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Abstract

The purpose of ultrasound elastography is to identify lesions by reconstructing the hardness characteristics of tissue
reconstructed from ultrasound data. Conventional quasi-static ultrasound elastography is easily applied to obtain axial
strain components along the compression direction, with the results inverted to represent the distribution of tissue
hardness under the assumption of constant internal stresses. However, previous works of quasi-static ultrasound
elastography have found it difficult to obtain the lateral and shear strain components, due to the poor lateral resolution of
conventional ultrasound probes. The physical nature of the strain field is a continuous vector field, which should be fully
described by the axial, lateral, and shear strain components, and the clinical value of lateral and shear strain components of
deformed tissue is gradually being recognized by both engineers and clinicians. Therefore, a biomechanical-model-
constrained filtering framework is proposed here for recovering a full displacement field at a high spatial resolution from the
noisy ultrasound data. In our implementation, after the biomechanical model constraint is integrated into the state-space
equation, both the axial and lateral displacement components can be recovered at a high spatial resolution from the noisy
displacement measurements using a robust H? filter, which only requires knowledge of the worst-case noise levels in the
measurements. All of the strain components can then be calculated by applying a gradient operator to the recovered
displacement field. Numerical experiments on synthetic data demonstrated the robustness and effectiveness of our
approach, and experiments on phantom data and in-vivo clinical data also produced satisfying results.
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Introduction

The routine clinical practice of palpation represents a qualita-

tive assessment of tissue stiffness based on the significant difference

in elastic properties between normal and diseased tissues [1,2].

However, manual palpation is considered to be subjective,

inaccurate, and highly operator-dependent, especially in detecting

small and/or deeply located pathological lesions. During the past 2
decades, a number of elasticity imaging techniques have been

developed for measuring the elasticity of tissues quantitatively,

using ultrasound [3–10], magnetic resonance imaging [11–13],

and other imaging modalities [14,15]. Compared with conven-

tional morphological images, images of elasticity are able to

display the distribution of stiffness/elastic properties of tissue, and

thereby provide more valuable diagnostic information. Elasticity

images have been shown to be able to provide new opportunities

for the detection and diagnosis of cancers in the breast [7,16,17],

prostate [18], and liver [9,19] and in other clinical applications

[20,21] associated with assessments of the elastic properties of soft

tissue.

Ultrasound elastography, which was originally proposed by

Ophir et al. in 1991 [3], has been evolving into a useful and

promising technique due to its real-time capability and ease of

implementation. Among the various elastographic techniques [22–

24], quasi-static ultrasound elastography is particularly popular,

whose basic steps are as follows: (1) a set of radio-frequency (RF)

signals is collected from the specimen in its undeformed state; (2)

the specimen is compressed by external loading, which can be

assumed to be quasi-static, and another set of RF signals is

recorded; (3) motion -tracking techniques, such as widely used

cross-correlation techniques, are applied to estimate the displace-

ment field between the two sets of RF signals recorded in the

previous two steps; and (4) so called elastograms are reconstruct-

ed/computed from the displacement field. The term elastogram is

generally used when referring to all kinds of images that display

mechanical attributes of the tissue, such as the axial or lateral

strains, the elastic modulus or Poisson’s ratio [25].
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Elastography can be broadly classified into two groups based on

the mechanisms underlying the generation of the elastograms. In

the first group, the relative mechanical attributes are calculated

directly from experimental observations (usually tissue displace-

ments), and axial, lateral, and/or shear strains are calculated from

the tissue displacement field and then inverted to produce

elastograms [26,27]. Although this interpretation of the strain

images may be affected by certain artifacts such as target

hardening and bidirectional shadows [3,28], these strain images

have received considerable attention over the past 20 years

because it is feasible to obtain them in real time using an

ultrasound system. There is an increasing number of commercial

ultrasound machines that offer elastography capabilities, which

makes them capable of generating strain images in real time. In

the second group, intrinsic elastic parameters are reconstructed

quantitatively from the measurement data (also tissue displace-

ments) [29–32]. The reconstruction process involves finding an

optimal solution to an inverse problem with constraints, such as

the assumption of plane-strain situation, knowledge of the

boundary conditions and several other assumptions. Modulus

elastograms, such as the distribution of Young’s modulus, can be

thus obtained with the optimal solution. Modulus elastograms can

greatly suppress the artifacts in strain images, but their quality is

highly dependent on the precision of displacement measurements,

which can be easily destroyed by many uncertainties owing to the

ill-posedness nature of the inverse problem. For example, some

proposed reconstruction algorithms [22–24,30] require knowledge

of lateral displacements, while the robustness of many reconstruc-

tion methods could be easily affected by displacement measure-

ments with a poor signal-to-noise ratio (SNR) [24,29,33].

For both the calculation of strain images and the reconstruction

of elastic parameters, accurate estimation of tissue displacements is

the first important step that will critically affect the image quality.

This has prompted the development of different motion-tracking

techniques for recovering tissue displacements during the past 2

decades [3–5,9,27,34]. The estimation of tissue displacements is

inherently a three-dimensional problem, which means that the

displacement vector components physically involve all three

directions (x-, y-, and z- axes) simultaneously and continuously.

However, early methods only focus ed on axial displacement

estimation because traditional ultrasound probes provide high

spatial resolution along the axial direction, but poor spatial

resolution along the lateral direction. A widely used displacement

estimation technique is time delay estimation (TDE) [3,27]. TDE

method generally involve finding the best-matching segment in the

delayed RF signal for a specific segment in the reference RF signal

by computing the maximum or minimum of a pattern-matching

function. Cross-correlation is the most commonly used pattern-

matching function in TDE method, but several other matching

techniques have also been employed, such as those based on

correlation coefficients [35], hybrid-sign correlations [36], the sum

of absolute differences (SAD) [37], and the sum of squared

differences (SSD) [38]. The performances of these matching

techniques have been comprehensively surveyed in [39,40]. TDE

provides accurate estimation of axial displacement, but it is

normally time-consuming. An alternative way is to use phase-shift

estimation (PSE) originating from Doppler techniques, which has

the advantage of efficient calculation of displacements [5,41,42]

and then is more feasible to implement in commercial ultrasound

systems.

However, axial displacements estimated from single ultrasound

RF lines are insufficient for reconstruct ing modulus elastograms

[1,30]. Previous approaches for estimat ing both the axial and

lateral displacements have relied on the speckle-tracking technique

[10,43–46]. The main challenge in estimat ing lateral displace-

ment s in ultrasound elastography is due to the spatial resolution

being much worse along the lateral direction than along the axial

direction for most ultrasound probes. Different beam-forming

schemes have been proposed for improving the lateral resolution

[47,48], such as using a large beam steering angle; however, this

method can only be implemented using a phased array. Different

post processing techniques have also been applied to improve the

quality of lateral displacement measurements, such as iterative

interpolation along the lateral direction [26] or local affine

transformation [49]. Another approach has been to calculate a

two-dimensional (2D) displacement field in real time using the

analytic minimization (AM) of cost functions that incorporate both

the similarity of the amplitudes of RF signals and the displacement

continuity [9]. However, lateral displacement estimation is still

typically an order of magnitude less accurate than axial

displacement estimation. This limitation has manifested in clinical

applications, such as being unable to identify ablation lesions in

patients in experiments based on lateral-strain data [9]. Research-

ers have tried to use the biomechanical constraint to recover

lateral displacements at a high resolution from axial data. With the

assumption of a constant Poisson’s ratio (0:49), i.e. based on the

biomechanical constraint of tissue incompressibility [50], lateral

displacements were recovered from axial-strain measurements

using the least-square technique. However, the least-square

technique in this tissue -incompressibility-assumption method

(TIAM) cannot perfectly eliminate measurement noise. In

addition, errors will be introduced when the tissue incompressi-

bility assumption is invalid. It is therefore necessary to develop a

robust framework with a more meaningful biomechanical

constraint to recover the full displacement field from the

ultrasound measurements.

In this paper we present a biomechanical-model-based filtering

framework for improving the quality of the full displacement field

obtained from noisy and sparse ultrasound data. A modified PSE

method that we proposed previous ly [42] is first used to compute

the axial displacement from RF signals, and then an H? filtering

algorithm [51] is applied to generate statistically optimal estimates

via the assimilation of measurements with a meaningful biome-

chanical model constraint. After recursive filtering procedures,

strain elastograms (axial-, lateral-, and shear- strain images) can be

calculated from the recovered full displacement field. Synthetic

data were generated to evaluate the robustness and accuracy of

our strategy. Moreover, the promising results obtained from real

ultrasound phantom data and clinical data show the great

potential of our approach in elastography. The remainder of the

paper is organized as follows: The first section gives an

introduction to our framework, including the displacement

calculation algorithm based on PSE, the biomechanical model

and its state-space representation, and the H? filtering procedure

used for integrating displacement measurements and model

prediction. The second section describes the freehand elastogra-

phy experiments on synthetic data, and presents the phantom and

clinical data used to evaluate the performance of our framework.

The third section discusses the experimental results and the fourth

section draws the conclusion s from this study.

Methods

The whole framework includes two parts, motion tracking and

motion recovery, as shown in Figureô 1. Axial displacements are

first computed from ultrasound RF signals using the PSE motion-

tracking method proposed previously by our group [42], and then

axial displacements are used as observations and input to the

A H‘ Approach for Strain Estimation
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subsequent H?filtering strategy to reconstruct a 2D displacement

field. This section briefly describes our PSE method for measuring

the axial displacement, and then describes in detail the integration

of the biomechanical model and the H? filtering strategy.

Recovery of Displacement
We previously developed a PSE method to calculate the axial

displacement of soft tissue under quasi-static compression. The

ultrasound RF signals before and after deformation can be

modeled in complex expressions:

a(t)~I(t)e{(jv0t{h) ð1Þ

b(t)~I(tzt)e{(jv0(tzt){h) ð2Þ

where I(t) is the envelope of the RF signal, v0 is the center

angular frequency of the transducer, t is the time lag due to

deformation, and h is the initial phase. The complex RF signals

can be obtained by in-phase/quadrature demodulation or using

the Hilbert transform.

The complex cross-correlation function of a(t) and b(t) is then

computed to estimate the axial displacement:

Rab(t)~

ð t0=2

{t0=2

a(tzv)b(tzv)� dv~ DRab(t)D: ejv0t ð3Þ

where t0 is the correlation window and superscripted asterisk

denotes the complex conjugate. This expression corresponds to the

output of the autocorrelation operator of a conventional Doppler

system. If axial displacement ux(t) is smaller than a quarter of

wavelength l0, it can be obtained from phase shift w(t)~v0t
which is equal to the phase of Rab(t):

ux(t)~
w(t)

2p
l0~

arg(Rab(t))

2p
l0 ð4Þ

where arg(*) denotes the phase of one complex number.

However, phase aliasing occurs when u(t)wl0=4, in which case

the displacement cannot be calculated from Equation (4) without

ambiguity. We introduced a prior i knowledge of the displacement

(time lag tp) to perform phase unwrapping [42] in order to avoid

the estimation error. As shown in Figureô 2, the ultrasound image

is divided into an appropriate number of overlapping segments.

The displacements are assumed to be continuous across neigh-

boring segment, and hence the information available from two

neighboring segments can be used to predict time lag for the

current segment: tp~round((t1zt2)=2). The displacement is

defined as the relative movement of the segments with respect to

the probe, and so the value of tp for all of the first segments in each

RF line is set as zero. By introducing prior estimated time lag tp,

Equation (3) is rewritten as

Rab(t; tp)~

ð t0=2

{t0=2

a(tzv)b(t{tpzv)� dv~

Rab(t; tp)D: ejv0(t{tp)

ð5Þ

Therefore, axial displacement ux(t) can be calculated from the

following equation without ambiguity:

ux(t)~
tpv0zarg(Rab(t; tp))

2p
l0 ð6Þ

Biomechanical Model
In ultrasound elastography, soft tissue is usually modeled as an

isotropic linear elastic medium, where the elastic properties are

identical in all directions and the strain/stress tensors are

symmetric owing to only small deformation s occurring in

response to an external force. In this case Hooke’s law defines

the relationship between strain and stress tensors, and it can be

described by the following equations using standard tensor

notation [52]:

sij~Gijklekl ð7Þ

where sij is the Cauchy stress tensor, Gijkl is the stiffness tensor,

and ekl is the strain tensor. In this study we only consider ed 2D

mechanical model in the Cartesian coordinate system, which

makes it more convenient to describe Hooke’s law in matrix form

as follows:

s~Ge ð8Þ

Figure 1. Flow chart of the algorithm.
doi:10.1371/journal.pone.0073093.g001

Figure 2. Choice of prior information.
doi:10.1371/journal.pone.0073093.g002
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where G is the stiffness matrix. The displacement components

along the x{ axis (axial direction) and y{ axis (lateral direction)

are ux and uy respectively, and so strain tensor e and stiffness

matrix G under a plane -strain condition are given by

e~

Lux

Lx
Luy

Ly

Lux

Ly
z

Luy

Lx

2
6666664

3
7777775
~

L
Lx

0

0
L
Ly

L
Ly

L
Lx

2
6666664

3
7777775

ux

uy

� �
ð9Þ

G~
E

(1zn)(1{2n)

1{n n 0

n 1{n 0

0 0 (1{2n)=2

2
64

3
75 ð10Þ

where E is Young’s modulus and n is Poisson’s ratio. Equation (10)

indicates that stiffness matrix G is determined by only two scalars

in this work: Young’s modulus (E) and Poisson’s ratio(n).

After the constitutive law of linear elasticity is defined, the

governing equation of motion expressed using components in a

rectangular Cartesian coordinate system can be easily defined as

follows [52]:

sij,izFi~rLttui ð11Þ

where the (:),i subscript is shorthand for
L(:)

Lxi

, Ltt indicates
L2

Lt2
,

sij~sji is the Cauchy stress tensor, Fi are the body forces, r is the

mass density, and ui (i.e., ux and uy) refers to the axial and lateral

displacement s.

In order to use the equation of motion (Equation (11)) in this

work, the finite element method (FEM) is adopted to discretize the

region of interests into small elements, using a Delaunay triangular

finite-element mesh. Then the nodal-displacement-based govern-

ing dynamic equation of each element is established under the

minimum-potential-energy principle [52], with the obtained

equations assembled into the following matrix form:

M €UUzC _UUzKU~R ð12Þ

where M, C and K are the mass, damping and system stiffness

matrices, R is the load vector, and U is the displacement vector. U
consisting of ux and uy values (i.e., axial and lateral displacement

s). The M, K and C matrices were calculated in all of the

experiments performed in this study using the same well-known

standard FEM procedure [52]. Because the tissue density can be

generally considered to be uniform over the region of interest, M is

a known function of the material density and is both temporally

and spatially constant. K is a function of the constitutive material

property, which was linear elasticity, and is related to the material-

specific Young’s modulus and Poisson’s ratio, which were

considered as temporally constants in this study. However, in

our framework these two local material parameters are initialized

uniformly by known knowledge, such as previously reported

material properties of healthy background-tissue. Damping matrix

C is frequency dependent, and we assume d the presence of small

proportional Rayleigh damping, and so C~aMzbK in our

implementation, where a and b are the the mass- and stiffness-

proportional Rayleigh damping weighting coefficients, respectively

[52]. In practice it is difficult to determine the damping

parameters because they are frequency dependent. Our assump-

tion of Raleigh damping was based on the very low damping

exhibited by biological tissues during quasi-static elastography,

and fix ed the two weighting coefficients at 1%.

One initialization issue of Equation (12) is how to measure the

external loading vector (R) during freehand elastography. Con-

sidering the object system dynamics embodied in Equation (12), if

any knowledge of the displacement vector (U) is available, it can be

used as essential boundary conditions to recover the motion

parameters of all other nodes. The following experiments

invovling synthetic and real imaging data provided a set of

displacements at nodal points of the boundary (e.g., axial

displacements), and they are employed in the following fashion.

Let Ub~b be known from the imaging data at selected sampling

nodes of the boundary, then the additional constraining equation

mUb~mb is enforced on the system dynamics through

M €UUzC _UUzKUzmUb~Rzmb ð13Þ

where weighting coefficient m depends on the confidence of each

displacement, with large m values (1|104 in this study) indicating

highly trustworthy data points and small m values for others. In this

way it remains possible to describe the boundary condition without

measuring the external force during freehand elastography. More

details of this enforcement of boundary condition can be found

elsewhere [52].

Stochastic Space Representation
In previous studies of biomechanics and ultrasound elastogra-

phy, the deterministic FEM has provided an efficient representa-

tion of complex tissue geometry and a convenient and effective

computational framework [53,54]. However, this method is not

able to consider situations where kinematic observations should be

characterized as stochastic processes. Since the imaging and

imaging-derived observations are usually corrupted by various

types of noise, especially for pathological situations in ultrasound

elastography, it is necessary to adopt a strategy that can account

for the main sources of uncertainty in the analysis of ultrasound

elastography.

The stochastic FEM (SFEM) has been used for structural

dynamics analysis in probabilistic frameworks [55,56]. In the

SFEM, structural material properties are described by random

fields, possibly with known a priori statistics, and the observations

and loads are corrupted by noise. In this way the stochastic

differential or difference equations are combined with the FEM to

study dynamic structures for which there is uncertainty in their

structural parameters and/or measurements. In the analysis of

ultrasound elastography, this framework based on Ito calculus

from a Bayesian point of view [57] can be adopted to give optimal

estimates of the kinematics state for a particular a priori mechanical

model and a posteriori ultrasound imaging pairs.

In our 2D implementation, a Delaunay triangulated finite

element mesh is constructed at interested area segmented

manually in the first frame of ultrasound elastography. An

isoparametric formulation defined in a natural coordinate system

is used, where the basis functions for a trinodal linear element are

linear functions of the nodal coordinates [52]. In order to apply

filtering strategies to estimate both the axial and lateral displace-

ments, we assume that the material parameters (Young’s modulus

E and Poisson’s ratio n)are temporally and spatially constants,

which are distributed uniformly throughout the region of interest,

and so Equation (12) can be transformed into a state-space

representation of a continuous-time system [58]:

A H‘ Approach for Strain Estimation
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_xx(t)~Acx(t)zBcW(t) ð14Þ

where

x(t)~
U(t)

_UU(t)

� �
, ð15Þ

Ac~
0 I

{M{1K {M{1C

� �
, ð16Þ

Bc~
0 0

0 M{1

� �
, ð17Þ

W(t)~
0

R

� �
ð18Þ

From Equation (16) to (18), M, C and K can be assembled using

the standard FEM procedure [52]. The displacement was a

function of time in this study, so U(t) in Equation (15) represents

the displacement over time.

With sampling interval T , adding process noise nk (which is not

necessarily white noise), yielding the following discrete-time system

equation:

xkz1~AkxkzBkWkznk ð19Þ

where Ak~eAcT , and Bk~A{1
c (eAcT{I)Bc. The associated

measurement equation of the discrete-time system can be

expressed as:

yk~Dxkzek ð20Þ

where yk is the measurement vector, D is the measurement matrix

[58], and ek is the measurement noise. Measurement vector y
contains the sparse measurements of displacements, while state

vector x contains the full displacement components. Therefore, D
is actually a single mapping matrix that describes the correspon-

dence between the available measurement and full displacement

components. The approach based on this filtering algorithm has

no specified requirements for the type of measurement. Equations

(19) and (20) are thus the discrete-time state-space representation

of the object dynamics of ultrasound elastography with biome-

chanical modeling constraints.

H? Filtering Strategy
The popular Kalman filter calculates the estimation error using

the H2 norm and minimizes the mean-square error to find the

optimal estimates, while the H? filter evaluates the error in terms

of the H? norm via the energy gain [59]:

J~

XN{1

k~0
DDxk{x̂xk DD2QkXN{1

k~0
(DDnk DD2N{1

k

zDDvk DD2V{1
k

)zDDx0{x̂x0DD2P{1
0

ð21Þ

where Nk, Vk, Qk, and P0 are the weighting matrices for the

process noise, measurement noise, estimation error, and initial

uncertainty respectively, and x̂x0 is a priori estimates of x0. The Nk,

Vk, Qk and P0 matrices that are used in the weighted norms in J

are chosen manually so as to satisfy desired trade-offs. For

example, if it is known that the process noise will be lower than the

measurement noise, Nk should be made smaller than Vk so as to

de-emphasize the importance of the process noise relative to the

measurement noise. Similarly, if we are more concerned about the

estimation accuracy for specific elements of the state vector, or if

the elements of the state vector are scaled so that they differ by an

order of magnitude or more, then Qk should be defined

accordingly. In most related work, including that performed for

this paper, Nk, Vk, and Qk are assumed to be time-invariant

constant matrices [51,59–61]; therefore, in the following context,

Nk, Vk and Qk are replaced by N, V and Q, respectively. Since all

the elements in the state vector (x) are weighted equally in this

stduy, Q is set to be the identity matrix. Further, since P0 presents

the initial guess of error covariance matrix, we always set one large

constant (1|105) along the diagonal elements of P0 and zero

elsewhere in this study. According to our experience in the

following experiments, the error covariance matrix (P) will

converge after the iterations.

The denominator of J can be regarded as the energy of

unknown disturbances, while the numerator is the energy of the

estimation error. Considering a system given by Equations (19)

and (20), the H? filtering process involves searching the optimal

estimates of xk that satisfy the following performance measure:

supJvc2 ð22Þ

where sup means the supremum and c is a positive constant that

represents a prescribed level of noise. The robustness of the H?

estimator is based on it yielding an energy gain of less than c2 for

all bounded energy disturbances irrespective of where they are.

We found that the performance of our filtering strategy is

acceptable when c = 1 in all the following experiments.

Many strategies can be used to implement the H? filter [51,59].

Here, we adopted a game -theory algorithm that does not require

the checking of the positive definiteness and inertia of Riccati

difference equations (Equation (23)) for every step [62]. In our

implementation strategy the H? filtering algorithm for the system

described by Equations (19) and (20) with the performance

criterion in Equation (22) consists of the following procedures:

1. Compute the FEM matrices; that is M, C, and K in Equation

(12).

2. Initialize the H? filtering algorithm by choosing appropriate N,

V, Q, and P0

3. Start the following iterative procedure:

Sk~(I{c{2QPkzDT V{1DPk){1 ð23Þ

Kk~AkPkSkDT V{1 (24)

x̂xkz1~Akx̂xkzBkWkzKk(yk{Dx̂xk) ð25Þ

Pkz1~AkPkSkAT
k zN ð26Þ

A H‘ Approach for Strain Estimation
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where D is the measurement matrix in Equation (20), and Ak and

Bk are the matrices in Equation (19).

It is obvious that the above H? process has a Kalman-like

structure. However, the H? filter ing strategy does not require any

prior knowledge of noise statistics, and it would be more

appropriate for practical problems.

Experiments
This section uses three groups of data–synthetic data, phantom

data, and clinical data–to evaluate the performance of our filtering

strategy. First, a finite -element model was constructed in

ABAQUS (3DS Simulia Corporation, Waltham, USA) with a

hard circular inclusion embedded in a soft background to generate

the synthetic data: the displacement map was obtained by applying

axial loading to the sample surface as the ground truth, and

various levels and types of white noises were added to the

simulated axial and lateral displacements in order to construct

measurements for the H? filtering strategy. The availability of the

ground truth in experiments using synthetic data makes quanti-

tative evaluation s of the performance of our filtering strategy easy,

such as the calculation of the SNR. Moreover, for elastography

using a one -dimensional probe, because the quality of the

reconstructed lateral displacement can reflect the capabilities of

our proposed strategy, our experiments using synthetic data

focused on examining the quality of estimated lateral displacement

through the H? filtering strategy. Then, a PC-based ultrasound

system with open access to the RF signals (Ultrasonix RP,

Ultrasonix Medical Corporation, Burnaby, BC, Canada) was

employed to collect experimental data from an elasticity QA

phantom (model 049, CIRS Technology, Norfolk, VA, USA). For

this set of data, our PSE method was used to estimate tissue

internal displacements from the ultrasound RF data [42], with

only the axial component of displacement field used as a

measurement in our model-based filtering framework. Although

the measurement s in this experiment only constitutes information

for the axial direction, our proposed filtering strategy can still

recover a high-quality displacement field and strain elastograms in

both the axial and lateral directions. We also conducted

experiments using data available online [9] from Johns Hopkins

University (JHU). These data contain both axial and lateral

displacement components estimated from the ultrasound RF data

using the 2D AM method. Our model-based framework was then

used to estimate the displacement field at a high spatial resolution

by using both the noisy axial and lateral displacement components

generated by the 2D AM method as measurements. The

measurement s used in this experiment contain ed more

information than the one in the earlier experiment, which meant

that our filtering strategy could generate better results. The

corresponding strain elastograms were also compared with those

directly calculated from displacement measurements [9].

Synthetic Data
A 20|20 mm rectangular object containing a circular inclusion

with different material properties (Et~80kPa and nt~0:49 for the

circular inclusion, and Eb~25kPa and nb~0:49 for the

background), was constructed in ABAQUS. The following

boundary condition was applied: the object was loaded by uniaxial

compression so that it moved 1:0mm (i.e., the deformation ratio

was 5%) downward with only its bottom fixed. The corresponding

displacements calculated by ABAQUS were used as the ground

truth. Different types and levels of white noise were added to the

simulated displacements as the measurements for our model-based

filtering framework. Two groups of simulations were implemented

for generat ing the synthetic data:

1. Using the same boundary condition as described above, six sets

of displacements were obtained for Poisson’s ratio of 0:49, 0:40,

0:35, 0:30, 0:25, and 0:20 (for both the inclusion and the

background). Since the spatial resolution of the RF data is higher

in the axial direction than in lateral direction, the quality of the

axial -displacement measurements should always be higher in

quasi-static ultrasound elastography. Therefore, it is reasonable to

add high noise levels to the synthetic lateral displacements; SNR

values of 30 and 10 dB were used for the axial and lateral

displacement component s, respectively. This experiment used

both axial – and lateral -displacement measurements in our

method. The process noise (N) was one diagonal matrix (diag(c,

c,..., c), c = 1|10{4), and V was another one diagonal matrix

(diag(c1, c1,..., c2, c2), c1 = 1|10{6 for axial displacement

measurements, c2~1|10{3 for lateral displacement measure-

ments) in this experiment. Both the TIAM and our model-based

filtering method were applied to recover the lateral displacements

from the simulated measurements. Noted that this paper focus es

on the estimation of strain from quasi-static ultrasound elasto-

graphy; the estimation of lateral displacement is always very

difficult due to the poor resolution of the ultrasound probe in that

direction. Therefore, the ability to recover high-quality data for

the lateral displacement field is the key indicator of the

performance of strain -estimation algorithms used for quasi-static

ultrasound elastography. The ability of our proposed method to

recover the lateral displacement is quantified using the lateral

error-to-displacement ratio (EDRl ):

EDRl~
�eel

�ddl

ð27Þ

where �eel is the mean of the absolute values of nodal lateral-

displacement error, �ddl is the the mean of the absolute values of

nodal lateral-displacement value. The ability to recover the lateral

displacement recovery of two algorithms (the TIAM and our

model-based filtering method) are compared in this experiment.

The x-axis is the Poisson’s ratio and y-axis is the lateral error-to-

displacement ratio in Figureô 3(a). Figureô 3(a) provides the EDRl

curves for the two algorithms, and the true magnitude of the EDRl

in our method should be equal to the value on the curve multiplied

0:1%. Furthermore, the EDRl curve for the TIAM goes up when

Poisson’s ratio descreaes, whereas the EDRl curve for our method

does not change much. Figureô 3(b) shows lateral displacement

profiles at the same depth indicated by the colored lines in the

following Figureô 3(c) and (d). As shown in Figureô 3(b), the lateral

-strain profile generated by our method is much closer to the

ground truth. One set of simulated measurements (for a Poisson’s

ratio of 0:49) is shown in Figureô 3(c). The left panel in Figureô 3(c)

displays the synthetic measurement s of the axial displacement.

The high spatial resolution along the axial direction of the

ultrasound probe means that the quality of the synthetic

measurement s should be much higher for the axial displacement

than for the lateral displacement, as is evident in the right panel of

Figureô 3(c). The lateral displacements recovered by the TIAM

and our method are shown in Figureô 3(d), which clearly indicates

that the quality of recovery is much higher for our method.

2. The second experiment evaluated the effect of modeling

mismatch or external disturbances on the performance of our

method. Unlike the earlier experiment, in this experiment only the

axial displacement (with SNR = 30 dB) was used as the measure-

ment, and the average nodal position error (i.e., the differences
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Figure 3. Performance comparison: (a) EDRl versus Poisson’s ratio for the two methods. (b) Lateral displacement profiles at the same
depth that is marked by the colorful lines in (c) and (d); (c) Measurements: axial displacement with low noise (left) and lateral displacement with high
noise (right); (d) Results for TIAM (left) and our method (right).
doi:10.1371/journal.pone.0073093.g003
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between the estimates and the true values calculated by ABAQUS)

was calculated to evaluate the accuracy of the estimation. The

process noise (N) was one diagonal matrix (diag(c, c,..., c),

c = 1|10{4), and V was another one diagonal matrix (diag(c1,...,

c1), c1 = 1|10{6 for axial displacement measurements) in this

experiment. The ability to recover high-quality lateral -displace-

ment measurements is important in elastography because of the

poor lateral spatial resolution of the probe. In this experiment

EDRl was used as one performance indicator of this ability. In

order to better demonstrate this ability, we only use d the

measurements from the axial direction; that is, the measurements

did not contain any information from the lateral direction. In this

paper the linear elasticity is adopted as the mechanical property.

Therefore, the mismatch of the model involves evaluating the

mismatch es of Young’s modulus and Poisson’s ratio, which are

two key factors of the linear elasticity. In the following experiments

the mismatches of Poisson’s ratio and Young’s modulus are

evaluated, respectively. The ground truth of Poisson’s ratio in

Figureô 4(a) is 0:49. The difference in Poisson’s ratio is equal to the

used value minus the ground truth. The x-axis of Figureô 4(a) is the

difference in Poisson’s ratio while the y-axis is the average nodal

position error. The EDRl line is also drawn in Figureô 4(a) to

indicate the quality of the estimated lateral displacement.

Figureô 4(a) shows that the nodal position error increases with

the mismatch of Poisson’s ratio, but EDRl is below 8% when the

mismatch is {0:2. In the experiment of the mismatch of Young’s

modulus, for the ground truth Young’s modulus is 80kPa for

circular inclusion and 25 kPa for the background. However, in our

H? filtering strategy Young’s modulus is considered as a constant

parameter both spatially and temporally since we assume that we

do not know the location of the inclusion during the filtering

process. Young’s modulus is therefore initialized at the same value

over the whole area in our filtering strategy, and the value of

Young’s modulus is initialized to 25 kPa. The difference of

Young’s modulus between the ground truth and used value in

Figureô 4 is equal to that used value minus the background value.

The x-axis of Figureô 4(b) is the difference of Young’s modulus and

y-axis is the average nodal position error. Figureô 4(b) shows that

when the mismatch of Young’s modulus is –20, the average nodal

position error increases rapidly, while when the mismatch of

Young’s modulus goes to 60, the average nodal position error

increases slowly. However, EDRl is still within the acceptable

zone, as indicated in Figureô 4(b). In addition, different types and

levels of external noise were added to the simulated axial

displacements to generate different types of measurements. After

the estimated nodal positions were obtained, the mean and

standard deviation values for the nodal position errors were

calculated; the results are complied in Tableô 1. In this test of

different types of external noises, our robust model-based

framework can produce rather similar results from measurements

with various types of additive noises (mean values for the nodal

position errors do not change largely at the same level of external

noise, as shown in Tableô 1), but for different levels of external

noise, the estimated results still changes (mean values for the nodal

position errors change across different levels of external noise, as

shown in Tableô 1).

Based on the recovered axial and lateral displacements, all

components of the strain tensor can be reconstructed, as shown in

Figureô 5. These results demonstrate that our model-based

framework can accomplish a high-quality tissue motion recovery

(i.e., axial and lateral displacements) from the sparse and noisy

measurements. However, in order to reduce the computational

Figure 4. Effects of Poisson’s ratio mismatch (a) and Young’s
modulus mismatch (b).
doi:10.1371/journal.pone.0073093.g004

Table 1. Comparison of average nodal position errors (mean
+ standard deviation values) derived from the H? filtering
results for various types of measurement noise.

Average Positional Error (61026)

Noise Type SNR 20 dB SNR 15 dB

Gaussian 3.86960.075 7.36960.365

Uniform 3.44060.076 6.96360.439

Poisson 3.58660.187 7.08960.326

Rayleigh 3.85460.086 7.07060.219

Exponential 3.47360.286 7.28460.734

doi:10.1371/journal.pone.0073093.t001
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Figure 5. Ground-truth data: (a) axial strain, (b) lateral strain, (c) axial-shear strain, (d) lateral-shear strain, and (e) shear strain.
Reconstructed strain tensors: (f) axial strain, (g) lateral strain, (h) axial-shear strain, (i) lateral-shear strain, and (j) shear strain.
doi:10.1371/journal.pone.0073093.g005
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consumptions, we only choose 21|21 nodal displacements as the

measurements for our method in the simulations.

Phantom Data
Two groups of phantom data are used to verify the performance

of our model-based filtering approach. In the first group, RF data

were obtained at a sampling rate of 20 MHz from the Ultrasonix

RP system (Ultrasonix Medical Corporation) comprising a

transducer having a center frequency of 5 MHz. All of the

ultrasound data were collected using freehand elastography on an

Elasticity QA Phantom (CIRS Technology). The axial displace-

ments were first obtained using our PSE method from the RF

signals as measurements to our method, and the full displacement

field (both axial and lateral displacements) was then recovered at a

high spatial resolution from these axial-displacement measure-

ments through our model-based filtering framework. The process

noise (N) was one diagonal matrix (diag(c, c,..., c), c = 1|10{4),

and V was another one diagonal matrix (diag(c1, c1,..., c1),

c1 = 1|10{5 for axial displacement measurements) for the first

group of phantom data. The following strain tensors were

calculated based on the recovered axial and lateral displacements.

Figureô 6 shows that the obtained lateral-strain image s were clear,

and that the shear-strain images could still be identified. These

high-quality strain images were reconstructed using our filtering

algorithm with only measurement of the axial displacement.

The second group of data, both the axial and lateral

displacements estimated by the 2D AM method, were provided

[9] by JHU. However, the lateral displacements and strain maps

are very noisy, as shown in Figureô 7(a). In this experiment we

directly use d the axial and lateral displacements from the 2D AM

method as the measurement input to our method. The process

noise (N) was one diagonal matrix (diag(c, c,..., c), c = 1|10{4),

and V was another one diagonal matrix (diag(c1, c1,..., c2, c2),

c1 = 1|10{5 for axial displacement measurements, c2 = 1|10{3

for lateral displacement measurements) for the second group of

phantom data. Applying our model-based method to the noisy

displacements data from JHU recovered a high-quality displace-

ment field and strain tensors. Figureô 7(b) shows that the axial-,

lateral-, and shear-strain maps as calculated by our model-based

method were of higher quality than the JHU results. Figureô 7(c)

compares the strain profiles obtained at the same locations of our

images and the JHU images, which shows that the strain profile

generated by our model-based method is smoother than that of the

JHU method. The contrast to noise ratio (CNR) [9] was used to

quantitatively compare the qualit ies of the strain images generated

by our filtering strategy and the previously developed 2D AM

method [9]. As shown in Figureô 7, the CNR of the axial- and

lateral-strain images estimated by the 2D AM method were 8:4125
and 2:1159, respectively; the corresponding values from our

model-based method were 8:7052 and 6:5948.

Clinical Data
Data from two groups of patients from JHU [9] were adopted as

clinical trials in this study. These data were collected from patients

undergoing open surgical RF thermal ablation for liver cancer

who were enrolled between February 6, 2008 and July 28, 2009.

The clinical status es of these patients are described in detail [9].

The ultrasound experiment s were performed with the approval of

the Health Science Research Ethics Committee of JHU, and the

participants provided written informed consent before beginning

Figure 6. Components of the strain tensor calculated from the recovered displacements: (a) axial strain, (b) lateral strain, (c) axial-
shear strain, (d) lateral-shear strain, and (e) shear strain.
doi:10.1371/journal.pone.0073093.g006
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the experiment [9]. The strain images corresponding to the axial

and lateral displacements as reconstructed from RF data by the

2D AM method [9] are shown in Figureô 8(a) and (c). The lesions

were already segmented manually by yellow lines in both the axial-

strain images. However, the lateral-strain elastograms generated

by the JHU method did not provide valuable clinical information

because the noise in their recovered lateral displacements was not

compressed. Therefore, our model-based framework was applied

to recover the full displacement field from the displacement

measurements estimated by the 2D AM method. According to

previous reports on the mechanical properties of liver tissue,

Young’s modulus of healthy liver tissue is around 6kPa [63].

Hence, in this work Young’s modulus was set to be 6kPa and

Poisson’s ratio was set to be 0.49 initially. The process noise (N)

was one diagonal matrix (diag(c, c,..., c), c = 1|10{4), and V was

another one diagonal matrix (diag(c1, c1,..., c2, c2), c1 = 1|10{6

for axial displacement measurements, c2 = 1|10{3 for lateral

displacement measurements) in this experiment. All of the

components of the strain tensor were then calculated from the

recovered displacement field, as shown in Figureô 8(b) and (d).

The lesions were also segmented manually by yellow lines in both

the axial-strain images. Our elastograms made it possible to

identify the lesion from lateral-strain maps, but we could not

identify any structures in the shear-strain maps that could be

clearly attributed to the lesion.

Figure 7. Comparison between our method and other method: (a) Axial-, lateral-, and shear-strain images (left to right) calculated
from displacement measurements directly. (b) Axial-, lateral-, and shear -strain images (left to right) calculated from displacements estimated
by our filtering strategy. (c) Comparison of the axial-strain (left) and lateral-strain (right) profiles of images from two groups.
doi:10.1371/journal.pone.0073093.g007
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Discussion

This study used a stochastic filtering strategy to absorb the

biomechanical model constraint and then perform tissue motion

recovery in ultrasound elastography. The main advantage of our

filtering strategy is its capability of generating a a high-resolution

displacement field (in both axial and lateral directions) in 2D

elastography. We discuss the performance of our filtering strategy

with the biomechanical constraint in term of robustness, biome-

Figure 8. Experiment on clinical data. Data for patient 1: (a) axial- and lateral-strain images (left to right) calculated from displacement
measurements directly; (b) axial-, lateral-, and shear-strain images (left to right) calculated from displacements estimated by our filtering strategy.
Data for patient 2: (c) axial- and lateral-strain images (left to right) calculated from displacement measurements directly; (d) axial-, lateral-, and shear-
strain images (left to right) calculated from displacements estimated by our filtering strategy. The lesions were segmented manually by the yellow
lines in all four axial-strain images.
doi:10.1371/journal.pone.0073093.g008
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chanical constraint, initialization, computational cost, and the

limitations in the following context.

Robustness of H? Filtering Strategy
The kernel of our proposed approach is the H? filtering

strategy, which can better deal with internal and external

disturbances/noise in the elastography; our H? approach only

requires a priori error bounds of disturbances/noises for the

iterative recovery process, whereas most previous model-based

approaches have require d more information about the distur-

bances/noise, such as the statistical properties [24]. Compared

with the popular Kalman filtering paradigm [51], the H? filtering

strategy makes no assumptions about external noise statistics,

which makes it more appropriate for certain practical problems

where the disturbances/uncertainties are unknown and non-

Gaussian. Furthermore, unlike the conventional filtering frame-

works (e.g., median or mean filtering) that are normally employed

to compress the noise included in image data, and which do not

consider a priori information, our filtering framework recursively

assimilate sparse measurements and the biomechanical-model-

based constraint, and eventually generate physically meaningful

optimal estimates, thereby obtaining a full and smoother

displacement field. Noise is compressed in our filtering framework

via the efficient determination of optimal results using the H?

filtering algorithm under the biomechanical model constraint. In

order to better understand the robustness of our proposed

algorithm, we also examine the sensitivity of the property of

external noise using our filtering strategy. The robustness of the

proposed filtering strategy to external noise was evaluated by

adding different types and levels of measurement noise to the

simulated measurement. Our filtering framework was still able to

recover the displacement field with a similar quality from

measurements containing various types of additive noise, as

indicated by the mean value s listed in Tableô 1. However, the

standard deviations of nodal position error vary with different

types of noise in Tableô 1, which might imply that the variation or

dispersion of nodal position error from the mean value would vary

with different types of noise. We could inspect the change of

standard deviation of nodal position error in future work for

deeply understanding the performance of the H? filtering

algorithm in ultrasound elastography.

Benefit of Biomechanical Constraint
The first of our experiments on synthetic data test ed the

tolerance s of the TIAM and our method to variation of Poisson’s

ratio of the object under investigation. The TIAM gives a poor

EDRl when Poisson’s ratio of the object deviates from 0:49
because of the assumption of tissue incompressibility. In contrast,

our method exhibits high accuracy and stability, as indicated by

the EDRl value of our method being one order of magnitude

smaller than that of the TIAM (see Figureô 3(a)). Our experiments

indicated that a result with EDRl&10% is acceptable, while one

with EDRlv5% can be considered acceptablly accurate. The

EDRl of the TIAM was around 10% when Poisson’s ratio of the

object equal ed 0.49, whereas the EDRl of our method was lower

than 1%, as shown in Figureô 3(a).

The second experiment on synthetic data investigated the

tolerance of our method to modeling mismatch and external

noises. The model-data mismatch was defined as be the difference

between the ground truth and the model used in our filtering

strategy, such as in the boundary conditions, Young’s modulus, or

Poisson’s ratio. Since material properties play a key role in the

biomechanical modeling framework, we first examine d the effect

of material-properties mismatch. Because the adopted biome-

chanical model is linear elasticity, the effect of the mismatch of

Young’s modulus and Poisson’s ratio was examined in our

experiments. Furthermore, since the measurements of lateral

displacement provided by elastography are always sparse due to

the poor spatial resolution of the ultrasound probe, the ability to

recover high-quality lateral displacements was adopted as an

important performance indicator in our experiments. The impact

of the mismatch of Poisson’s ratio on the recovery of the lateral

displacement was found to be acceptable over a considerable

range of modeling mismatch es (EDRl = 2%–8%; Figureô 4.(a)),

while the mismatch of Young’s modulus did not markedly affect

the quality of lateral experiments estimated by our filtering

strategy (EDRl = 2%–5%). The benefit of integrating the biome-

chanical model into the H? filter is that this greatly improves the

quality of the obtained displacement field.

For the first group of phantom data, a 2D displacement field

was recovered at a high spatial resolution only from these axial-

displacement measurements through our model-based filtering

framework. The strain tensors were calculated based on the

recovered axial and lateral displacements. Figureô 6 shows that the

obtained lateral-strain images were clear, and that the shear-strain

images could still be identified. Previous studies [22–24] found that

the shear-strain images were difficult to obtain due to poor quality

of the lateral displacement data. For the second group of phantom

data, since both axial- and lateral-displacement measurements

from the 2D AM method [9] are already available, it is valuable to

compare the CNR of the results obtained using both algorithms;

that is, 2D AM method and our method. This phantom

experiments demonstrated that our method provided better

CNR values, especially in lateral -strain image s. The strain

profiles shown in Figureô 7(b) also demonstrate better smoothness

and higher contrast for our model-based filtering strategy. Our

experiments demonstrated that the H? filtering strategy with the

biomechanical constraint was able to recover high-quality strain

images, e.g., axial- and lateral-strain images) and shear images,

which have been difficult to obtain in previous studies.

The effectiveness of our filtering strategy with biomechanical

strategy in estimating lateral displacements was also extensively

examined in the third groups of data. The obtained images

indicate that the quality of the displacement field and strain maps

was greatly improved using our model-based method. Lateral-

strain images, which are usually severely degraded by the noise of

lateral displacements, can be recovered with higher quality and

have shown some prospective clinical implications. The recovered

axial and lateral displacements can be used to reconstruct all

components of the strain tensor, as shown in Figuresô 6 and 8.

Initialization Issues
The measurements, the number of iterations and the initiali-

zation of the external noise, Young’s modulus, and Poisson’s ratio

are all important in our filtering strategy. The measurements

represent information about the examined object, but our method

does not explicitly require the type of measurements. Our filtering

strategy can recover the full displacement field under the

biomechanical modeling constraint. As evident from the experi-

ments involving synthetic data (the tolerance of noise in Tableô 1)

and phantom data (first group of data in Figureô 6), our filtering

strategy is still able to recover meaningful strain images in both

directions. In order to acquire a strain image of high quality, we

simply performed 100 iterations for the filtering procedures (i.e.,

Equations (23) to (26)).

The experiment on synthetic data indicates that a convenient

guideline for the initialization of our filtering strategy can be easily

concluded as follows:
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1. Since most biological tissues are incompressible materials,

Poisson’s ratio for our filtering strategy can be initialized to 0.49;

2. A smaller value of Young’s modulus has a larger impact on the

recovery of the lateral displacement (see Figureô 4(b)). Since

Young’s modulus of background tissue (i.e., the healthy tissue) can

be easily obtained before the filtering process, this should be used

as the lower limit for the initial value of Young’s modulus for our

filtering algorithm;

3. Although most of the parameters of the H? filtering strategy

were fixed in this study, it is not a fully automated algorithm.

Hence, the initialization discussed above should be adjusted

according to each cases, weighting matrices Nk, Vk, Qk, P0, and

the noise attenuation level (c) should be carefully adjusted by the

designer to obtain the desired estimation performance. We could

consider to adaptively adjust those parameters during the

iterations of the H? filtering strategy in future work. Further,

more discussion of the adjustment of these weighting matrices can

be found in Dan Simon’s book and papers [59–61] and elsewhere

[51].

Computational Cost
The computational cost of our method is the high in current

implement scheme. In the synthetic data experiments performed

in this study we only used measurements on 21|21 sample nodes.

Although the spatial resolution of the recovered strain image is

actually limited by the number of nodes, the quality of the

estimated strain images generated by our model-based filtering

strategy is not yet compromised. Furthermore, we can take

advantage from developing computing power technologies, such

as GPU, to accelerate our filtering strategy in future study.

Limitations of Current Work
One limitation is that while shear-strain images may provide

information about the bonding at tissue interfaces, which is

clinically useful in differentiating the tumor type (benign or

malignant), however, the images of shear strain did not provide

any useful clinical information. This issue that should be carefully

studied in the near future. Furthermore, the displacement

quantification is heavily dependent on the number of elements

in and quality of the finite element mesh. If the input data are

reasonably accurate, increasing the number of mesh element s will

definitely improve the solution accuracy; however, the current

experiments indicate that this could make the computational cost

unacceptable. Analysis on the computational consumption of our

filtering strategy will be studied in the near future, and methods for

reducing the computation cost will need to be applied before it

could be implemented in a real-time ultrasound system.

Several other key issues also remain to be addressed. Since most

soft tissues are nonlinear viscoelastic materials, the linear isotropic

constructive equations do not properly describe their mechanical

behaviors. Further research based on nonlinear material model

would be useful for estimating the displacement field from

ultrasound measurements. Of equal importance, we should also

point out that the distribution of tissue elastic properties in the

region of interest is generally not unique, and the performance of

our current framework still depends on the appropriate initializa-

tion of the parameters of the biomechanical model. The chosen

values must be as realistic as possible in order to acquire accurate

results. As a continuation of this work, a future study will focus on

an extended filtering framework that can estimate tissue displace-

ment and elastic parameters simultaneously. Such a simultaneous-

estimation framework is expected to further reduce the depen-

dency on the choice of initial parameters. More work on the

clinical application of shear-strain imaging is also expected.

Further experiments should also be undertaken to more deeply

evaluate the displacement values recovered by our framework. In

these experiments the recovered displacements will be used to

reconstruct the tissue elasticity modulus, which is likely to be more

affected by the quality of the displacement field. Thus, our

framework is predicted to be useful in the reconstruction of tissue

elasticity.

Conclusion
Overall, our model-based framework can accomplish a high-

quality tissue motion recovery (i.e., the axial and lateral

displacements) from the sparse and noisy measurements. Further-

more, our proposed filtering framework has shown potential in

recover ing meaningful strain maps from available ultrasound RF

data.
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