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Abstract

Genome-wide association studies have been instrumental in identifying genetic variants associated with complex traits such
as human disease or gene expression phenotypes. It has been proposed that extending existing analysis methods by
considering interactions between pairs of loci may uncover additional genetic effects. However, the large number of
possible two-marker tests presents significant computational and statistical challenges. Although several strategies to
detect epistasis effects have been proposed and tested for specific phenotypes, so far there has been no systematic attempt
to compare their performance using real data. We made use of thousands of gene expression traits from linkage and eQTL
studies, to compare the performance of different strategies. We found that using information from marginal associations
between markers and phenotypes to detect epistatic effects yielded a lower false discovery rate (FDR) than a strategy solely
using biological annotation in yeast, whereas results from human data were inconclusive. For future studies whose aim is to
discover epistatic effects, we recommend incorporating information about marginal associations between SNPs and
phenotypes instead of relying solely on biological annotation. Improved methods to discover epistatic effects will result in a
more complete understanding of complex genetic effects.
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Introduction

Genome-wide association studies have been instrumental in

identifying genetic variants associated with complex traits such as

human disease or gene expression phenotypes [1]. However, for

many human traits genetic variants discovered so far account for

only 5–10% of the phenotypic variance [2]. For linkage studies in

yeast, which are grown in tightly controlled environments, the

explained variance of highly heritable gene expression traits is also

limited, with one study reporting a median explained variance of

27% and finding no associated genetic variants for many (40%)

gene expression traits [3]. The challenge of identifying additional

genetic variants which explain a larger proportion of phenotypic

variance is of great interest and has been coined the problem of the

missing heritability [4]. One avenue to discover additional genetic

effects is to consider epistasis, i.e. joint effects between markers.

While many studies have analyzed effects of individual markers,

only recently have studies begun to extend analysis methods to

consider interaction effects between pairs of loci [5–10].

Due to the large number of two-marker models that need to be

evaluated, searching for epistatic effects poses both computational

and statistical challenges. Whereas many human genome-wide

association studies test on the order of one million SNPs,

considering all pairs of SNPs amounts to approximately 500

billion tests, since the number of pairs of SNPs scales quadratically

with the number of markers. The large number of tests to perform

incurs a considerable computational burden, although this

challenge is being increasingly addressed. Computational solutions

include parallelizing the computations [11], graphics hardware

based computing [12], and implementing approximations for case-

control studies [13]. Therefore, ultimately the most pressing

problem is how to handle the statistical issue of multiple testing. As

a result of performing so many tests, a very stringent type I error

threshold is needed to prevent selection of false positives.

However, at such a threshold many true positives are being

missed. In addition, epistatic tests have a complex dependency

structure, which requires cumbersome permutation procedures in

order to properly assess the type I error rate.

The multiple testing problem has been addressed in previous

expression quantitative trait locus (eQTL) studies by reducing the

number of SNPs tested for association with gene expression

phenotypes. To search for genetic variants which are associated

with a particular gene expression level, many researchers have

restricted the search to those variants proximal to the gene in

question, knowns as cis eQTLs [14,15]. In contrast, to search for

non-proximal variants associated with gene expression (trans

eQTLs), approaches may select SNPs hypothesized as more likely

to affect gene expression such as non-synonymous SNPs, cis

associated SNPs to any gene, or splicing SNPs [14]. Other

methods weight genetic variants based on their regulatory features,
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incorporating information such as gene function, conservation,

position and type of genetic polymorphisms [16]. In vitro

information about the DNA-binding specificity of a transcription

factor can be included to map loci [17]. Moreover, integration of

multiple data types has been suggested to aid in detecting and

interpreting regulatory variants [18,19].

Similar methods have been proposed to reduce the number of

SNP pairs to detect epistasis. A marginal-by-genomewide

approach was proposed, in which SNP pairs are chosen such that

at least one SNP has a relatively strong marginal association with

the trait [20,21]. Other approaches have used protein-protein

interaction information from STRING [22] to prioritize SNP

pairs [9] and CNV pairs [23]. Another paper proposed using

either disease-dependent information based on previously detected

associations or using existing biological databases to define

candidate SNP pairs to test for epistasis [10]. Additionally, a

specific biological hypothesis, such as the interaction between

regulatory and protein-coding variants [24], can drive an

approach to studying epistatic effects.

While many strategies to detect epistasis effects have been

proposed and tested for specific phenotypes, so far there has been

no systematic attempt to compare their performance using real

data. In this work we present a comparative analysis of various

strategies. To evaluate any approach we first sought for a measure

of performance, identifying the false discovery rate (FDR) as the

most relevant indicator. The immense computational burden was

overcome using optimized computations and massive parallel

computing [11] on a large computer cluster (www.vital-it.ch). In

terms of data, it is clear that when considering a single trait it is

difficult to assess which strategy for selecting SNP pairs may be

optimal. Therefore we made use of gene expression traits

generated in linkage and eQTL studies, since these data include

thousands of traits, of which a large fraction is known to have a

strong genetic component. Specifically, we first analyzed data from

a yeast linkage study [25], encouraged by reports from several

studies identifying interacting loci [3,26] and the smaller

complexity compared to human data. We found that information

from marginal associations is more informative than using

STRING annotations. However, using the data from a human

eQTL study, we did not find convincing evidence for systemat-

ically improved performance of strategies relying on marginal

associations or gene annotations. Although we had considerable

computational resources at our disposal, we were faced with

considerable study limitations. Nevertheless, we found several

putative associations when testing a small number of SNPs with

strong marginal effects.

Results

We first used data from a yeast linkage study, consisting of 112

segregants derived from a cross of a yeast lab strain (S288C) and a

wild isolate, as described in [25], to study epistatic effects. We

initially attempted a naı̈ve method to detect epistatic effects which

searches over all possible SNP pairs. For 2,931 markers, there

were a total of 4,293,915 SNP pairs. Using 10,000 permutations,

at cutoffs defined by the 1% and 0.1% quantile of the permutation

statistics (see Methods), we estimated an FDR of 96% and 99%,

respectively. The number of SNP pairs selected at these thresholds

closely matches the number of SNP pairs expected by chance.

Next, we tried several different strategies to reduce the number

of SNP pairs under consideration, marginal-by-marginal (MM),

marginal-by-genomewide (MG) and STRING (ST) strategies. We

test the epistasis model (see Methods) using a subset of SNP pairs

defined by each strategy. The MM strategy selects a set of SNP

pairs such that both SNPs in the pair are associated with the trait

at a given significance level, determined from the one-dimensional

regression model (see Methods). The MG strategy selects a set of

SNP pairs such that at least one SNP in the pair is associated with

the trait at a given significance level. The ST strategy selects pairs

of genes with corresponding protein-protein interactions in the

STRING database determined by a given significance threshold.

The strategy includes all SNP pairs that map to a gene pair.

We compared the different strategies by comparing the

estimated FDR as shown in Figure 1A. We define a p-value

cutoff by the 0.1% quantile of the permutation statistics which

fixes the expected number of false positives. We found that overall

the MM and MG strategies tend to have lower FDRs than the ST

strategy. We can also observe that for the MM and MG strategies,

as the number of tests increases, the FDR tends to increase. This

trend is due to the statistical issue of multiple testing, reflecting that

as the number of tests increases it becomes difficult to distinguish

the significance of true interaction effects from those expected by

chance. Indeed, we found that selecting a very small number of

marginal SNPs gives the smallest FDR.

We also compared the strategies by comparing their performance

to an appropriate control strategy (MM0, MG0 and ST0,

respectively; see Methods and Figure 2 for further details). The

goal is to assess whether the information in the candidate strategies

aids in the detection of epistatic effects. The performance relative to

500 randomly chosen respective controls is given in Figure 1B–D.

Both the MM and MG strategies result in a lower FDR than the

random control (p = 0.07, p = 0.17, respectively for approximately

3,000 tests). In contrast, the ST strategy does not outperform the

random control at any significance threshold (p = 1.0). The FDR as

a function of the p-value cutoff is shown in Figure S1.

The best performing strategy was the MM strategy. The FDR

was 39.7%, with 10 hits selected at this cutoff, whereas the expected

number of false positives was below four. A plot of the most

significant interaction from the MM strategy is given in Figure 3.

We then tried a similar approach to systematically compare the

performance of different strategies for human data. However, we

were faced with considerable study limitations, including larger

computational and statistical complexity and stronger environ-

mental effects. We chose a restricted set of 297,153 HapMap SNPs

(see Methods), corresponding to 44 billion possible SNP pairs. As

in yeast, we performed permutation tests to assess the significance

of the interaction test statistics. However, even with our large

computational resources we were only able to perform 1,000

permutations. With fewer permutations, we are required to use a

less stringent p-value threshold to assess significance of the results.

As a result, we had less power to separate out the strongest signals

from noise. We note that in the analysis of yeast, using the same

(1%) quantile cut-off as for the human data (instead of the 0.1%

quantile), we do not observe improved performance of the MM or

MG strategies compared to the ST strategy, with all strategies

giving FDRs of 78–100%.

Applying the naı̈ve method to detect epistatic effects which searches

over all possible SNP pairs, at a p-value cutoff defined by the 1%

quantile of the permutation statistics, we find an FDR of 82%. Thus,

of the 12 results selected, only about two are expected to be true.

Next, we compared the performance of MM, MG and ST

strategies. As shown in Figure 4, we do not see any trend in

performance suggesting that any of the MM, MG or ST strategies

achieve superior performance.

In order to facilitate the computation of a larger number of

permutations, we decided to evaluate the MM strategy using a

very limited set of SNPs. For such a small set of SNPs it was

therefore possible to perform 10,000 permutations. We applied the

Strategies to Detect Epistasis from eQTL Data
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MM strategy using the top 5,000 marginally significant SNPs for

each gene expression trait, corresponding to 1.2 million SNP pairs.

We assessed the significance using 10,000 permutation tests. At the

0.1% quantile of the permutation statistics we estimate an FDR of

0.33, detecting three putative hits of which approximately one is

expected by chance (Figure S2).

Details of the genes and SNPs associated epistatically are given in

Table 1. A plot of the FDR at different p-value thresholds is given in

Figure S3. We tested the epistatic association with expression levels of

HLA-DRB1 in other populations obtaining p-values of 0.0055,

0.0098, 0.015, 0.00012, 0.93, 0.40, 0.59 for CHB, JPT, GIH, MEX,

LWK, MKK and YRI, respectively, indicating that the interaction

replicates well across non-African populations (see also Figure S4).

We estimate the percent variance explained by the epistasis term to

be 9.3%, 7.9%, 7.0%, and 28.7% in CHB, JPT, GIH, and MEX,

respectively. We asked whether the interaction effect for HLA-DRB1

would disappear if we take into account dominant or recessive effects.

We found that the interaction remains significant (p = 1.631e-11,

CEU). Both SNPs fall within CNV regions based on the Database for

Genomic Variants [27]. However, the Hardy-Weinberg p-values are

not significant (p = 0.575, p = 0.646) indicating that these SNPs are

not likely to fall into the copy number variant region.

Figure 1. Comparison of the FDR (determined at cutoffs corresponding to the 0.1% quantile of permutation p-values) for detecting
interactions in yeast gene expression data among the different subset strategies. (A) The FDR is plotted against the number of SNP pairs
for MM, MG and ST in red, green and blue, respectively. (B–D) The FDR is shown for MM, MG and ST strategies compared to 500 MM0, MG0 and ST0

control strategies, respectively. Significance values are computed as the proportion of control strategies with FDR as low or lower. (B) Significance
values 0.052, 0.072, 0.088, 0.05, 0.16, 0.54, 1.0, 1.0 and 0.15. (C) Significance values 0.17, 0.17, 0.048, 0.13, 0.32, 1.0, 1.0 and 0.16. (D) Significance values
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0.
doi:10.1371/journal.pone.0028415.g001
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Discussion

We compared several strategies to derive a subset of candidate

SNP pairs to test for epistatic effects. We found that, in yeast,

strategies making use of marginal association information out-

perform the STRING strategy which relies solely on annotations

of protein-protein interactions. We found that the MM strategy

can give rise to a set of epistatic effects with a lower proportion of

false positives than naı̈vely testing all possible SNP pairs. This fact

indicates that SNP pairs with the largest marginal associations tend

to be enriched for epistatic effects.

In our comparison among the different strategies in human, we

did not find evidence that one strategy outperforms another.

However, our ability to differentiate between the strategies has

Figure 2. Illustration of comparisons between subset strategies and control strategies for the MM strategy. A subset strategy is applied
to both gene expression measurements and randomly permuted measurements. The gene expression measurements define the number of hits at a
given p-value threshold while the permutations are used to estimate the expected number of false positives, giving rise to an estimate of the FDR.
doi:10.1371/journal.pone.0028415.g002

Figure 3. The data supporting the most significant interaction
from the MM strategy is shown here. Capital letter markers refer to
RM11; lowercase letter markers refer to BY4716 (S288c). Blue bars mark
the model predicted expression levels at each combination of genetic
markers, green dots show the observed mean expression levels, and
grey bars show the standard deviation.
doi:10.1371/journal.pone.0028415.g003

Figure 4. Comparison of the FDR (determined at cutoffs
corresponding to the 0.1% quantile of permutation p-values)
for detecting interactions in human gene expression data
among the different subset strategies. The FDR is plotted against
the number of SNP pairs for MM, MG and ST in red, green and blue,
respectively.
doi:10.1371/journal.pone.0028415.g004
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several limitations. The larger number of SNPs to consider in

human compared to yeast significantly increased the computa-

tional time (indeed we required several thousand CPU days on the

high-performance computing facility VITAL-IT (http://www.

vital-it.ch)). We examined only a subset of SNPs and we were only

able to perform 1,000 permutations for the permutation test

whereas we used 10,000 permutations in yeast. Furthermore, a

dataset with larger number of individuals would provide more

power in the multiple testing setting to detect epistatic effects.

Applying the MM strategy to a limited set of SNPs, we were

able to detect one interaction in the CEU data which replicated in

several non-African populations. Therefore, this finding likely

represents a true interaction. A pair of SNPs near the HLA-DRA

gene showed an epistatic effect on the expression levels of HLA-

DRB1. Furthermore, including the epistatic relationship in the

model of genetic effects on HLA-DRB1 expression increases the

percent of explained variance by 7–28%.

However, the MM strategy did not result in many positive

findings. The limited success may be due to the increased

complexity of human data relative to yeast or perhaps due to

smaller marginal effects in human than in yeast. Environmental

variation may also play a large role for humans whereas the yeast

strains were grown in a tightly controlled environment. Future

studies, particularly with larger sample sizes, would be worthwhile

to determine the limitations of the MM strategy.

One of the drawbacks to the MM strategy is that by definition it

can only identify interactions between SNPs with marginal

associations, while it misses non-marginally associated SNPs which

may have epistatic associations. In contrast, the MG approach in

principle allows for identification of new SNPs involved in genetic

associations through epistasis, as long as this interaction involved

another SNP with a statistically significant marginal association.

Thus the fact that the performance of MM and MG are not very

different, would perhaps point to MG as the best compromise

between power and the ability to identify novel interesting loci.

Although we found that marginal associations are more

informative for identifying epistasis than information from the

STRING database, future approaches may benefit from incorpo-

rating biological information in more sophisticated ways. Using

knowledge of transcription factors which regulate the gene’s

expression patterns, weighting SNPs based on their properties (i.e.

synonymous, non-synonymous, cross-species conservation score)

or using mutual information from several markers at once for case-

control studies [28] may also prove worthwhile.

Methods

Data
Yeast. The yeast data were taken from 112 segregants derived

from a cross of a yeast lab strain (S288C) and a wild isolate, as

described in [25].

Gene expression measurements were subjected to the following

exclusions and pre-processing. We excluded genes not included in

the list provided by [29]. We required the gene expression values

to have at least 90% non-missing values across the segregants. We

normalized the data by subtracting the mean value calculated

across all spots on the array and averaged the gene expression

from the dye-swapped experiments. Log gene expression values

were normal quantile transformed. Missing values were set to zero.

The transformation to normal distribution was done for

computational ease for permutation testing (see below). A total

of 3,970 genes were included in our analysis.

We used genotype measurements from all 2,931 quality-

controlled markers as described in [25].

Human. We used genotypic data from several HapMap

populations (CEU, n = 109; CHB, n = 80; GIH, n = 82; JPT,

n = 82; LWK, n = 83; MEX, n = 45; MKK, n = 138; YRI, n = 108)

[30] in combination with expression profiles for lymphoblastoid

cell lines generated from HapMap participants (commercial

source: Coriell). Gene expression transcript levels were measured

using Illumina’s commercial whole genome expression array,

Sentrix Human-6 Expression BeadChip version 2 (E. Dermitzakis,

personal communication). We focused on data from the CEU

panel since it has been well studied and many cis and trans effects

have been reported [14].

We studied a subset of CEU candidate genes selected to have

expression above background levels (mean transcript expression

above average), high variation in expression (standard deviation $0.5)

and a moderate number of genetic associations, using log transformed

expression values. For each gene, we counted the number of marginal

associations across the genome with p-values below 1025. We

included genes with at least the average number of such associations.

The selection resulted in 989 gene expression probes.

The genotypes consist of 1.2 million HapMap SNPs. For the

comparison of multiple strategies across different numbers of SNP

pairs, we selected a subset of SNPs which uniquely mapped to

gene regions and required minor allele frequency .0.20

(N = 297,153, see below). For the MM analysis (see Subset

Selection Strategies below) we only required a minor allele

frequency .0.05 (N = 1,223,296).

Evaluation of Subset Strategies
A subset strategy defines a subset of SNP pairs which are tested

for epistatic associations with a given set of phenotypes. For any

given strategy we ask how many gene expression traits have at least

one significantly associated epistasis effect. Hence, for each gene

expression trait, it suffices to consider the minimum p-value across

a SNP pair subset.

We assess the significance of the minimum p-value through

permutation tests. Each permutation test consists of randomly

permuting the phenotype values. We transform each gene expression

phenotype via the normal quantile transformation so that all

phenotypes have the same distribution. Therefore, a single set of

permutations can be used to compare with all gene expression traits.

For any subset strategy we compare results from measured

gene expression to results from permuted phenotypes. We chose a

p-value cutoff in order to fix the expected number of false positives

under the null hypothesis that no interaction effects exist. We then

calculated the FDR, as used in [14]. We found this method to be

useful to assess moderate FDR values, since no hits would be found

for very stringent FDR cutoffs (such as 0.05). For yeast, we chose a

p-value cutoff determined from the 0.1% quantile of the

permutation values, using 10,000 permutations. This corresponds

to the 10th smallest of the 10,000 p-values. For the strategy

comparison in human, due to computational considerations, we

Table 1. Details of the two hits discovered by the MM
strategy in a human CEU eQTL dataset.

Gene Probe Snp1 Snp2 P-value

HLA-DRB1 ILMN_20550_7330093 rs3763313 rs3129883 1.79e-14

HLA-DRB5 ILMN_3178_4390692 rs984778 rs206017 1.19e-13

IFIT3 ILMN_1944_2690452 rs2197025 rs2031339 9.13e-12

The FDR is estimated at 49%.
doi:10.1371/journal.pone.0028415.t001

Strategies to Detect Epistasis from eQTL Data

PLoS ONE | www.plosone.org 5 December 2011 | Volume 6 | Issue 12 | e28415



performed only 1,000 permutations and chose a p-value cutoff

determined from the 1% quantile of the permutation values,

corresponding to the 10th smallest of 1,000 p-values.

Subset Strategies
The marginal–by-marginal (MM) strategy selects a subset of

SNP pairs such that both SNPs have marginal effects at a given

significance threshold. The marginal-by-genomewide (MG) strat-

egy selects a subset of SNP pairs such that at least one SNP has a

marginal effect at a given significance threshold. The STRING

(ST) strategy selects pairs of genes from the STRING database

with scores above a given threshold. Larger scores indicate

stronger evidence of a physical interaction between the corre-

sponding proteins. STRING protein pairs are mapped to gene

pairs which are subsequently mapped to corresponding SNP pairs.

For a SNP pair subset strategy, we define an appropriate control

strategy (MM0, MG0 and ST0, respectively) whose aim is to ignore

information used in the strategy’s selection of SNP pairs. Both

MM0 and MG0 strategies use marginally associated SNPs to a

random phenotype. The MM0 strategy consists of SNP pairs such

that both SNPs are marginally associated with the random

phenotype. The MG0 strategy selects SNP pairs such that at least

one SNP is marginally associated with the random phenotype.

The ST0 strategy randomly chooses gene pairs such that both

genes belong to the STRING database but are not necessarily

connected in STRING. The gene pairs are subsequently mapped

to corresponding SNP pairs.

The performance of the control strategy is evaluated on both

the measured gene expression data and the permuted data, and

the performance is compared between the two to estimate the

FDR. In yeast, we carried out 500 analyses using the control.

Mapping SNPs to Genes
In yeast we used the annotation provided by [25] to map SNPs

directly to genes. We do not map upstream or downstream SNPs

to the genes, but these SNPs are considered indirectly due to the

strong linkage disequilibrium with surrounding markers arising

from the linkage study. Note that only a subset of SNPs map to

genes. Therefore we performed the STRING strategy on a smaller

SNP subset than the MM and MG strategies. MM and MG

strategies were also performed on the restricted subset of SNPs

that map to genes in the STRING database (see Figure S5).

For the human data we mapped SNPs to genes provided they

fell within 1 kb upstream or downstream of the transcription start

site or within the gene region. We excluded SNPs mapping to

multiple genes (N = 3,169) to enable easier mapping from

STRING gene pairs to a set of SNP pairs.

Tests of Genetic Association
Genetic association tests were carried out for marginal and

epistatic models. The marginal model associates a phenotype, y,

with the value of a single SNP, x. For haploid yeast genotypes x

takes the value of either 0 or 1, whereas for diploid human

genotypes x takes the value of 0, 1 or 2. We employ a simple

normal linear model, y~azbxze, and assess the association

between a SNP and a phenotype based on the significance of the b
term. Marginal tests were carried out using PLINK [31].

The epistasis model includes effects of two SNPs, x1 and x2.

Again we use a normal linear model y~azb1x1zb2x2z
b12x1x2ze. We assess the epistatic association between a pair of

SNPs and a phenotype based on the significance of the b12 term.

Epistasis tests were carried out using the FastEpistasis software

[11].

Ethics Approval
The research was conducted using HapMap cell lines which are
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Supporting Information

Figure S1 We plot the FDR for different p-value cutoffs, starting

from the 0.1% quantile for the MM, MG and ST strategies

separately.

(PDF)

Figure S2 Shown here is the fit of the epistasis model for the

three interactions detected by the MM strategy, using 10,000

permutations. Gene expression phenotypes (A) HLA-DRB1, (B)

HLA-DRB5 and (C) IFIT3.

(EPS)

Figure S3 We plot the FDR results from the MM strategy (top

5000 marginally associated SNPs) for different p-value cutoffs,

starting from the 0.1% quantile.

(PDF)

Figure S4 Shown here is the fit of the epistasis model for the top

interaction detected by the MM strategy, using 10,000 permuta-

tions. The fit is shown for several populations for which the effect

replicated (A) CHB, (B) JPT, (C) GIH and (D) MEX.

(EPS)

Figure S5 Comparison of the FDR (determined at cutoffs

corresponding to the 0.1% quantile of permutation p-values) for

detecting interactions in yeast gene expression data among the

different subset strategies. The analysis is restricted to SNPs

mapping to genes in STRING. The FDR is plotted against the

number of SNP pairs for MM, MG and ST in red, green and blue,

respectively.

(PDF)
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