Power spectra analysis following ceftriaxone administration. A. Reduction in theta power at day 10. Waking mean absolute power
spectra of Day 0 and Day 10 for frontal (above) and parietal (below) EEG channel. B. Power spectra analysis relative to the baseline illustrating a
reduction of theta power at Day 10 (shown in detail for single animals in the small inset) and a return to the baseline eight days after CEF withdrawal
(Day 16) in frontal (above) and parietal (below) EEG channels. Statistical significance (p,0.05) is represented by black dots. Values are mean 6 sem. C.
Time course analysis of relative spectra (7–9 Hz frequency band) showing a significant reduction of theta power for frontal and parietal channels two
days (Day 10) and four days (Day 12) after CEF withdrawal compared to the baseline (Day 0). *p,0.05. Values are mean 6 sem. D. Example of power
spectrum relative to the baseline for a representative animal during the entire length of the experiment. E. Frontal and parietal relative spectra
showing a broad band (7–13 Hz) reduction in power during NREM sleep at day 10. Statistical significance (p,0.05) is represented by black dots.
Values are mean 6 sem. F. Frontal and parietal relative spectra showing a reduction in theta power during REM sleep at day 10. Statistical
significance (p,0.05) is represented by black dots. Values are mean 6 sem.
doi:10.1371/journal.pone.0034139.g002
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and in humans is prepulse inhibition of the startle reflex [62,63],

which reflects the ability of the brain to temporarily adapt to a

strong sensory stimulus when a preceding weaker signal is given to

warn the organism [62,63]. PPI is a neurological phenomenon

regulated by a complex interplay between several brain structures,

including cortical and subcortical sites [64]. Interestingly, we

recently demonstrated that the PPI was impaired in rats treated

with CEF and that this deficit was blocked by dihydrokainate, a

selective GLT-1 inhibitor [25], thus suggesting that sensorimotor

integration is affected by GLT-1 up-regulation.

Taken together, these data indicate that GLT-1 up-regulation,

by modifying the efficacy of the glutamatergic transmission,

impairs the activity of widespread neural circuits and that the

reduction in EEG theta power could be its electrophysiological

signature. In addition, the increased motor activity and PPI

alterations previously described suggest that neural circuits

involved in sensorimotor control are particularly sensitive to

changes in the efficacy of glutamatergic transmission induced by

GLT-1 up-regulation.

Materials and Methods

Ethics statement
Animal protocols followed the National Institutes of Health

Guide for the Care and Use of Laboratory Animals, in accordance

with institutional guidelines. They were reviewed and approved by

the IACUC of the University of Wisconsin-Madison, and were

inspected and accredited by AAALAC (Protocol M2006).

Animals, surgery and treatment
Male WKY rats (n = 6, Harlan, 11–12 weeks old at time of

surgery) were used. Under deep isoflurane anesthesia (1.5–2%

volume), rats were implanted bilaterally with epidural screw

electrodes over the frontal (B: +2 mm, L: 2 mm) and parietal

cortex (B: 22 mm, L: 4 mm) and cerebellum (reference electrode

and ground) for chronic EEG recordings. Electrodes were fixed to

the skull with dental cement. Two stainless steel wires (diameter

0.4 mm) were inserted into neck muscles to record electromyo-

gram (EMG) (Figure 1A).

After surgery, all rats were housed individually in transparent

plexiglas cages (36.5625646 cm), and kept in sound-proof

recording boxes for the duration of the experiment. Light and

temperature were kept constant (LD 12:12, light on at 10 am,

2361uC; food and water were available ad libitum and replaced

daily at 10 am). About seven days were allowed for recovery after

surgery, and experiments were started only after animals were fully

recovered. Animal protocols followed the National Institutes of

Health Guide for the Care and Use of Laboratory Animals and

were in accordance with institutional guidelines.

Rats were connected by a flexible cable to a commutator

(Airflyte, Bayonne, NJ) and recorded continuously for 4 weeks

Figure 3. Effects of ceftriaxone treatment on motor activity. A. Time-course of the amount of time expressed in 4s epochs spent in waking,
NREM and REM sleep. Values are expressed as mean 6 sem. B. Example of EMG activity during the entire length of the experiments. Note the intense
activity after the end of CEF treatment. The grey line represents the threshold above and below which the motor activity is identified as active waking
or quiet waking, respectively. C–D. Quantitative analysis of EMG activity (C) and Motion activity (D) during active and quiet waking for light and dark
periods. Values are relative to the baseline (day 0) and expressed as mean 6 sem. * (p,0.05), ** (p,0.01). E–F. Negative correlation between the
time-course of relative theta power and the EMG (E) or Motion activity (F).
doi:10.1371/journal.pone.0034139.g003
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using the Multichannel Neurophysiology Recording and Stimula-

tion System (Tucker-Davis Technologies Inc., TDT).

Rats were treated intraperitoneally (i.p.) for two days with saline

(day 1 was for habituation, day 2 was the baseline), followed by

CEF (dissolved in saline [,0.2 ml] and administered i.p. at a dose

of 200 mg/kg; [25]) for 8 days, and then with saline i.p. for 8 days.

All injections were administered at 10 am (Figure 1B).

Data acquisition and analysis
EEG and EMG. EEG and EMG signals were amplified and

filtered as follows: EEG: high-pass filter at 0.1 Hz; low-pass filter at

100 Hz; EMG: high-pass filter at 10 Hz; low-pass filter at 100 Hz.

All signals were sampled and stored at 256 Hz resolution. EEG

power spectra were computed by a Fast Fourier Transform

routine for 4-s epochs (0.25 Hz resolution). For staging, signals

were loaded with custom-made Matlab programs using standard

TDT routines, and subsequently transformed into the EDF

(European Data Format) with Neurotraces software. Waking,

NREM sleep, and REM sleep were manually scored off-line

(SleepSign, Kissei COMTEC, Matsumoto, Japan) in 4-s epochs

according to standard criteria. Epochs containing artifacts,

predominantly during active waking, were excluded from

spectral analysis. Vigilance state could always be determined.

EEG channels presenting artifacts or abnormal reduction of signal

amplitude during the entire duration of the experiment were not

included in the analysis. At the end, all animals had at least one

valid channel from frontal and parietal cortices. Absolute spectra

revealed a normal pattern in all the animals recorded before and

after CEF treatment (Figure 1C).

EMG signals were loaded with custom-made Matlab programs

and rectified amplitudes were calculated over 4-s epochs and used

to quantify the activity of the animals. The magnitude of this index

corresponded to the amount of motor activity that occurred during

that 4-sec epoch. A threshold, below and above which all waking

epochs were classified as quiet waking and active waking,

respectively, was determined by calculating the 95th percentile of

EMG activity during all NREM sleep episodes [65]. This method

accurately identified periods of relative inactivity during waking, in

which the animals were quiet or performed little movements (such

as head movements or postural adjustments), but staying at the

same place, and more active periods in which animals were

engaged in explorative activities.

Video-Recordings. Video recordings were performed

continuously with infrared cameras (OptiView Technologies,

Inc. Potomac Falls, VA) and stored in real time (AVerMedia

Technologies, Inc. Milpitas, CA). A custom-made Matlab script

was used for analysis. The program detected animal motion every

second within a previously set monitored area (corresponding to

the cage area), by calculating the numbers of pixels whose intensity

changed over time. Specifically, it compared the last image with

the following one and defined a value in percent of changes

occurring every second. These values and the relative time were

then daily saved in a txt report file and subsequently loaded with

custom-made Matlab programs. Percentage values (Motion

activity) for light and dark periods were processed separately,

because cameras showed a different sensibility in detecting motion

in different light conditions.

A threshold corresponding to the mean amount of pixels

changing during NREM sleep was set to classify active versus quiet

waking as for EMG studies.
Statistical analysis. For EEG analysis, mean absolute EEG

spectrum values for each state were normalized by dividing each

0.25 Hz bin value by the total mean value. For time-course

studies, EEG, EMG and Motion activity, all values at different

time points during the experimental days were compared to the

corresponding baseline (Day 0) values. Comparisons were

performed by using a repeated-measure ANOVA, with time as a

within factor, follow by Dunnett’s post-hoc test or a paired t-test in

presence of multiple or single comparisons, respectively. Pearson’s

correlation coefficient was calculated for correlative studies

between EMG or motion activity and theta relative power.

Alpha was set at 0.05.

Author Contributions

Conceived and designed the experiments: MB VV GT CC FC. Performed

the experiments: MB VV CC. Analyzed the data: MB VV GT CC FC.

Contributed reagents/materials/analysis tools: GT CC FC. Wrote the

paper: MB VV GT CC FC.

References

1. Conti F, Hicks TP (1996) Excitatory Amino Acid & the Cerebral Cortex.

Cambridge, (MA): MIT Press.

2. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65: 1–105.

3. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, et al. (1996)

Knockout of glutamate transporters reveals a major role for astroglial transport

in excitotoxicity and clearance of glutamate. Neuron 16: 675–686.

4. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, et al. (1997)

Epilepsy and exacerbation of brain injury in mice lacking the glutamate

transporter GLT-1. Science 276: 1699–1702.

5. Conti F, Weinberg RJ (1999) Shaping excitation at glutamatergic synapses.

Trends Neurosci 22: 451–458.

6. Rusakov DA, Kullmann DM, Stewart MG (1999) Hippocampal synapses: do

they talk to their neighbours? Trends Neurosci 22: 382–388.

7. Kanai Y, Hediger MA (2004) The glutamate/neutral amino acid transporter

family SLC1: molecular, physiological and pharmacological aspects. Pflugers

Arch 447: 469–479.

8. Torres GE, Amara SG (2007) Glutamate and monoamine transporters: new

visions of form and function. Curr Opin Neurobiol 17: 304–312.

9. Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway

excitation by shaping synaptic transmission. Nat Rev Neurosci 8: 935–947.

10. Danbolt NC, Storm-Mathisen J, Kanner BI (1992) An [Na++K+]coupled L-

glutamate transporter purified from rat brain is located in glial cell processes.

Neuroscience 51: 295–310.

11. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, et al. (1994)

Localization of neuronal and glial glutamate transporters. Neuron 13: 713–725.

12. Minelli A, Barbaresi P, Reimer RJ, Edwards RH, Conti F (2001) The glial

glutamate transporter GLT-1 is localized both in the vicinity of and at distance

from axon terminals in the rat cerebral cortex. Neuroscience 108: 51–59.

13. Melone M, Bellesi M, Conti F (2009) Synaptic localization of GLT-1a in the rat

somatic sensory cortex. Glia 57: 108–117.

14. de Vivo L, Melone M, Rothstein JD, Conti F (2010) GLT-1 promoter activity in

astrocytes and neurons of mouse hippocampus and somatic sensory cortex.

Front Neuroanat 3: 31.

15. Chen W, Mahadomrongkul V, Berger UV, Bassan M, DeSilva T, et al. (2004)

The glutamate transporter GLT1a is expressed in excitatory axon terminals of

mature hippocampal neurons. J Neurosci 24: 1136–1148.

16. Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, et al. (2008) A

quantitative assessment of glutamate uptake into hippocampal synaptic terminals

and astrocytes: new insights into a neuronal role for excitatory amino acid

transporter 2 (EAAT2). Neuroscience 157: 80–94.

17. Melone M, Bellesi M, Ducati A, Iacoangeli M, Conti F (2011) Cellular and

synaptic localization of EAAT2a in human cerebral cortex. Front Neuroanat 4:

151.

18. Omrani A, Melone M, Bellesi M, Safiulina V, Aida T, et al. (2009) Up-

regulation of GLT-1 severely impairs LTD at mossy fibre–CA3 synapses.

J Physiol 587: 4575–4588.

19. Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their

molecular pharmacology and pathological involvement. Br J Pharmacol 150:

5–17.

20. Lauriat TL, McInnes LA (2007) EAAT2 regulation and splicing: relevance to

psychiatric and neurological disorders. Mol Psychiatry 12: 1065–1078.

21. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in

neurodegenerative diseases and potential opportunities for intervention.

Neurochem Int 51: 333–355.

22. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, et al. (2005) Beta-

lactam antibiotics offer neuroprotection by increasing glutamate transporter

expression. Nature 433: 73–77.

Effect of GLT-1 Up-Regulation on EEG Activity

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e34139



23. Miller TM, Cleveland DW (2005) Medicine. Treating neurodegenerative

diseases with antibiotics. Science 307: 361–362.
24. Ramos KM, Lewis MT, Morgan KN, Crysdale NY, Kroll JL, et al. (2010)

Spinal upregulation of glutamate transporter GLT-1 by ceftriaxone: therapeutic

efficacy in a range of experimental nervous system disorders. Neuroscience 169:
1888–1900.

25. Bellesi M, Melone M, Gubbini A, Battistacci S, Conti F (2009) GLT-1
upregulation impairs prepulse inhibition of the startle reflex in adult rats. Glia

57: 703–713.

26. Bellesi M, Conti F (2010) The mGluR2/3 agonist LY379268 blocks the effects of
GLT-1 upregulation on prepulse inhibition of the startle reflex in adult rats.

Neuropsychopharmacology 35: 1253–1260.
27. Vanderwolf CH (1969) Hippocampal electrical activity and voluntary movement

in the rat. Electroencephalogr Clin Neurophysiol 26: 407–418.
28. McFarland WL, Teitelbaum H, Hedges EK (1975) Relationship between

hippocampal theta activity and running speed in the rat. J Comp Physiol Psychol

88: 324–328.
29. Oddie SD, Bland BH (1998) Hippocampal formation theta activity and

movement selection. Neurosci Biobehav Rev 22: 221–231.
30. Garcia-Garcia F, Beltran-Parrazal L, Jimenez-Anguiano A, Vega-Gonzalez A,

Drucker-Colin R (1998) Manipulations during forced wakefulness have

differential impact on sleep architecture, EEG power spectrum, and Fos
induction. Brain Res Bull 47: 317–324.

31. Chu K, Lee ST, Sinn DI, Ko SY, Kim EH, et al. (2007) Pharmacological
induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregula-

tion. Stroke 38: 177–182.
32. Miller BR, Dorner JL, Shou M, Sari Y, Barton SJ, et al. (2008) Up-regulation of

GLT1 expression increases glutamate uptake and attenuates the Huntington’s

disease phenotype in the R6/2 mouse. Neuroscience 153: 329–337.
33. Green JD, Arduini AA (1954) Hippocampal electrical activity in arousal.

J Neurophysiol 17: 533–557.
34. Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33: 325–340.

35. Sirota A, Montgomery S, Fujisawa S, Isomura Y, Zugaro M, et al. (2008)

Entrainment of neocortical neurons and gamma oscillations by the hippocampal
theta rhythm. Neuron 60: 683–697.

36. Berry SD, Thompson RF (1978) Prediction of learning rate from the
hippocampal electroencephalogram. Science 200: 1298–1300.

37. Winson J (1978) Loss of hippocampal theta rhythm results in spatial memory
deficit in the rat. Science 201: 160–163.

38. Givens BS, Olton DS (1990) Cholinergic and GABAergic modulation of medial

septal area: effect on working memory. Behav Neurosci 104: 849–855.
39. Vertes RP, Kocsis B (1997) Brainstem-diencephalo-septohippocampal systems

controlling the theta rhythm of the hippocampus. Neuroscience 81: 893–926.
40. Hasselmo ME (2005) What is the function of hippocampal theta rhythm?–

Linking behavioral data to phasic properties of field potential and unit recording

data. Hippocampus 15: 936–949.
41. Rawlins JN, Feldon J, Gray JA (1979) Septo-hippocampal connections and the

hippocampal theta rhythm. Exp Brain Res 37: 49–63.
42. Aggleton JP, Neave N, Nagle S, Hunt PR (1995) A comparison of the effects of

anterior thalamic, mamillary body and fornix lesions on reinforced spatial
alternation. Behav Brain Res 68: 91–101.

43. Ennaceur A, Neave N, Aggleton JP (1996) Neurotoxic lesions of the perirhinal

cortex do not mimic the behavioural effects of fornix transection in the rat.
Behav Brain Res 80: 9–25.

44. Maren S, DeCola JP, Swain RA, Fanselow MS, Thompson RF (1994) Parallel
augmentation of hippocampal long-term potentiation, theta rhythm, and

contextual fear conditioning in water-deprived rats. Behav Neurosci 108: 44–56.

45. Tsanov M, Manahan-Vaughan D (2009) Long-term plasticity is proportional to
theta-activity. PLoS One 4: e5850.

46. Bikbaev A, Manahan-Vaughan D (2008) Relationship of hippocampal theta and
gamma oscillations to potentiation of synaptic transmission. Front Neurosci 2:

56–63.

47. Steriade M (2000) Corticothalamic resonance, states of vigilance and mentation.

Neuroscience 101: 243–276.

48. Borbely AA, Tobler I, Hanagasioglu M (1984) Effect of sleep deprivation on

sleep and EEG power spectra in the rat. Behav Brain Res 14: 171–182.

49. Leung LS (1984) Theta rhythm during REM sleep and waking: correlations

between power, phase and frequency. Electroencephalogr Clin Neurophysiol 58:

553–564.

50. Kopp C, Rudolph U, Keist R, Tobler I (2003) Diazepam-induced changes on

sleep and the EEG spectrum in mice: role of the alpha3-GABA(A) receptor
subtype. Eur J Neurosci 17: 2226–2230.

51. Whishaw IQ, Vanderwolf CH (1973) Hippocampal EEG and behavior: changes
in amplitude and frequency of RSA (theta rhythm) associated with spontaneous

and learned movement patterns in rats and cats. Behav Biol 8: 461–484.

52. Bland BH, Oddie SD (2001) Theta band oscillation and synchrony in the

hippocampal formation and associated structures: the case for its role in
sensorimotor integration. Behav Brain Res 127: 119–136.

53. Macrides F, Eichenbaum HB, Forbes WB (1982) Temporal relationship
between sniffing and the limbic theta rhythm during odor discrimination

reversal learning. J Neurosci 2: 1705–1717.

54. Semba K, Komisaruk BR (1984) Neural substrates of two different rhythmical

vibrissal movements in the rat. Neuroscience 12: 761–774.

55. Slawinska U, Kasicki S (1998) The frequency of rat’s hippocampal theta rhythm

is related to the speed of locomotion. Brain Res 796: 327–331.

56. Geisler C, Robbe D, Zugaro M, Sirota A, Buzsaki G (2007) Hippocampal place

cell assemblies are speed-controlled oscillators. Proc Natl Acad Sci U S A 104:

8149–8154.

57. Yamamoto M, Mizuki Y, Suetsugi M, Ozawa Y, Ooyama M, et al. (1997)

Effects of dopamine antagonists on changes in spontaneous EEG and locomotor
activity in ketamine-treated rats. Pharmacol Biochem Behav 57: 361–365.

58. Lazarewicz MT, Ehrlichman RS, Maxwell CR, Gandal MJ, Finkel LH, et al.
(2010) Ketamine modulates theta and gamma oscillations. J Cogn Neurosci 22:

1452–1464.

59. Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, et al. (2011)

Ketamine disrupts h modulation of c in a computer model of hippocampus
J Neurosci 31: 11733–11743.

60. Swerdlow NR, Vaccarino FJ, Amalric M, Koob GF (1986) The neural substrates
for the motor-activating properties of psychostimulants: a review of recent

findings. Pharmacol Biochem Behav 25: 233–248.

61. Bast T, Feldon J (2003) Hippocampal modulation of sensorimotor processes.

Prog Neurobiol 70: 319–345.

62. Swerdlow NR, Braff DL, Geyer MA (2000) Animal models of deficient

sensorimotor gating: what we know, what we think we know, and what we hope

to know soon. Behav Pharmacol 11: 185–204.

63. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacolog-

ical studies of prepulse inhibition models of sensorimotor gating deficits in
schizophrenia: a decade in review. Psychopharmacology (Berl) 156: 117–154.

64. Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse
inhibition of startle in the rat: current knowledge and future challenges.

Psychopharmacology (Berl) 156: 194–215.

65. Dash MB, Tononi G, Cirelli C (2012) Extracellular levels of lactate, but not

oxygen, reflect sleep homeostasis in the rat cerebral cortex. Sleep in press.

Effect of GLT-1 Up-Regulation on EEG Activity

PLoS ONE | www.plosone.org 7 March 2012 | Volume 7 | Issue 3 | e34139


