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Abstract

In the adult organism, cell migration is required for physiological processes such as angiogenesis and immune surveillance,
as well as pathological events such as tumor metastasis. The adaptor protein and Src substrate Tks5 is necessary for cancer
cell migration through extracellular matrix in vitro and tumorigenicity in vivo. However, a role for Tks5 during embryonic
development, where cell migration is essential, has not been examined. We used morpholinos to reduce Tks5 expression in
zebrafish embryos, and observed developmental defects, most prominently in neural crest-derived tissues such as
craniofacial structures and pigmentation. The Tks5 morphant phenotype was rescued by expression of mammalian Tks5,
but not by a variant of Tks5 in which the Src phosphorylation sites have been mutated. We further evaluated the role of
Tks5 in neural crest cells and neural crest-derived tissues and found that loss of Tks5 impaired their ventral migration.
Inhibition of Src family kinases also led to abnormal ventral patterning of neural crest cells and their derivatives. We
confirmed that these effects were likely to be cell autonomous by shRNA-mediated knockdown of Tks5 in a murine neural
crest stem cell line. Tks5 was required for neural crest cell migration in vitro, and both Src and Tks5 were required for the
formation of actin-rich structures with similarity to podosomes. Additionally, we observed that neural crest cells formed Src-
Tks5-dependent cell protrusions in 3-D culture conditions and in vivo. These results reveal an important and novel role for
the Src-Tks5 pathway in neural crest cell migration during embryonic development. Furthermore, our data suggests that
this pathway regulates neural crest cell migration through the generation of actin-rich pro-migratory structures, implying
that similar mechanisms are used to control cell migration during embryogenesis and cancer metastasis.
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Introduction

Initiation of cell migration requires a change in cell shape to

promote a pro-migratory (or mesenchymal) phenotype, coordi-

nated by a change in actin dynamics driven by actin-associated

proteins, GTPases, kinases, and the actinomyosin cytoskeletal

system [1,2,3]. These changes enable the cell to establish contacts

with, and directionally migrate through, the extracellular matrix

(ECM) in response to environmental stimuli [2]. In the adult

organism, cell migration is restricted to cells that are required to

traverse extracellular matrices during processes such as wound

healing, angiogenesis, immune surveillance, and cancer metastasis.

Migration of normal cells is most prominently found during

embryogenesis where cells are required to move in 3-dimensional

space to pattern the embryo and generate organs and tissues.

During early development, migratory cells undergo epithelial to

mesenchymal transitions (EMT), which enable the generation of a

mesenchymal phenotype to promote cell migration [4]. This

occurs in gastrulation during convergence and extension [5] and

continues during neural crest emergence [4].

Neural crest cells are highly migratory, multipotent cells that

arise in the dorsal neural tube between the neural plate and non-

neural ectoderm (reviewed in [6]). These cells undergo EMT to

enable delamination from the neural tube and subsequent

migration to distant locations. Neural crest cells differentiate into

ectomesenchymal (bone and connective tissue) and non-ectome-

senchymal (neural and pigment cells) derivatives (reviewed in [7]).

TGFb induces migration of neural crest cells by upregulating

many transcription factors such as Foxd3, Sox10, Twist, Snail, and

Slug [8,9] and regulating attachment to the ECM [10]. It has

previously been shown that migrating neural crest cells form actin-

rich, dendritic-like protrusions, which probe their surroundings,
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and enable them to receive cues from neighboring neural crest

cells or the ECM to promote directional migration [11,12].

Interestingly, the change to a pro-migratory phenotype induced in

neural crest cells through EMT and the generation of dendritic-

like projections is similar to that used by invasive tumor cells

during metastasis.

One protein that has been found to regulate cancer cell invasion

is the Src substrate and adaptor protein, Tks5 (originally called

Fish) [13]. Tks5 has an amino-terminal phox homology (PX)

domain, five SH3 domains [13,14], and two Src phosphorylation

sites. Knockdown of Tks5 expression through RNA interference

results in loss of protease-dependent invasion of both Src-

transformed fibroblasts and human cancer cells [15,16,17]. Our

studies have also defined a role for Tks5 in the formation of

invadopodia, actin-rich membrane protrusions that coordinate cell

migration with pericellular proteolysis in vitro and tumor growth

in vivo [17,18]. Additionally, the phosphorylation of Tks5 by Src

regulates the actin cytoskeleton, through association with the

adaptor protein Nck, suggesting a mechanism by which Tks5-

dependent invadopodia regulate cell invasion [19]. Together,

these studies demonstrate that a Src-Tks5 pathway plays an

important role in tumor cell migration/invasion via invadopodia

formation. However, a role for this pathway in a physiological

context has not been described.

We examined a role for Tks5 during embryonic development by

using zebrafish, Danio rerio. Here we show that during embryonic

development, the Src-Tks5 pathway is required for the migration

of neural crest cells, a highly migratory, undifferentiated,

multipotent cell type. Additionally, this pathway appears to

regulate neural crest migration through the formation of pro-

migratory, actin-rich, protrusions in vivo, and in both 2D and 3D

culture in vitro, where these protrusions show podosomal features.

Results

Neural crest derivatives are affected by loss of Tks5
during embryonic development

Danio rerio contains a single copy of a gene (designated

SH3PXD2A) encoding a Tks5-like protein with 60% identity to

the murine and human Tks5-encoding genes (data not shown).

Using quantitative PCR and in situ hybridization on embryos at

various stages of development, we demonstrated that Tks5 was

expressed in early stages of developing embryos, and its expression

increased throughout development (Figure S1A). To assess the

effects of Tks5 loss on development, we microinjected one-cell

stage embryos with morpholinos (MO) designed to target Tks5

(Figure 1A). At 48 hours post fertilization (hpf), Tks5 MO-injected

embryos had smaller heads with small eyes, edema around the

heart, and overt delay in appearance of pigment cells in the tail

when compared to uninjected or 59-mismatch (MM) control

embryos (Figure 1B, S1B, S1C). Defects were also visible in the

developing lateral line and in touch responses (data not shown).

Figure 1. Tks5 is required for embryonic development in Danio rerio. (A) Schematic of Tks5 targeted morpholinos (MO) and the zebrafish
Tks5 gene. (B) The morphology of Tks5 morphants (T5.1 MO+p53 MO) at 48 hpf compared to controls (Uninjected, Control MO, p53 MO). Enlarged
images of the tail region show a reduction in posterior pigment cells (dashes outline tail in morphants). Scale bar represents 200 mm. (C) Tks5 MO
specificity was determined by injecting embryos with either tks5:GFP mRNA or tks5:GFP mRNA together with Tks5 MO, and analyzing GFP expression.
Two representative embryos from each injection are shown. (D) Quantification of murine Tks5 rescue of Tks5 morphant phenotypes. Embryos were
injected as indicated in Experimental Procedures. The total number of morphants (white bars) was compared to the total number of normal embryos
(black bars), and quantified as described in Materials and Methods (n = 3).
doi:10.1371/journal.pone.0022499.g001

Tks5, Src and the Neural Crest
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These phenotypes were neither rescued nor improved by co-

injection with a p53 MO, which has been reported to rescue off-

target effects of some MOs [20] (Figure 1B). Two non-overlapping

translational Tks5 morpholinos (T5.1_ATG, T5.2_ATG, 3 ng)

caused similar abnormal morphological defects (Figure S1B, data

not shown). In addition, we observed the same morphological

defects with a splice-blocking MO targeted to the intron 2/exon 3-

splice donor/acceptor site of Tks5 (T5_sp, 5 ng) (data not shown).

Reduction in Tks5 expression caused by T5_sp MO was

confirmed by PCR (Figure S1D). Finally, we noted significantly

diminished GFP expression from a GFP-reporter construct fused

to the binding region for the Tks5_1 MO in embryos co-injected

with Tks5 MO (Figure 1C). These results demonstrate the

specificity of both the translational and splice-blocking morpho-

linos targeting Tks5, and that these Tks5 MOs can impair aspects

of post-gastrulation embryonic development. For subsequent

experiments, we used both T5_1 and T5_sp MO, using the

generic term Tks5 MO (T5 MO), for simplicity. Details of which

morpholino was used in each experiment can be found in

Materials and Methods.

To confirm that Tks5 MO-induced morphological defects could be

attributed to decreased Tks5 expression, we co-injected murine

Tks5myc RNA (300 ng) with Tks5 MO (3 ng). Sequence differences

between the species means that the zebrafish Tks5-specific morpho-

linos would be unable to bind to murine Tks5 RNA, and would

therefore specifically silence endogenous zebrafish Tks5. Expression of

murine Tks5 phenotypically rescued the Tks5 morphants, as quantified

by counting the number of normal and morphant embryos within each

group (Figure 1D). Tks5 expression was confirmed by immunoblotting

for the myc tag in lysates of Tks5myc co-injected embryos (Figure S1E).

These studies confirm that Tks5 MO-induced morphological defects

are specifically attributed to the loss of Tks5 expression and that Tks5 is

required for embryonic development.

Interestingly, the majority of defects observed in Tks5 morphants

are found in neural crest-derived tissues. For example; neural crest

cells are responsible for the septation of the cardiac outflow tract and

for aortic arch artery development in the heart, which could be the

cause of increased edema in Tks5 morphants, as well as in the

generation of craniofacial structures, pigmentation, and neuronal

lineages [21,22], which are abnormal in Tks5 morphants

(Figures 1B, S1B, S1C). We focused on two such tissues: pigment

cells (specifically melanophores), and the craniofacial cartilage.

Quantification of pigmented melanophores in the trunk region

above the yolk sac extension of control and Tks5 MO-injected

embryos at 48 hpf confirmed that Tks5 morphants had a significant

decrease in melanophore numbers (Figures 2A,B). Co-injection of

Tks5 MO with Tks5myc RNA rescued the decrease in pigmented

melanophore numbers observed in the Tks5 morphants, confirming

that Tks5 was required for neural crest-derived pigment cells

(Figure 2C). To determine whether Tks5 MO-injected embryos had

craniofacial defects, we stained uninjected, control MO-injected,

and Tks5 MO-injected embryos with Alcian blue and qualitatively

analyzed the cartilage structures formed. Tks5 morphants had

visible malformations in the ceratobranchials, palatoquadrate,

ethmoid plate, and Meckel’s cartilage (Figure 2D). The majority

of these defects were rescued by the co-injection of Tks5myc

mRNA, demonstrating that Tks5 is also required for neural crest-

derived craniofacial structures during embryonic development

(Figure 2E). Together, these results indicate a specific role of Tks5

in neural crest development and proper formation of its derivatives.

Neural crest migration in vivo
Many developmental diseases and syndromes that are associated

with craniofacial dysmorphology can be attributed to defects in

neural crest migration [23,24]. Additionally, abnormal neural crest

cell migration is responsible for deficiencies in pigment pattern

formation in the embryo [25,26]. Since we observed both of these

defects in Tks5 morphants, we investigated whether Tks5 was

required for neural crest cell migration in vivo. To ascertain this, we

first conducted whole-mount in situ hybridization on control and

Tks5 morphant embryos using neural crest specific probes (sox10,

crestin, mitf). At 26 hpf, there was a decrease in the number of neural

crest cells migrating dorso-ventrally in morphant embryos com-

pared to controls (Figure 3A). This result was confirmed by

quantification of sox10, crestin, and mitf positive cells migrating in the

trunk region (Figure 3B). Additionally, we noticed a decrease in

mitf-positive melanophore precursors at the posterior end of the

morphant embryos, potentially contributing to the lack of

melanophores in the tail region of Tks5 morphants (Figure 3A).

Concomitantly, we observed a similar, if not increased number of

pre-migratory, dorsally located, neural crest cells in morphant

embryos compared to controls (Figure 3A, dorsal staining),

suggesting that at this stage of development, interfering with Tks5

expression affected the migration or number of neural crest cells. To

investigate whether the decreased number of ventrally migrating

neural crest cells could be attributed to apoptosis, we stained both

control and Tks5 morphant Tg(sox10:RFP) embryos (which have

fluorescently labeled pre- and post-migratory neural crest cells [27])

with acridine orange. Tks5 morphants had an increased number of

apoptotic cells on the dorsal side compared to control (Figure 3C).

However, apoptotic staining did not co-localize with the majority of

RFP-labeled neural crest cells (Figure 3C). Further analysis revealed

minimal ventral migration of neural crest cells at the posterior end

of Tks5 morphants (Figure 3C, brackets), and these ventrally

migrated neural crest cells lacked extensive dendritic-like protru-

sions (Figure 3C, box). Together, these data suggest that abnormal

patterning of neural crest cells and their derivatives is most likely

attributed to migratory defects.

To look in more detail at the role of Tks5 in neural crest

migration, we used confocal time-lapse microscopy to visualize

Tg(sox10:RFP) embryos injected with either control or Tks5 MO.

At 30 hpf, RFP-labeled neural crest cells in control-injected

embryos could be seen migrating ventrally between the somites in

the trunk region [Figure 3D, Movie S1]. In contrast, RFP-labeled

neural crest cells in Tks5 morphants were present but predom-

inantly remained on the dorsal aspect of the embryo (Figure 3D,

Movie S2). Analysis of individual cells showed impaired motility

and/or directionality in morphant embryos that was not observed

in control embryos (Figure 3D, Movies S1, S2). In particular, there

was a decrease in neural crest cell velocity in Tks5 morphant

embryos compared to control (Figure 3E). This affect on neural

crest migration can be attributed to loss of Tks5 since time-lapse

imaging of Tg(sox10:RFP) embryos co-injected with both Tks5myc

and Tks5 MO exhibited similar neural crest migration patterns

and velocities as control embryos (Figure 3E, Movie S3).

Additionally, neural crest cells in morphant embryos appeared

to have a reduced number of cells elaborating protrusions during

their migration as compared to control cells, suggesting a role for

Tks5 in production of these protrusions during neural crest

migration (Figure 3D, asterisks). These data, combined with

whole-mount in situ analysis, demonstrate that Tks5 is required for

neural crest cell migration during embryonic development.

A Src-Tks5 pathway is required for NC cells and
NC-derived cells during embryonic development

Tks5 was first identified as a Src substrate [13], and its

phosphorylation by Src is required for tumor cell migration/

invasion in vitro [28]. Since we observed Tks5-dependent defects

Tks5, Src and the Neural Crest
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in migration of neural crest cells and neural crest-derived cells, we

wanted to determine whether Src family kinases (SFKs) are also

necessary for migration of neural crest cell and their derivatives in

vivo. To determine this, we first treated zebrafish embryos with

SU6656 and PP2 (chemically distinct pharmacological inhibitors

of SFKs [29,30]) and examined their effects on neural crest cells

and neural crest-derived melanophores. Inhibitors were added

after gastrulation (between 8 and 15 hpf) to specifically study the

impact of SFKs on neural crest migration but circumvent the

requirement for the SFKs Fyn and Yes during gastrulation of

zebrafish [31,32]. Using RFP-labeled neural crest cells in

Tg(sox10:RFP) embryos, we found that embryos treated with

SU6656 at 8 hpf appeared to have a 50% decrease in the number

of ventrally migrating neural crest cells above the yolk sac

extension 24 hours post-treatment. It appeared as though these

cells remained primarily positioned on the dorsal side of the

embryo following treatment (Figure 4A). Concurrently, there were

fewer cells between somites in SU6656-treated embryos compared

to vehicle treated embryos (Figure 4A). We also observed a

decreased number of melanophores in the SU6656-treated

embryos and these cells had abnormal patterning (Figures 4B,C).

While the decreased number of melanophores may have been due

to alterations in cell survival or proliferation, the abnormal

patterning is likely due to migration defects, as previously stated

[26]. These data suggest that the activity of one or more SFKs are

required for neural crest cells and neural crest-derived cells during

Figure 2. Decreased Tks5 expression results in neural crest-derived defects. (A–B) Melanophores within the trunk region above the yolk sac
extension in control MO-injected and Tks5 MO-injected embryos were qualitatively (A) and quantitatively (B) analyzed. n = 15 embryos and SEM is
shown by bar. p values obtained from Student’s t-test. ** denotes p,0.01. (C) Melanophores present in the dorsal, ventral, and lateral pigment lines
were quantified to determine degree of murine Tks5 rescue of the decreased pigmentation seen in morphants. Mean values (n = 3) and SEM are
shown in graph. p values obtained from Student’s t-test. ** denotes p,0.01. (D) Alcian blue staining was performed on indicated embryos to identify
craniofacial structures (Meckel’s cartilage (mc), palatoquadrate (pq), ceratobranchials (ch), ethmoid plate (ep)). (*) denotes missing structures. (E)
Alcian blue staining was performed on indicated embryos to determine if murine Tks5 could rescue craniofacial defects seen in morphants. Structures
were identified as in (D). (*) denotes missing structures.
doi:10.1371/journal.pone.0022499.g002
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the segmentation-pharyngeal period of the developing embryo,

and are likely to play an important role in regulating their

migration.

Both Src and Tks5 affect neural crest cells and neural crest-derived

cells similarly during development. Yet the presence of a Src-Tks5

pathway has yet to be observed in vivo. We therefore wanted to

Figure 3. Neural crest migration in vivo requires Tks5. (A–B) Whole mount in situ hybridizations to detect neural crest cells were performed on
control (Tks5 MM) and Tks5 morphant (Tks5 MO) embryos at 26 hpf. (A) Neural crest specific riboprobes against foxd3, sox10, and crestin (ctn) were
used. Bars indicate anterior-posterior area of migrating cells. (*) indicates an increase in pre-migratory cells compared to controls (B) The number of
cells migrating into the trunk region was quantified as described in Materials and Methods. Mean values (n = 18) and SEM were shown in graph. p
values obtained from Student’s t-test. ** denotes p,0.01. (C) Control (T5 MM) and Tks5 morphant (T5 MO) Tg(sox10:RFP) embryos (28 hpf) were
incubated with acridine orange as a marker for apoptosis and imaged by fluorescence microscopy. NC = neural crest cells, AO = acridine orange,
brackets designate similar regions of migrating NC cells, and boxes label similarly positioned individual NC cells in the control and morphant embryos
(enlarged in bottom left corner of top panel). (D) Control (T5 MM) and Tks5 morphant (T5 MO) Tg(sox10:RFP) embryos (30 hpf) were analyzed for
neural crest migration by confocal time-lapse microscopy for 1.5 hours as described in Materials and Methods. Arrows follow ventral cell migration of
an individual cell over the duration. * = protrusions emanating from neural crest cells (D = dorsal, V = ventral, A = anterior, P = posterior). (E) The
average velocities of individual neural crest (NC) cells for control (T5 MM)-, Tks5 MO-injected, Tks5myc RNA and Tks5 MO co-injected, or Tks5FFmyc
RNA and Tks5 MO co-injected Tg(sox10:RFP) embryos were quantified as detailed in Materials and Methods. Mean values (n = 10) and SEM are shown.
p values obtained from Student’s t-test.** denotes p,0.01.
doi:10.1371/journal.pone.0022499.g003
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investigate whether Tks5 was downstream of Src in neural crest cells

in zebrafish embryos. To conduct these studies, we tested a murine

Tks5 construct mutated in the two Src phosphorylation sites, Y557

and Y619 [known as Tks5FFmyc], for its ability to rescue the

developmental defects caused by decreased Tks5 expression

(Figures 4D,E). Tks5FFmyc/Tks5MO co-injected embryos had the

same, or perhaps even an increased frequency of pigmentation,

craniofacial, heart, and locomotion defects when compared to

embryos injected with Tks5 MO alone (Figures 4D,E, S2). This was

in direct contrast to wild-type Tks5myc co-injection with Tks5 MO,

which rescued the embryonic defects as previously demonstrated

(Figures 4D,E, S2). Additionally, neural crest cells of Tks5FF co-

injected embryos had decreased velocity and fewer cell protrusions,

similar to, and perhaps more severe, than that observed in Tks5

morphants (Figure 3E, Movie S4). Together with our previous

studies, these results demonstrate a requirement for both SFKs and

Tks5 in neural crest cells during the segmentation-pharyngeal period

of the developing embryo, and that this pathway involves, at least in

part, Src-mediated phosphorylation of Tks5.

Tks5 regulates neural crest stem cell migration and
podosome formation in vitro

Extracellular cues have been shown to play a role in cell migration

[33]. To investigate whether the migration defects we see in Tks5

morphant embryos were cell autonomous to neural crest cells, we

investigated whether Tks5 was required for neural crest cell migration

in vitro by using a murine neural crest stem cell line, JOMA1.3 [34].

Since TGFb is required for the initiation of neural crest

differentiation and promotes migration [10], we placed control and

Tks5 knockdown JOMA1.3 cells in transwell migration chambers

containing TGFb. We observed a two-fold reduction in migration of

Tks5 knockdown cells through transwell chambers towards media

containing TGFb compared to control cells (Figures 5A–B). These

data indicate that Tks5 is required for neural crest cell migration,

most likely in a cell autonomous manner.

Cell migration is dependent on a shift from an adhesive to a

pro-migratory phenotype, and can involve the formation of one or

more actin-rich cellular protrusions (lamellipodia, filopodia, focal

adhesions, podosomes, and invadopodia), which promote direc-

tional cell movement and attachment to the ECM. To investigate

whether neural crest cells formed actin-based protrusions, we co-

immunostained for cortactin and F-actin (using phalloidin). Under

normal culture conditions, JOMA1.3 cells formed only actin stress

fibers and Tks5 is cytoplasmic (Figure S3A). However, addition of

either PMA or TGFb, which are known stimulators of cell

migration [35,36], resulted in the formation of actin-rich puncta

near the leading edge of the cells (Figures 5C, S3A, S3B). These

actin-rich protrusions also contained Tks5 and the actin associated

Figure 4. Neural crest derivatives require a Src-Tks5-dependent pathway in vivo. (A) Tg(sox10:RFP) embryos (8 hpf) were treated with
either vehicle (DMSO) or SU6656 for 24 hours and imaged by confocal microscopy to detect neural crest cells. (D = dorsal, V = ventral). Brackets
indicate the position of the somites. Scale bar represents 50 mm. (B–C) Embryos at 15 hpf were treated as indicated for 24 hours and analyzed for
pigmentation defects. (B) Embryos where treatment was initiated at 15 hpf were examined for melanophore patterning in the trunk region above the
yolk sac extension. (D = dorsal, V = ventral, A = anterior, P = posterior) (C) The total number of melanophores present in the dorsal and ventral pigment
lines was counted for embryos within each group as described in Materials and Methods. Mean values (n = 3) and SEM were shown in graph. **
denotes p,0.01 for vehicle treated vs. SFK treated comparison. (D–E) Embryos were injected as indicated and qualitatively analyzed for defects
described previously. Morpholino and RNA concentrations detailed in Materials and Methods. (E) Morphants were identified as described in Figure 1D
and embryos within each group were quantified (white = morphants, black = normal).
doi:10.1371/journal.pone.0022499.g004
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Figure 5. Migration of, and podosome formation in, neural crest stem cells requires Tks5. (A–B) Control (Scr) and Tks5 knockdown (shT5.1
and shT5.2) JOMA1.3 cells were exposed to a TGFb gradient using the transwell migration assay. The number of migrating cells was qualitatively
analyzed in each group (A) and quantified as described in Materials and Methods (B). Mean values (n = 3) and SEM were shown in graph. ** denotes
p,0.01. (C) TGFb-stimulated (25 ng/ml) JOMA1.3 cells were immunostained for F-actin (using phalloidin) and the podosome markers cortactin, Arp2/
3, and Tks5 to identify formation of podosomes (arrows). In all cases, scale bars represent 10 mm and white arrows point to clusters of podosomes. (D)
Confocal microscopy of TGFb-stimulated JOMA1.3 cells co-stained for F-actin (using phalloidin) and cortactin. (E) JOMA 1.3 cells were treated with
TGF-b and stained for SMAD2 by immunofluorescence to confirm activation of TGF-b-dependent pathways. (F–G) Vehicle (DMSO) or SFK inhibitors

Tks5, Src and the Neural Crest
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protein Arp2/3 (Figures 5C, S3A, S3B). Furthermore, the TGFb-

stimulated F-actin and cortactin positive puncta were co-localized

in the ventral membrane as demonstrated by confocal microscopy

(Figure 5D). These properties - the presence of F-actin, cortactin,

Tks5 and Arp2/3, and ventral location – are used to define

podosomes in other cell types. We therefore conclude that, upon

cytokine stimulation, neural crest stem cells form podosomes in

vitro. Finally, the induction of TGFb responses in JOMA1.3 cells

was confirmed by immunofluorescence staining for the TGFb-

regulated expression of SMAD2 in the nucleus of stimulated cells

(Figure 5E).

Since Src and Tks5 are required for the formation of

invadopodia in cancer cells, we wanted to determine whether

these podosome structures in neural crest stem cells were also

dependent on SFK activity and Tks5. SFK inhibitors prevented

the formation of both PMA and TGFb-induced podosomes in

JOMA1.3 cells (Figures 5F,G, S3C, S3D). To explore whether the

Src substrate Tks5 was also required, we inhibited Tks5 expression

in JOMA1.3 cells via lentiviral-mediated shRNA knockdown, and

then stimulated with TGFb. Two independent, Tks5-specific

shRNAs decreased TGFb-induced podosome formation com-

pared to control cells, and profoundly altered the cytoskeletal

structure of the cells, resulting in a flattened cell appearance with

decreased cortactin staining (Figures 5H–J). Similar results were

observed following PMA stimulation (Figures S3E, S3F). Togeth-

er, these data demonstrate that both Src and Tks5 are required for

TGFb-induced podosome formation in neural crest stem cells.

To investigate whether podosome-like structures are formed

under more physiologically relevant conditions, we cultured

JOMA1.3 in a three-dimensional (3D) collagen matrix model.

We observed extensive actin-rich protrusions in control cells, but

fewer and shorter protrusions in Tks5 knockdown cells (Figure 6A).

Furthermore, there is a striking similarity between the Tks5-

dependent protrusions formed in a 3D matrix in vitro and Tks5-

and Src-dependent dendritic-like extensions emanating from the

cell body of neural crest cells and derivatives in vivo (Figures 3D,

6B, 6C). We measured these extensions in control and Tks5

morphant embryos and observed a significant decrease in their

length with no change in their width (Figure 6C). The width of

these dendritic-like protrusions is similar to the measured width of

podosomes. More importantly, the average length of these

structures (10–20 mm) appeared to be more similar to podosomes

(.10 mm) than those of any other pro-migratory structures such as

filopodia (,10 mm). These studies suggest that a Src-Tks5-

dependent pathway regulates neural crest cell migration in vivo,

by regulating the ability of neural crest cells to form dendritic-like

cell protrusions with similarities to podosomes.

Discussion

We manipulated the expression of Tks5 in zebrafish using

morpholino technology. Our studies revealed striking phenotypic

differences between control and Tks5 morphants, implicating a

role for Tks5 in multiple cell lineages during development. The

majority of the defects in Tks5 morphants were in neural crest-

derived organs and tissues including the heart, craniofacial

structures, the lateral line and pigmentation, suggesting that

Tks5 is required for neural crest cell function during embryonic

development. While we cannot rule out possible minor gastrula-

tion defects in Tks5 morphants, we believe the phenotype is not

solely due to a gastrulation defect, since we observed normal

extension of the embryo body and no major reduction in pre-

migratory neural crest cells at early stages of development.

Furthermore, we demonstrate a role for a Src-Tks5 pathway in

development, and the addition of SFK inhibitors post-gastrulation

also blocked dorsal-ventral distribution of neural crest cells in the

trunk region.

What is the nature of the neural crest defect in Tks5 morphant

zebrafish? We have provided several lines of evidence, both in vitro

and in vivo, that migration of neural crest and neural crest-derived

cells is impaired in the absence of Tks5. Furthermore, our in vitro

studies support a cell autonomous requirement for Tks5 in neural

crest cell migration in vivo. It is possible that loss of Tks5 also affects

neural crest cell proliferation or differentiation. However, we believe

that any impact of Tks5 on differentiation is likely to be relatively

minor. For instance, in situ hybridization studies using markers for

neural crest cells (foxd3 and sox10) demonstrated that there were

similar, if not increased, numbers of neural crest cells on the dorsal

side of Tks5 morphants at 26 hpf. Furthermore, while markers of

neural crest-derived tissues, such as mitf, appeared to be reduced at

26 hpf, Tks5 morphant embryos still had abnormal posterior and

ventral migration of mitf-positive cells, suggesting that those cells

that have differentiated fail to migrate appropriately in the absence

of Tks5. Additionally, neural crest and neural crest-derived cells

were present on the dorsal aspect of morphant zebrafish, as well as

zebrafish treated with SFK inhibitors. Therefore, while a potential

role for Tks5 in differentiation deserves further study, we propose

that the primary role of Tks5 is to participate in the directional

migration of developmental cell types.

Neural crest progenitors are multipotent cells that are highly

migratory during embryonic development, but the actin-cytoskeletal

dynamics regulating their migration is relatively unexplored. Here

we demonstrate that TGFb stimulation of neural crest cells in vitro

causes the formation of Src and Tks5-dependent podosomes, and

that Tks5 and Src are required for neural crest cell migration. In

vivo, migrating neural crest cells have been shown to display

dendritic-like protrusions with a concentration of actin at their tips,

which are dependent on Rho-kinase and myosin II for their

formation [37]. Furthermore, Src activity is increased 2–7 fold in the

dendrites of neural crest-derived melanocytes in vitro [38,39]. We

now find that a Src-Tks5-dependent pathway is required for both

neural crest cell migration and formation of dendritic-like protru-

sions in neural crest cells in vivo and in vitro. Might these dendritic-

like protrusions be related to podosomes? Podosomes were first

discovered by their ability to mediate cell attachment to the ECM

[40]. The directional migration of neural crest cells is dependent on

cell-contact and their attachment to the ECM [10,11,12]. Therefore,

it is intriguing to think that neural crest cell podosomes might

(SU6656 and PP2) were added to JOMA1.3 cells prior to TGF-b stimulation followed by analysis of podosome formation by immunostaining for F-actin
(phalloidin) and cortactin (arrows). (G) The total number of cells with podosomes was quantified for each treatment group and analyzed as fold
change of cells with podosomes compared to untreated cells. Fold change of cells was compared to vehicle treated cells. Mean values (n = 3) and SEM
were shown in graph. ** denotes p,0.01 for vehicle vs. SFK treated comparison. (H–J) Tks5 was knocked-down in JOMA1.3 cells by two independent
shRNA constructs [shTks5.1 (shT5.1), shTks5.2 (shT5.2)]. (H) Untreated, control (scrambled shRNA), and Tks5 knockdown cells were stimulated with
TGFb for 5 hours and stained for F-actin and cortactin to identify podosomes. (I) The percentage of cells with podosomes was quantified (as
described in Materials and Methods. Mean values (n = 3) and SEM are shown. p values obtained from Student’s t-test. ** denotes p,0.01. (J) Tks5
knockdown was confirmed by immunoblot analysis for Tks5 using whole cell lysates and anti-Tks5 antibody. Protein levels were normalized to
tubulin.
doi:10.1371/journal.pone.0022499.g005

Tks5, Src and the Neural Crest

PLoS ONE | www.plosone.org 8 July 2011 | Volume 6 | Issue 7 | e22499



regulate ECM contact during migration. Our data suggest this

possibility, since there are structural and functional similarities

between the Src-Tks5-dependent podosomes that we observed in 2D

culture, the elongated actin-rich extensions observed in 3D culture,

and the dendritic-like protrusions previously described in neural crest

cells in vivo and also visualized in our study. Further analysis is

clearly warranted to fully characterize and compare these protrusive

structures. The podosomes and invadopodia found in adult cell types

are often endowed with the ability to degrade ECM. Neural crest

cells also have the capacity to degrade ECM, and they produce

proteolytic enzymes, including plasminogen activator and metallo-

proteinases [9,41,42]. Additionally, electron microscopy has re-

vealed that the basal lamina around the neural tube is incomplete

during neural crest cell emigration and migration [43,44]. Since the

ECM plays an important role during development [45], with

alterations in expression of collagen and the ECM proteases

membrane-type 1 matrix metalloproteinase, ADAM19, and AD-

AM13 affecting gastrulation, neural crest cell differentiation, and

migration [46,47,48,49,50,51], it will be important to determine if

the dendritic-like protrusions are involved in ECM degradation.

We recently published that mutation of the gene encoding Tks4,

which is a family member of Tks5, is a cause of the human

developmental disorder, Frank-Ter Haar Syndrome (FTHS), which

is characterized by craniofacial and other skeletal abnormalities, as

well as eye and heart defects [52]. Tks4, like Tks5, is required for

invasiveness of Src-transformed cells [53], but the molecular basis of

its role in FTHS is not known. The model system we describe here

can be used to further dissect the roles and regulation of podosome/

invadopodia-associated proteins such as Tks4 and Tks5 during

embryonic development, as well as to study the genes involved in

other developmental diseases that can be attributed to deficiencies

in neural crest cell migration.

Materials and Methods

Ethics statement
All in vivo studies were reviewed and approved by an Institutional

Animal Care and Use Committee (IACUC), and conducted in

accordance with their guidelines. The Institutional Animal Care

and Use Committee at the Salk Institute for Biological Studies

approved protocol #09-029, held by Dr. Juan Carlos Izpisua-

Belmonte. The Institutional Animal Care and Use Committee at

the Sanford Burnham Medical Research Institute approved the

protocol AUF #09-033, which is held by Dr. Sara A. Courtneidge.

Materials
All morpholinos (MO) were designed by and obtained from

GeneTools. Translational Tks5 MOs were:

T5.1 59 ACTGCATTGTGAAAACGGAGG-

CTTC 39

T5.2 59 TTAGTGGTCAGAATAAACGGA-

CAGG 39

Tks5 splice (T5_sp) 59 TGCATCTGTGGGACGACACAA-

GAAA 39

p53 59 GCGCCATTGCTTTGCAAGAAT-

TG 39

Tks5.1 MO was used in Figures 3, 4 and S2. Both Tks5.1 MO

and Tks5_sp MO were used in Figures 1, 2 and S1. p53 MO was

used at 4 ng. Tks5.1 MO and Tks5.2 MOs were used at 3.5 ng.

Tks5_sp MO was used at 5 ng. pSGT-Tks5myc and pSGT-

Tks5FFmyc plasmids were generated by I. Pass and F. Wen. A

Tks5_1MO_GFP reporter construct was created through design-

ing primers targeting 20 bp of Tks5_1 ATG MO and EGFP (59 -

GCC TCC GTT TTC ACA ATG CAG AGC AAG -39) and (59-

Figure 6. Src- and Tks5-dependent neural crest cell dendritic-
like protrusions in 3-D culture and in vivo. (A) Control (scrambled)
and Tks5 knocked-down (shT5.2) JOMA1.3 cells were placed in a three-
dimensional collagen matrix and cultured for six days. Cells embedded
in the collagen matrix were stained for F-actin (phalloidin) and analyzed
for differences in cell structure (406). (B) Neural crest cell and neural
crest-derived cell protrusions were qualitatively examined by either
enlarging images of neural crest cells in Tg(sox10:RFP) embryos
obtained in 4A (left panels) or imaging melanophores in vehicle or
SU6656 treated embryos at a higher magnification (236) (right panels).
(C) Control (Tks5 MM injected) and Tks5 morphant Tg(foxd3:GFP)
embryos (30 hpf) were fixed and imaged by confocal microscopy. The
width and length of protrusions was measured by Volocity software.
Mean values (n = 20) and SEM are shown. p values obtained from
Student’s t-test. ** denotes p,0.01. (D = dorsal, V = ventral, A = anterior,
P = posterior).
doi:10.1371/journal.pone.0022499.g006
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TTA CTT GTA CAG CTC GTC CAT GGC GAG- 39). This

was placed into pCR2.1 TOPO (Invitrogen) and subcloned into

pCS2 plasmid for RNA generation. tks5:GFP mRNA was

generated using mMessage Machine SP6 kit (Ambion). tks5:GFP

mRNA was injected at 300 ng/ml. SU6656 was synthesized by Dr.

Greg Roth (SBMRI) and PP2 was obtained from EMD/

Calbiochem. Antibodies used include: actin (MP Biomedicals),

tubulin (Sigma), Smad2 and Hsp90 (Cell Signaling), phosphotyr-

osine (BD Transduction), and cortactin, Arp2/3, Tks5 and myc

clone 4A6 (all from Millipore). Alexa-488 anti-mouse, Alexa-488

anti-rabbit, Alexa-568 phalloidin and Hoechst were from Invitro-

gen. Vectashield (Vector Labs) was used as mounting medium for

all in vitro assays.

Animals
Wild-type (AB), Tg(foxd3:GFP), Tg(sox10:RFP), and Tg(mlc2A:GFP)

zebrafish strains [27,54] were maintained at 28.5uC by standard

methods [55]. Staging was by morphological criteria [56]. MOs were

dissolved in Danieau’s buffer and injected at 2–5 ng/ml into the yolk of

one-cell stage embryos; the optimal concentration was determined by

dose response titrations. Embryos were either grown in 1-phenyl 2-

thiourea (PTU) egg water or bleached with 0.3% hydrogen peroxide

prior to staining. Fixed embryos were placed in 80% glycerol, while live

embryos were placed in 1% agarose for imaging purposes.

PCR analysis
To analyze Tks5 expression in Tks5 morphants injected with

Tks5_sp, primers were designed to the Intron2/Exon3 region of

Tks5 (59-CCTTCATGCAGATACTCGAC-39) and (59CACG-

TCTCTTACATGACTTCG-39) and RT-PCR was performed on

cDNA obtained from 24 hpf embryos (50 each condition).

Zebrafish Tks5 expression was analyzed by quantitative PCR

using primers specific to the 59 region of Tks5 (59-TAAAAGTG-

GTGGATGTGGAG-39). Samples were normalized to cyclophilin

(59-GTATCTCAGCATCAGGTTCG-39) and fold increase was

compared to expression in 4-cell stage embryos.

Quantitative Analysis of Morphant Embryos
The eyes of control and Tks5 morphant embryos were

examined by measuring the length and width of each embryo’s

eye (n.10/condition). The volume of the eye was calculated using

the formula for a spheroid: [0.52*(width)2(length)]. Cardiac defects

were examined using Tg(mlc2A:GFP) embryos that were either

injected with control or Tks5 MO. Embryos (30hpf) were

examined by fluorescence microscopy for their ability to induce

heart looping during development (n.20/condition).

Pigmentation analysis, whole-mount in situ
hybridization, and staining in vivo

Control and Tks5 morphant embryos (48 hpf) were imaged by

bright field microscopy to quantify melanophores in the trunk

region over the yolk sac extension and analyzed as percentage of

melanophore coverage by Image J software (n = 15/condition).

For rescue experiments, the total number of melanophores in the

ventral, dorsal, and lateral pigment lines of embryos was counted

(n = 5 per condition). Embryos at 5 dpf were stained with Alcian

blue as described [57] and analyzed for the presence of

craniofacial structures. Neural crest specific RNA probes (foxd3,

sox10, crestin, and mitf) were as described [57]. Migratory neural

crest cells were identified as cells staining positive for sox10, crestin,

or mitf in the trunk region between the dorsal side and yolk sac

extension (between somites 5–18) of 25 hpf embryos. The total

number of migrating cells was quantified for each probe (n = 6 per

condition). Acridine orange (5 ug/ml, Sigma) was added to the

water of control (T5 MM) and Tks5 morphant (T5 MO)

Tg(sox10:RFP) embryos (28 hpf) for 1 hour followed by three

washes in E3 medium. Anesthetized embryos were then placed in

80% glycerol and imaged by fluorescence microscopy.

Rescue and SFK studies in vivo
Murine Tks5myc and Tks5FFmyc RNA were generated by

transcribing linearized pSGT-Tks5myc and pSGT-Tks5FFmyc

with mMessage Machine T7Ultra kit (Ambion). Compared to the

zebrafish Tks5 MO sequence, murine Tks5myc and Tks5FFmyc

RNA is homologous in only four out of 25 base pairs. Co-injection

studies used 300 ng/ml Tks5myc or 500 ng/ml Tks5FFmyc with

3.5 ng Tks5 MO. Optimal concentrations were determined

following dose response titrations. We characterize Tks5 mor-

phants as possessing a decrease in pigmentation, more rounded

heads, and smaller eyes. To quantify the number of morphants,

100 embryos per condition were quantified for normal or

morphant phenotypes for each experiment. For rescue studies,

lysates were generated from 75 embryos per condition at 24 hpf

using NP40 lysis buffer. These were immunoprecipitated with

anti-Myc antibody followed by SDS-PAGE immunoblot analysis

for Tks5. Protein levels were normalized to Hsp90 or actin as

indicated.

For SFK studies, SU6656 or PP2 were added to 0.5 ml egg

water containing 1% DMSO at concentrations of 3 mM and

15 mM, respectively. These were added to wells of a 12-well plate

containing 15 embryos (8 hpf or 15 hpf as indicated) per well and

incubated at 28uC for 24 hours. Melanophores were quantified by

counting the number in the ventral, dorsal, lateral pigment lines

(10 embryos per treatment). Confocal epifluorescence microscopy

was used to determine the localization and patterning of RFP-

labeled neural crest cells following SU6656 treatment.

Neural crest cells
JOMA1.3 cells are described in [34]. Phorbol-12-myristate-13-

acetate (PMA) was added at 25 ng/ml for 30 minutes prior to 4%

paraformaldehyde fixation. TGFb was added at 25 ng/ml for

5 hours prior to 4% paraformaldehyde fixation. Podosomes were

identified through immunofluorescence co-staining using Alexa-

568 phalloidin (1:500) and either cortactin (1:500), Arp2/3

(1:500), or Tks5 (1:500). Both Alexa-488 anti-mouse and anti-

rabbit secondary antibodies were used at 1:2000. Podosome

positive cells were defined as containing at least 10 positively co-

stained puncta. Percentage of cells with podosomes was obtained

by counting twelve fields for each condition. Localization of

Smad2 was identified through immunofluorescence staining of

Smad2 (1:250).

Tks5 and SFK studies in vitro
JOMA1.3 cells were treated with either vehicle (0.1% DMSO)

or SFK inhibitors at concentrations of 2 mM (SU6656) or 10 mM

(PP2) overnight prior to PMA or TGFb stimulation and analyzed

for podosome formation by immunofluorescence as previously

described. Due to the variation experienced by addition of

inhibitors, percentage of cells forming podosomes is normalized to

vehicle for all Src inhibitor studies and analyzed as fold change in

cells forming podosomes. Using similar concentration of lentivirus

as control shRNA, Tks5 expression was reduced in JOMA1.3 by

lentiviral shRNA vectors (shT5.1 and shT5.2). Control and Tks5

knockdown cells were treated with either PMA or TGFb and

analyzed for podosome formation. Tks5 knockdown was con-

firmed by obtaining protein using lysis buffer containing (50 mM

Tris pH 8.0, 150 mM NaCl, 1% Tx-100, 1 mM NaF, 100 mM
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vanadate, 2 mM DTT), running lysates on 7.5% SDS-PAGE gels,

and probing with anti-Tks5 and anti-tubulin antibodies.

Cell migration in vitro and in vivo
Untreated or JOMA1.3 cells were infected with similar

concentrations of lentivirus expressing either control (scrambled)

or Tks5 knock-down (shTks5.1 or shTks5.2) and plated at 7.56104

density in transwell migration assays in the presence of TGF-b
(25 ng/ml). Chamber wells were coated with a thin layer of

fibronectin (0.2 mg/ml, Sigma). Five fields per condition were

captured at 106 (Spot RT Acquisition and Processing Software).

Area of cell coverage was quantified by Image J software.

Measurements were normalized to control cells. Tg(sox10:RFP)

embryos were injected with Tks5-mismatch MO, Tks5 MO, or co-

injected with Tks5 MO and murine Tks5 RNA or murine Tks5FF

RNA and imaged at 30 hpf by time-lapse laser confocal

microscopy. Images were captured every ten minutes for

1.5 hours. Individual neural crest cells from the embryos described

above (10 embryos/condition; 2 embryos/condition) were tracked

using Volocity software by marking the location of the cell body in

each single image captured for the duration of the 1.5 hours. This

enabled the calculation of the velocity of each individual cell/

condition using the software.

Imaging neural crest cells in 3D in vitro and in vivo
Control (scrambled) or Tks5 knocked-down (shT5.2) JOMA1.3

cells were mixed with native collagen I (from BD) at 2 mg/ml final

concentration, and plated in 8-chamber glass slides (BD Falcon) at

a density of 5000 cells per chamber. Cells were cultured for 7 days

and processed for fluorescence microscopy. Tg(foxd3:GFP) embry-

os were injected with either Tks5-mismatch MO or Tks5 MO,

fixed at 30 hpf, and imaged by confocal microscopy. The length

and width of neural crest cell protrusions were measured by

Volocity software (10 cells were measured in two different embryos

per condition).

Image acquisition
All cells for podosome formation assays in vitro were imaged

with a Zeiss Axioplan2 microscope and captured using an

AxioCam HRm camera. JOMA1.3 were imaged at 606
magnification for identification of podosomes. Images were

obtained through use of AxioVision 4.8. Zebrafish embryos were

imaged using a Nikon AZ100 inverted microscope attached to a

Retiga 2000R camera equipped with NIS Elements v.3 software

(Nikon). Melanophore images in Figure 6 were collected using a

Leica MZ16F scope attached to a Leica DFC300FX camera and

acquired with Image-Pro Plus software. Confocal images were

obtained using an Olympus Fluoview FV100 confocal microscope

at 30uC and analyzed using FV10-ASW (Olympus) or Volocity

software (Perkin Elmer). All images were processed using Image J

software.

Statistical analysis
All statistical analyses used the student’s t-test, except for

Figures 5B, 5G, S3D, which used Wilcoxon signed rank test.

Supporting Information

Figure S1 Tks5 is required for embryonic development
in Danio rerio. (A) Tks5 expression levels were examined

throughout embryonic development in zebrafish by quantitative

PCR. Levels were normalized to cyclophilin and fold increase was

compared to 4-cell embryonic stage (set at 1). (B) The eye volume

(mm3) of control (T5 MM) and Tks5 morphants (T5.1 MO and

T5_sp) at 48 hpf was measured as detailed in the Materials and

Methods section. Mean values (n = 12 and n = 17, respectively)

and SEM are shown. p values obtained from Student’s t-test.

** denotes p,0.01. (C) Tg (mlc2:GFP) embryos (30hpf) uninjected

or injected with either control (T5 MM) or Tks5 morpholinos

(T5.1 MO and T5_sp) were examined for the ability to induce

heart looping by fluorescence microscopy. Embryos in each group

were quantified for the presence of a linear or looped heart. (D)

RT-PCR analysis using exon 3 specific primers of uninjected and

Tks5_sp MO-injected embryos at 24 hpf. (E) Lysates were

obtained from indicated embryos at 24 hpf and immunoprecip-

itated with anti-Myc antibody followed by immunoblotting for

Tks5. The blot was re-probed with anti-Hsp90 antibody for

loading controls.

(TIF)

Figure S2 Src phosphorylation of Tks5 affects neural
crest-derived cells. Lysates were obtained from indicated

embryos (24 hpf) as described in Experimental Procedures.

Tks5myc and Tks5FFmyc expression was detected by immuno-

precipitation for Myc and immunoblotting for Tks5. Loading was

normalized to actin.

(TIF)

Figure S3 Neural crest stem cells form podosomes. (A)

JOMA1.3 cells were stained for F-actin (phalloidin) and either

cortactin or Tks5 in the presence and absence of PMA (25 ng/ml)

to identify formation of podosomes (arrow). (B) PMA-stimulated

(25 ng/ml) JOMA1.3 cells were immunostained for F-actin (using

phalloidin) and the podosome markers cortactin, Arp2/3, and

Tks5. (C–D) Vehicle (DMSO) or SFK inhibitors (SU6656 and

PP2) were added to JOMA1.3 cells prior to PMA stimulation. (C)

Analysis of podosome formation was conducted by immunostain-

ing for F-actin (phalloidin) and cortactin (arrows). (D) The total

number of cells with podosomes was quantified for each treatment

group and analyzed as fold change of cells with podosomes

compared to untreated cells. Mean values (n = 3) and SEM were

shown in graph. p values obtained from Student’s t-test. * denotes

p,0.05 for untreated vs. SFK treated comparison; ** denotes

p,0.01 for untreated vs. SFK treated comparison. (E–F) PMA-

treated control (uninfected and scrambled shRNA) and Tks5

knockdown (shT5.1, and shT5.2) cells were stained for F-actin

(phalloidin) and cortactin to identify formation of podosomes. (F)

Percentage of cells possessing podosomes was calculated as

previously described. Mean values (n = 3) and SEM are shown

in graph. ** denotes p,0.01 for scrambled versus shT5.1 and

shT5.2. p values obtained from Student’s t-test. In all cases, the

white arrows point to clusters of podosomes.

(TIF)

Movie S1 Neural crest cell migration in control MO-
injected Tg(sox10:RFP) embryos at 30 hpf. Z-projected

time-lapse images from laser confocal microscopy (FV-1000,

Olympus) of control MO-injected Tg(sox10:RFP) embryos at 30

hpf for 1.5 hours (1 frame/10 min) showed ventral migration of

neural crest cells between somites towards the yolk sac extension.

Also observed was the generation of cell protrusions emanating

from the neural crest cells. Scale bars represent 30 mm. See

Figure 3 for still images and quantification of average neural crest

cell velocity.

(AVI)

Movie S2 Reduced neural crest cell migration in Tks5
MO-injected Tg(sox10:RFP) embryos at 30 hpf. Z-

projected time-lapse images from laser confocal microscopy (FV-

1000, Olympus) of Tks5 MO-injected Tg(sox10:RFP) embryos at
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30 hpf for 1.5 hours (1 frame/10 min) showed a decreased ability

of neural crest cells to migrate ventrally between somites towards

the yolk sac extension. Cell protrusions were not prominently seen

and appeared shorter in length. Scale bars represent 30 mm. See

Figure 3 for still images and quantification of average neural crest

cell velocity..

(AVI)

Movie S3 Neural crest cell migration in Tks5myc RNA
and Tks5 MO- co-injected Tg(sox10:RFP) embryos at 30
hpf. Z-projected time-lapse images from laser confocal microsco-

py (FV-1000, Olympus) of Tks5myc RNA and Tks5 MO co-

injected Tg(sox10:RFP) embryos at 30 hpf for 1.5 hours (1 frame/

10 min) showed ventral migration of neural crest cells between

somites towards the yolk sac extension similar to control-injected

embryos (Movie S1). Scale bars represent 30 mm. See Figure 3 for

quantification of average neural crest cell velocity.

(AVI)

Movie S4 Reduced neural crest cell migration in
Tks5FF RNA and Tks5 MO-co-injected Tg(sox10:RFP)
embryos at 30 hpf. Z-projected time-lapse images from laser

confocal microscopy (FV-1000, Olympus) of Tks5FF RNA and

Tks5 MO-co-injected Tg(sox10:RFP) embryos at 30 hpf for

1.3 hours (1 frame/10 min) showed a decreased ability of neural

crest cells to migrate ventrally between somites towards the yolk

sac extension. Cell protrusions were not prominently seen and

appeared shorter in length. Scale bars represent 30 mm. See

Figure 3 for quantification of average neural crest cell velocity.

(AVI)
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