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Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America, 3 Department of Physiology, University of Texas Health Science Center at San

Antonio, San Antonio, Texas, United States of America

Abstract

Background: The accumulation of misfolded proteins within the endoplasmic reticulum (ER) triggers a cellular process
known as the Unfolded Protein Response (UPR). One of the earliest responses is the attenuation of protein translation. Little
is known about the role that Ca2+ mobilization plays in the early UPR. Work from our group has shown that cytosolic
phosphorylation of calnexin (CLNX) controls Ca2+ uptake into the ER via the sarco-endoplasmic reticulum Ca2+-ATPase
(SERCA) 2b.

Methodology/Principal Findings: Here, we demonstrate that calcineurin (CN), a Ca2+ dependent phosphatase, associates
with the (PKR)-like ER kinase (PERK), and promotes PERK auto-phosphorylation. This association, in turn, increases the
phosphorylation level of eukaryotic initiation factor-2 a (eIF2-a) and attenuates protein translation. Data supporting these
conclusions were obtained from co-immunoprecipitations, pull-down assays, in-vitro kinase assays, siRNA treatments and
[35S]-methionine incorporation measurements. The interaction of CN with PERK was facilitated at elevated cytosolic Ca2+

concentrations and involved the cytosolic domain of PERK. CN levels were rapidly increased by ER stressors, which could be
blocked by siRNA treatments for CN-Aa in cultured astrocytes. Downregulation of CN blocked subsequent ER-stress-induced
increases in phosphorylated elF2-a. CN knockdown in Xenopus oocytes predisposed them to induction of apoptosis. We also
found that CLNX was dephosphorylated by CN when Ca2+ increased. These data were obtained from [c32P]-CLNX
immunoprecipitations and Ca2+ imaging measurements. CLNX was dephosphorylated when Xenopus oocytes were treated
with ER stressors. Dephosphorylation was pharmacologically blocked by treatment with CN inhibitors. Finally, evidence is
presented that PERK phosphorylates CN-A at low resting levels of Ca2+. We further show that phosphorylated CN-A exhibits
decreased phosphatase activity, consistent with this regulatory mechanism being shut down as ER homeostasis is
re-established.

Conclusions/Significance: Our data suggest two new complementary roles for CN in the regulation of the early UPR. First,
CN binding to PERK enhances inhibition of protein translation to allow the cell time to recover. The induction of the early
UPR, as indicated by increased P-elF2a, is critically dependent on a translational increase in CN-Aa. Second, CN
dephosphorylates CLNX and likely removes inhibition of SERCA2b activity, which would aid the rapid restoration of ER Ca2+

homeostasis.
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Introduction

The ER is a dynamic organelle that plays a critical role in a

variety of processes, including Ca2+ storage and release, synthesis

and folding of proteins, as well as post-translational protein

modification. These processes of signaling and biosynthesis are

deeply inter-connected [1,2,3,4,5].

When the load of newly synthesized proteins exceeds the folding

and/or processing capacity of the organelle, the ER enters into a

stress condition. This activates a signal transduction pathway

called the Unfolded Protein Response (UPR) that attempts to

restore homeostasis in the ER [6]. An immediate response is the

attenuation of protein translation via PERK, which phosphory-

lates the a subunit of eukaryotic translation initiation factor 2

(eIF2a) [7,8]. PERK is a type I ER membrane protein with a

stress-sensing luminal domain connected by a transmembrane

segment to a cytoplasmic-kinase domain. PERK is normally

inactive due to the association of its luminal domain with the ER

chaperone BiP. During ER stress, BiP is competitively titrated

from the luminal domain of PERK by the excess of unfolded

proteins [9]. This dissociation causes PERK to undergo homo-

oligomerization and trans-autophosphorylation within its cytosolic
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kinase domain, thereby increasing its activity. Additional changes

that promote long-term adaptation are transcriptional up-

regulation of ER chaperones and molecules involved in the ER-

associated degradation (ERAD). If ER damage is persistent or

excessive, an apoptotic response is initiated by either ER specific

caspases [10,11] or by mechanisms related with the mitogen-

activated protein kinase JNK or transcriptional activation of C/

EBP homologous protein (CHOP) [12,13].

Maintenance of Ca2+ levels in the ER is primarily attained by

the activity of SERCAs [14,15,16], which pump Ca2+ into the ER.

These Ca2+-ATPases counteract the loss of Ca2+ via leaks and the

opening of Ca2+ release channels [17,18,19]. The free Ca2+ in the

ER is a balance between Ca2+ release, uptake and buffering by

Ca2+-binding proteins in the lumen. Calreticulin (CRT) and

CLNX are Ca2+ -binding chaperones that reside in the ER [20,21]

and play key roles in modulating SERCA 2b activity [3,4,22].

CRT is entirely luminal and CLNX is a type I trans-membrane

protein. The carboxy-terminus of each protein is luminal and is

responsible for interaction of the lectins with the monoglucosylated

form of N-linked glycoprotein during protein folding [20,23]. In

the cytosolic domain of CLNX, three phosphorylated residues

have been identified [24] that are implicated in the modulation of

the interaction of CLNX with the ribosome [25]. Dephosphory-

lation of CLNX causes dissociation of the chaperone from the

ribosome [25]. Our group identified the carboxy-terminal serine

residue 562 in the rat isoform of CLNX as a phosphorylation site

capable of controlling SERCA 2b activity. Further, we demon-

strated that CLNX phosphorylation acted as a cytosolic switch

that regulated Ca2+ store refilling [4].

Calcineurin is a Ca2+ and calmodulin dependent serine/

threonine phosphatase. This heterodimer phosphatase is com-

posed of a catalytic subunit, calcineurin A (CN-A) and a regulatory

subunit, calcineurin B (CN-B) [26]. CN-A contains specific

domains with regulatory functions, including an amino-terminus

domain with catalytic properties, a CN-B binding domain, a

calmodulin (CaM) binding domain and finally, an autoinhibitory

domain (AI) at the carboxy-terminus [27]. At resting Ca2+ levels,

the phosphatase is relatively inactive. An increase in intracellular

Ca2+ activates CN-A through Ca2+/CaM binding, which

dissociates AI from the catalytic domain [28]. To date, the

involvement of Ca2+ signaling in a multitude of cellular pathways

has been well documented [17]. However, little is known about the

role of Ca2+ signaling in restoring ER homeostasis, once ER stress

has been triggered. Here we reveal that CN plays key roles in

restoring ER homeostasis during stress. CN activity boosts the

refilling of Ca2+ stores so that optimal conditions for protein

processing/folding are rapidly reached. CN also directly interacts

with PERK to increase its auto-phosphorylation, which helps to

attenuate protein translation while homeostasis is being restored.

Finally, we show that a knockdown of CN levels in Xenopus oocytes

results in a decrease of protein synthesis inhibition and a rapid

acceleration of apoptosis. Taken together, these data underscore

the importance of CN activity in the rescue of cells from ER stress.

Results

CLNX is Dephosphorylated during ER Stress by CN
Thapsigargin (Tg) is an irreversible inhibitor of the ER Ca2+-

ATPases [29]. It induces ER stress by depleting Ca2+ stores with

a concomitant increase in cytosolic Ca2+, causing accumulation

of malfolded proteins within the ER [30]. By site directed

mutagenesis, we previously demonstrated that phosphorylation of

serine residue 562 in CLNX controlled an interaction with

SERCA 2b. Phosphorylation of S562 inhibited Ca2+ store refilling

while dephosphorylation increased SERCA 2b activity [4]. Given

its ability to regulate SERCA 2b activity, we asked if ER stress

altered the phosphorylation state of CLNX. To this end, CLNX

mRNA (0.7 mg/ml) was overexpressed in Xenopus oocytes as

previously described (Roderick et al. 2000). After 3 days of protein

expression, oocytes were labelled with [c32P]ATP for 20 minutes,

the microsomal fraction was extracted and an anti-CLNX

antibody was used to immunoprecipitate the protein. We observed

a significant level of phosphorylation of CLNX under normal

resting conditions (Figure 1A, 0 minutes). In a subpopulation, we

treated CLNX overexpressing oocytes with Tg (1 mM) for 15, 30

and 60 minutes. When the precipitates were examined with

autoradiography, we observed significant (p,0.05) dephosphory-

lation at all time points tested (Figure 1A). To determine if

overexpression of CLNX itself caused ER stress, we measured the

levels of ER stress in native and overexpressing CLNX oocytes.

This was accomplished by a Western blot probed with an antibody

that recognizes the phosphorylated form of eIF2a (anti-phospho

eIF2a) and an antibody against BiP, both are widely considered

strong indicators of ER stress [8,30]. Overexpression of CLNX did

not affect the level of phosphorylated eIF2a or BiP and hence, did

not induce ER stress (Figure 1B). These results show that ER Ca2+

depletion and/or increased cytosolic Ca2+ decreases CLNX

phosphorylation. To test whether CN may be mediating the

Ca2+ sensitive dephosphorylation of CLNX, we repeated the

above series of experiments using the CN inhibitors cyclosporin A

(CsA) and FK506. Preincubation of oocytes with these inhibitors

completely reversed the dephosphorylation of CLNX in response

to Tg (Figure 1C) and treatment consistent with a primary role of

CN in this ER stress response.

ER Ca2+ Release is Implicated In CLNX Dephosphorylation
by CN after Tunicamicyn Treatment

Tunicamycin (Tm) has a different mechanism of action than Tg

to induce ER stress. It inhibits glycosylation of nascent proteins

thereby causing accumulation of malfolded proteins in this

organelle [31]. To determine whether this ER stressor also leads

to dephosphorylation of CLNX, Xenopus oocytes overexpressing

CLNXs and labeled with [c32P]ATP as described above were

used. As with Tg, Tm treatment of overexpressing oocytes

significantly (p,0.05) induced dephosphorylation of CLNX.

Similarly, CN inhibitors cyclosporin A and FK506 completely

reversed this stress induced dephosphorylation (Figure 1D).

Tm Treatment Increases Cytosolic Ca2+

The dependence of CLNX phosphorylation on CN activity

suggested that Ca2+ was being released into the cytosol during

Tm-induced ER stress. To test this hypothesis, we measured

cytosolic Ca2+ in single oocytes using fluorescence microscopy.

Xenopus oocytes were injected with the ratiometric Ca2+ indicator

dye Fura 2 (50 mM final concentration, Invitrogen-Molecular

Probes, Eugene, OR). After a 20–30 minutes, oocytes were

imaged. Ca2+ levels were expressed as the ratio of fluorescence for

340 and 380 excitation (R340/380). When Fura-2 loaded oocytes

were exposed to Tm (2.5 mg/ml), we observed a slow rise in

cytosolic Ca2+ (Figure 2). The average resting Fura-2 ratio was

0.9360.02 (n = 9 oocytes), which corresponded to 12966 nM

with in vitro calibration. After 15 minutes of Tm bath incubation,

the Fura-2 ratio was significantly (p,0.04) increased to 1.0960.03

corresponding to 17469 nM Ca2+. In parallel experiments, we

also found that treatment with Tg (1 mM) for 15 minutes increased

the Fura-2 ratio to 1.0160.04 (n = 11 oocytes), corresponding to

150610 nM Ca2+. These data suggest that Tm treatment releases

Ca2+ from intracellular stores.

Calcineurin, PERK and Stress
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CN Interacts with PERK in a Ca2+ Dependent Manner
Our data revealed that CN dephosphorylation of CLNX

occurred rapidly in response to ER stress. Since PERK is presently

considered the most proximal luminal sensor of the UPR [8], we

wondered if there was a functional relationship between CN and

PERK. To initially address this question, Xenopus oocytes were

treated with Tg (1 mM) for either 15, 30 or 60 minutes. A second

group of oocytes were initially treated with DTT (1 mM) for 60

minutes and then washed for either 0, 20 or 60 minutes. Like Tg

and Tm, DTT is an ER stress inducer, but its effects are reported

to be reversible [9,32]. Protein extracts were prepared from each

of the six groups of oocytes along with an untreated, control group.

The cytosolic fractions were run on SDS-PAGE and analyzed by

Western blot with anti-CN-A antibody (Figure 3A). We observed

that the expression level of CN-A increased significantly after 30

and 60 minutes following Tg treatment and also after 1 hour of

treatment with DTT (Figure 3A). Partial reversal of the 1 hour

exposure of oocytes to DTT was obtained by washing the treated

oocytes for another hour before preparing the protein extract.

Furthermore, we examined whether endogenous CN could

associate with the endogenous PERK by co-immunoprecipitations

(Co-IPs) of CN-A with PERK in the same oocytes stressed with

either Tg or DTT as presented above (Figure 3B). The respective

microsomal fractions were immunoprecipitated with anti-CN-A

antibody, run on SDS-PAGE and analyzed by Western blot with

anti-PERK antibody, which labeled both phosphorylated and the

Figure 1. CLNX is dephosphorylated during ER stress by CN. (A) IPs of [c32P]ATP-labeled CLNX from oocytes in the absence (0 minutes) or
presence (15, 30 and 60 minutes) of Tg (1 mM) were performed. The samples were resolved through 12% SDS-PAGE, transferred to nitrocellulose and
P-CLNX visualized by autoradiography (top panel). For loading control, a Western blot of CLNX was performed in oocyte microsomal extracts before
the IPs (bottom panel). Histogram depicts the relative intensity of each band relative to the corresponding density of the CLNX Western blot. Notice
that exogenous CLNX is expressed at higher levels than endogenous CLNX and that its autoradiographic signal is significantly higher than the signal
from endogenous levels of phosphorylatioed CLNX (Figure S1). (B) Immunodetection by Western blotting of control oocytes and CLNX
overexpressing oocytes. Top panel shows endogenous and exogenous CLNX. Middle panels show phosphorylated eIF2a (P-elF2a) and BiP (Assay
Designs cat# SPA-826) in each corresponding cytosolic fraction. Lower panel shows a-actin loading controls. (C) Samples from Tg-treated oocytes
that were pre-incubated CsA (200 nM) and FK506 (20 nM) for 16 hours are presented in lane 3. Immunodetection of CLNX by Western blotting was
used as a loading control (lower panels). Histogram depicts the mean intensity of each band relative to the corresponding density in the Western
blots of overexpressed CLNX. DMSO (0.05% v/v) is used as the vehicle control. Notice that control oocytes injected only with CsA/FK506 do not
exhibit increased stress as indicated by Western blot analysis of eIF2a -P or BiP (Figure S2). (D) Samples from Tm-treated oocytes (lanes 2 and 4) that
were pre-incubated or not with inhibitors CsA and FK506 as indicated above are shown in lanes 3 and 4. The middle panels show Western blots of
CLNX of the oocyte microsomal extracts before IPs. Histogram shows the relative intensities of P-CLNX compared to overexpressed CLNX. Methanol
(0.05%v/v) is used as the vehicle control. Data represents 3 independent experiments with 10 oocytes per group.
doi:10.1371/journal.pone.0011925.g001
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higher mobile unphosphorylated PERK. First, we found that the

largest amount of CN-A that co-immunopurified with P-PERK/

PERK occurred at the highest level of ER stress (60 minutes) for

both Tg or DTT treatment (Figure 3A and 3B, lanes 4 and 5).

Second, the presence of CN-A appeared to increase PERK

phosphorylation levels. We note that PERK runs as heterogenous

population depending on its level of phosphorylation, since it has

been shown to have at least 10 phosphorylation sites [33]. The

CN-A/P-PERK/PERK interaction returned to the control levels

of unstressed oocytes (Figure 3B, lane 1) after a 60-minutes

washout of DTT (Figure 3B, lane 7). We conclude from these data

that under ER stress CN-A interacts with PERK and this

association appears to increase phosphorylation of PERK.

Given evidence for a functional interaction between CN-A and

PERK, we asked if there was a physical interaction between these

proteins. We also tested whether Ca2+ and calmodulin (CaM)

affected this interaction given the known dependence of this

phosphatase on Ca2+ and CaM. To this end, in vitro GST pull-

down experiments were performed between PERK and CN-A,

using two Ca2+ concentrations that were chosen to mimic high (H,

3.2 mM) and low (L, 30 nM) cytosol levels. A GST fusion protein

was created with only the cytosolic domain of PERK (GST-

cPERK), which was then used to pull down recombinant human

CN-A a and CN-B. We found that the interaction of CN-A with

GST-cPERK was significantly (p,0.01) stronger in high Ca2+

concentration (Figure 3C, lane 4 vs lane 5) and that this interaction

was decreased by calmodulin (CaM), irrespective of the Ca2+

concentration (Figure 3C, lanes 2 and 3) (p,0.05). CN-A and

CaM were used at equimolar concentrations for this experiment

and there was no significant binding of CN-A to GST alone or to

glutathione-sepharose (Figure 3C, lanes 1 and 8, respectively). We

also created a GST fusion construct with an inactive PERK kinase

mutant where lysine 618 was mutated to alanine (GST-cPERK

K/A) [8]. Interestingly, the inactive PERK mutant lacked

significant binding to CN-A (Figure 3C, Lane 6). Together these

findings corroborate our previous observation that CN-A

specifically binds to purified, fully active, cytosolic PERK. This

association does not appear to be mediated by another protein and

the interaction is strongest in high Ca2+, conditions that would be

expected to occur immediately after ER stress is first induced.

PERK Auto-Phosphorylation Increases with the
Interaction of CN-A and PERK

To further investigate the CN-A/PERK interaction, we

performed in vitro kinase assays. GST-purified proteins were

incubated with a phosphorylation reaction mixture containing

[c32P]ATP. From this assay, we uncovered three important

findings. First, autophosphorylation of PERK was significantly

increased in the presence of CN-A (Figure 4A and B lanes 1–4 vs

lane 7). Second, CN-A itself was phosphorylated at low Ca2+

concentrations (Figure 4A and C, lanes 2 and 4 vs lanes 1 and 3).

And third, PERK phosphorylation was significantly less in low Ca2+

concentrations, when CN-A was phosphorylated. CN-A was not

phosphorylated in the absence of GST-cPERK (Figure 4A, lane 8)

or with the kinase mutant GST-cPERK K/A (Figure 4A, lane 6) or

with GST alone (Figure 4A, lane 5). In addition, there was no

phosphorylation of the 19 kD regulatory subunit of CN-B, which

was included in the reaction mixture. These data confirm the results

suggested in Figure 3B, that the interaction of CN-A with cPERK

increases autophosphorylation of the kinase. They also demonstrate

for the first time, to our knowledge, that in vitro CN-A is a PERK

substrate at low Ca2+ concentrations and that PERK autopho-

sphorylation is reduced when CN-A is phosphorylated.

We wanted to examine the functional consequences of the

promoting cPERK autophosphorylation (Figure 4D). Adding

increasing amounts of CN-A a/B increase cPERK autophoshor-

Figure 2. Tm treatment increases cytosolic Ca2+. (A) Images of Fura-2 loaded oocytes before (0 minutes) and after (15 minutes) Tm treatment.
Ca2+ levels are presented as fura-2 fluorescence ratios of 340 to 380 nm excitation. The intensity scale bar for these images is presented in B and C. (B)
Time course of Fura-2 ratio (Ratio340/380) changes in response to Tm treatment (2.5 mg/ml, added at arrow). (C) Histogram of the average Ratio340/380

(n = 9 oocytes, pooled from 3 independent experiments) at rest (0 minutes) and after Tm treatment (15 minutes).
doi:10.1371/journal.pone.0011925.g002
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ylation as well as PERK-mediated eIF2a phosphorylation

(Figures 4E and 4F). We also wanted to determine if CN-A

phosphorylation affected its phosphatase activity. To accomplish

this, we setup a spectrophotomeric assay that measured the

enzyme activity of recombinant phosphorylated and nonpho-

sphorylated CN-A/B at high (1.4 mM) and low (40 nM) Ca2+

concentrations. Indeed, phosphorylated CN exhibited significantly

lower specific activity than unphosphorylated CN (CN-ATP) or

CN combined with PERK (CN-PERK) and P-CN enzyme activity

was further diminished in low Ca2+ (Figure S7). Finally, the Vmax

for phosphorylated and non-phosphorylated CN-A was signifi-

cantly different at low Ca2+ while the Km did not change (Table

S1). We concluded from these experiments that the phosphatase

activity of CN-A is significantly diminished by phosphorylation.

Together, these data suggest a new feedback loop that would

further enhance recovery from ER stress. As Ca2+ levels decrease,

CN-A becomes phosphorylated, which further reduces its activity

and helps to shutdown ER stress.

Knock-Down of CN-A Attenuates Protein Synthesis
Inhibition during ER Stress

To assess the physiological significance of the CN/PERK

interaction, we compared protein synthesis rates after knocking

down CN and treatment with ER stressors. Test oocytes were

injected with two different morpholino antisense oligonucleotides

specific for Xenopus CN-A mRNA to inhibit the expression of this

protein. Morpholino treatments, rather than interference RNA

techniques are required to knockdown protein expression in

Xenopus oocytes [34,35]. Oocytes were injected with morpholino

oligonucleotides (Morpho CN 1&2) and CN-A expression was

analyzed by Western blot. We observed no significant effect on

resting levels of CN expression within 2 hours of the initial

morpholino injection (Figure 5A). However, when oocytes were

treated with the ER stressor Tg (1 mM, 30 minutes), the previously

observed increase in CN level (Figure 3A) was blocked. Protein

synthesis measured by pulsing cells with [35S]-Methionine-

Cysteine showed no significant changes in oocytes injected with

either CN morpholinos or standard control oligos as well as

uninjected control oocytes. However, we observed an expected

reduction after treatment with Tm (Figure 5C) and Tg (Figure S8).

This inhibition of protein translation was significantly attenuated

by knocking down CN. This experiment establishes a strong

correlation between CN-PERK interaction and protein synthesis

inhibition under ER stress.

Figure 3. CN interacts with PERK and is Ca2+ dependent. (A)
Immunodetection (Western blot) of CN-A in cytosolic extracts obtained
from control oocytes (lane 1), oocytes treated with Tg for 15, 30 or 60
minutes (lanes 2, 3 and 4, respectively), or oocytes treated with DTT for
60 minutes and washed for 0, 20 or 60 minutes (lanes 5, 6 and 7,
respectively). The samples were resolved through 12% SDS-PAGE and
transferred to nitrocellulose (loading 0.2 oocyte equivalents per lane). a-
actin loading controls are presented for the corresponding extract in
the bottom panel. The samples correspond to the same experiment but
were run on two separate gels with equal exposure times. Note also
that lane 1 is the untreated control for both Tg and DTT treated
oocytes. (B) Co-IP between CN-A and PERK corresponding to the same
treatments (lanes) presented in A. The samples were resolved through
7% SDS-PAGE, loading the immunoprecipitate from an input of 20
oocytes per lane and transferred to nitrocellulose. The IP was performed
first with anti CN-A antibody and was followed by immunodetection by
Western blot with anti-PERK antibody. A line profile (Image J, NIH) of
each lane is overlayed to highlight the distribution of the main peaks
corresponding to the two variants of PERK (P-PERK is retarded with
respect to PERK). Note the increased level of P-PERK in oocytes stressed
for 60 minutes with Tg (lane 4) and DTT (lane 5). The level of P-PERK
returned to normal levels after 60 minutes of wash (lane 7). The
experiment was repeated 4 times. Changes in CN expression and PERK
phosphorylation were only observed in response to ER stress when the
resting level of CN was low (lane 1), indicative of initially unstressed
oocytes. CN-A levels of the IP presented in Figure 3B are showed in
Figure S3. We demonstrate the IP efficiency and specificity for PERK, and
ruled out non-specific binding of PERK to beads (Figure S4 A, B).
Moreover, we generated a new antibody for PERK and we present a
characterization of its specificity in Figure S4 C–E. We show that the

new antibody, labeled anti-PERKUT, recognizes a protein band around
the expected molecular weight of PERK (150 kD) and that the antibody
is competed off by incubation with the antigen peptide that was used
to generate the antibody. (C) GST pull-down assay between CN-A a/B
and GST-cPERK, at low Ca2+ (L = 46 nM) and high Ca2+ (H = 3.2 mM). CN-
A pull-down levels are shown for GST alone (lane 1), GST-cPERK in the
presence (lanes 2 and 3) and absence (lanes 4 and 5) of CaM for high
and low Ca2+, GST-cPERK K/A in high Ca2+ (lane 6), GST-cPERK without
CN-A (lane 7) and CN-A without GST-cPERK (lane 8). The proteins were
incubated with glutathione sepharose 4B for 1 hour followed by boiling
in Laemmli reducing Buffer, resolved through 12% SDS-PAGE followed
by Western blotting using a monoclonal mouse anti CN-A. The Western
blot on the panel right of lane 8 indicates the CN-A input. We calibrated
the loading of GST-cPERK and GST-cPERK K/A using an albumin
standard curve (Figure S5). This insured that equal molar amounts of
protein were loaded in each lane. Histogram corresponds to
densitometric analysis from the average of these experiments. One
asterisk corresponds to a statistical significant difference (p,0.05,
ANOVA test, n = 4 independent experiments) and two asterisks denote
a statistical significant difference of (p,0.001; ANOVA test, n = 11
independent experiments) using Lane 4 as 100% control value.
doi:10.1371/journal.pone.0011925.g003
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CN-A Levels are Rapidly Increased in Astrocytes During
ER Stress and are Required for Stress-Induced Increases in
Phosphorylated elF2a

Data obtained in Xenopus oocytes indicated that stress-induced

increases in CN-A levels enhanced PERK autophosphorylation

and the subsequent attenuation of protein synthesis inhibition. To

determine if CN-A also regulated PERK activity in another model

system, we exposed cultured astrocytes to oxygen glucose

deprivation (OGD), an in vitro model of ischemia. We observed a

significant increase in the levels of CN-A (Figure 6A). Co-

immunoprecipitation experiments also revealed that CN-A bound

to PERK and that the phosphorylated level of PERK was

significantly higher after 30 minutes of OGD (Figure 6B).

To ascertain whether stress-induced increases in CN-Aa were

dependent on translation, we treated cultured astrocytes with

siRNA specific for CN-Aa for 24 hours. Western blot analysis

revealed that CN-Aa levels were significantly reduced by ,50%

(Figure 6C). When these siRNA treated astrocytes were exposed to

thapsigargin (Tg) for 1 hour, CN-Aa levels were not significantly

affected, whereas control, mock-transfected astrocytes exhibited

the normal CN-Aa increase (Figure 6C). We conclude from these

data that Tg-induced increases in CN-A levels are likely due to

enhanced translation.

We further tested the impact of Tg-induced increases in CN-Aa
on the UPR, as indicated by phosphorylation of elF2a (P-elF2a).

siRNA (CN-Aa) treated astrocytes showed no significant increase

in P-elF2a in response to Tg treatment. Control astrocytes that

were mock-transfected exhibited expected increase in P-elF2a
(Figure 6D). We conclude from these data that Tg-induced

increases in CN-A levels significantly enhance phosphorylation of

elF2a. Together, these data suggest that the early UPR induced by

ER stress is critically dependent on a rapid increase in CN-Aa.

Knock-Down of CN-A Enhances Apoptosis in Xenopus
Oocytes

Given the fact that cells commit to cell death if they are unable

to reduce or recover from ER stress, we wanted to test the

physiological impact of CN activity on apoptosis. To accomplish

Figure 4. PERK auto-phosphorylation and kinase activity increases with the interaction of CN-A and PERK. (A) GST-cPERK and CN-Aa/B
were incubated with [c32P]ATP, resolved through 12% SDS-PAGE and visualized by autoradiography as described in Materials and Methods.
Phosphorylation levels are shown for GST-cPERK in the presence (lanes 1 and 2) and absence (lanes 3 and 4) of CaM for high (H, 1.2 mM) and low (L,
30 nM) Ca2+, for GST-alone (lane 5), for GST-cPERK K/A in high Ca2+ (lane 6), for GST-cPERK without CN-A (lane 7) and for CN-A a/B without GST-cPERK
(lane 8). Histogram corresponding to densitometric analysis of cPERK auto-phosphorylation (B) or CN-A phosphorylation (C) from the average of
three independent experiments (n = 3), using as 100% control value lane 1 in B and lane 2 in C, respectively. See the Commassie blue gel for the
loading control of the autoradiogram (Figure S6). (D) Kinase assay was performed as described above in the presence of 2 mM Ca2+, but adding
increasing amounts of CN-Aa/B and in the presence of eIF2a (50 nM). Histogram corresponding to densitometric analysis of cPERK auto-
phosphorylation (E) or CN-A phosphorylation (F) from three independent experiments (n = 3). One asterisk corresponds to a statistical significant
difference (p,0.05, ANOVA test) and two asterisks denote a statistical significant difference of (p,0.001; ANOVA test).
doi:10.1371/journal.pone.0011925.g004

Calcineurin, PERK and Stress

PLoS ONE | www.plosone.org 6 August 2010 | Volume 5 | Issue 8 | e11925



this, we took advantage of an assay originally pioneered by

Newmeyer and co-workers [36] and modified by our laboratory to

work with Xenopus oocytes [37]. We found that oocyte extracts

contained all of the molecular machinery necessary to induce

apoptotic-like morphological changes in isolated liver nuclei that

were added to the mixture. For this assay, immature oocytes were

lysed and centrifuged to remove yolk and lipids. The remaining

cytosolic extract was mixed with liver nuclei, which were stained

with Hoechst dye at 0, 2 or 4 hours to score for apoptotic

morphology. The percentage of nuclei exhibiting apoptosis

reached a maximum approximately 4 hours after initial exposure

to cytosolic extract, whereas no significant changes were observed

in buffer treated nuclei (Figures 7A, S9). Cytosolic extract was then

prepared from oocytes injected with either CN morpholinos (oligos

1 and 2) or standard control oligos as well as uninjected control

oocytes to determine how CN activity affected apoptosis. A

subpopulation of oocytes from each group was also treated with

Tg (1 mM, 30 minutes). The apoptotic potency of each extract was

assayed at 0, 2 and 4 hours. We found that cytosolic extract

prepared from Tg-stressed oocytes previously injected with CN

morpholino oligos (Morpho + Tg) exhibited a significantly

(p,0.01) rapid increase in apoptosis at 2 hours compared to

control Tg-stressed oocytes (Cntrl + Tg) or to buffer alone (Figure 7

A–B). We conclude from these results that the rapid expression of

CN-A subsequent to ER stress, delays cells from undergoing

apoptosis. This suggests that one of the physiological functions of

CN immediately post-ER stress is to protect cells, giving them time

to recover and restore ER homeostasis.

Discussion

In this study, we have shown that CN works to restore ER

homeostasis immediately after ER stress has been initiated. CN

performs this important function with the aid of two ER

transmembrane proteins: CLNX and PERK. Consequently, CN

can now be viewed as an active participant in the UPR by virtue of

its ability to couple the cytoplasmic side to the ER lumen in a Ca2+

dependent manner. We previously established that when the ER is

optimally loaded with Ca2+, the most favorable condition necessary

for protein processing and folding, CLNX is phosphorylated and

physically interacts with SERCA 2b to inhibit its activity [4]. We

also demonstrated that IP3-mediated Ca2+ release caused a Ca2+

dependent dephosphorylation of serine residue (S562) in the

cytosolic domain of CLNX. This removed the functional interaction

of CLNX with the pump, removing inhibition and maximizing

SERCA 2b-mediated Ca2+ store refilling. CLNX phosphorylation

had already been shown to regulate its association with the

ribosome, which facilitated the presentation and binding of newly

synthesized glycoproteins to the chaperone [25]. Dephosphoryla-

tion of the dog CLNX isoform on the homologous serine residue

[25] had been shown to dissociate the protein from the ribosome

uncoupling the protein synthesis machinery. Here, we demonstrate

Figure 5. Knockdown of CN-A attenuate the protein synthesis inhibition under ER stress. (A) CN-A expression levels are shown for the
following conditions: control oocytes (lanes C and C-tg)(Cntrl, lane 1), oocytes injected with standard control morpholinos (lanes S and S-tg) (Std
Morpho, lane 2), oocytes injected CN-A morpholinos (lanes M and M-tg) (Morpho CN 1& 2, lane 3). A subgroup of each oocyte pool was also stressed
for 30 minutes with Tg (lanes C-tg, S-tg and M-tg 4–6). Note that CN is decreased by the CN-A morpholinos treatment only after ER stress (lane M-tg
6). Expression levels are indicated by Western blot (top panels). Loading controls are presented in the bottom panels. All bands were from the same
gel and received the same exposure time. (B) Histogram depicts the mean intensity of each band relative to the corresponding density in the
Western blots of CN. Data pooled from three independent experiments (n = 3). (C) Autoradiography of total protein synthesized in control oocytes or
injected with morpholinos as was described above, that has been untreated or exposed to Tm before a 45 minutes pulse label with [35S]-Methionine-
Cysteine. The two panels are from the same gel and received the same exposure time. (D) Histogram corresponding to densitometric analysis of total
protein. Data pooled from three independent experiments (n = 3).
doi:10.1371/journal.pone.0011925.g005
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that CLNX is subject to dephosphorylation by CN under ER stress.

This result is in agreement with Michalak’s group [38], who recently

found that CLNX deficient cells have constitutively active UPR.

This has been suggested to represent an acute stress response [39].

We also show that another ER stressor, Tm, induced a small Ca2+

increase in the cytosol. These data are consistent with Tm-induced

Ca2+ mobilization in fibroblast and CHO cells [40,41] and suggest

that both Tg and Tm are able to activate CN through a common

and well characterized Ca2+/CaM dependent mechanism. We

suggest that CN phosphatase activity provides the cell with

additional time to restore ER homeostasis while the organelle is

being refilled with Ca2+.

Surprisingly, we discovered that CN-A levels were significantly

increased in the cytosol of Xenopus oocytes within 30–60 minutes of

being stressed by Tg or DTT. We also found that CN-A interacted

with PERK during stress, and that the kinetics of this association

were correlated with the increase in CN-A levels. This suggested to

us that the rise in CN levels could cause the subsequent interaction

and activation of PERK. We confirmed this hypothesis in an

independent model system, cultured mouse astrocytes. We found

that ER-stress induced by OGD or thapsigargin treatment in

cultured astrocytes rapidly increases CN-Aa levels. Because we

were able to block this increase by siRNA treatments in astrocytes,

it appears that stress-induced increases in CN-Aa are translation-

ally dependent. Remarkably, the induction of the early UPR in

astrocytes, as indicated by increased P-elF2a, was critically

dependent on this rapid increase in CN-Aa. Specifically, when

astrocytes were treated with siRNA specific for CN-Aa, we

observed no significant increase in P-elF2a in response to Tg

treatment. In vitro experiments with recombinant proteins also

support this model. We demonstrated that the presence of CN-

Aa/B significantly increased the autophosphorylation of GST-

cPERK. A residual level of GST-cPERK phosphorylation in the

absence of CN-Aa/B was likely due to dimerization of the GST-

portion of GST-cPERK as reported by [42].

Another important observation from our pull-down experiments

was that CN-A interacted with cPERK in a Ca2+ dependent

manner. Association was significantly increased in conditions that

mimic high cytosolic Ca2+. The significance of this finding is that

this association should occur immediately after ER stress has been

triggered when the cytosolic Ca2+ concentration initially increases.

It is worth noting that in contrast to the CaM dependence of CN

phosphatase activity, the association of CN with PERK appears to

be inhibited by CaM. This interaction does not appear to be

mediated by another protein, since no other protein was added to

the in vitro assay. Moreover, we did not detect an interaction

between CN-A and the catalytically inactive mutant GST-cPERK

K/A. One explanation for this result is that lysine-618 is a critical

residue in the CN binding site of PERK. Alternatively, CN may

only be able to interact with PERK after a conformational change

occurs in response to autophosphorylation. In this light, lysine 618 is

critical to either PERK autophosphorylation and to the subsequent

conformational change [8,43]. In support of this, we and others [43]

observe different mobilities for GST-cPERK and GST-cPERKK/

A on SDS-PAGE (100 kD, and 85 kD, respectively), consistent with

different protein conformations. We suggest that CN associates with

PERK only after the kinase has been activated and once bound,

stimulates further autophosphorylation of PERK.

Our model is consistent with the current of view of stress activated

PERK. BiP is normally bound to the luminal domain of PERK and

acts as negative regulator of activation [44]. In response to ER

stress, BiP dissociates from its luminal domain of PERK to assist in

luminal protein folding. This allows PERK oligomerization and its

subsequent activation [9]. Our data take this stress activation

Figure 6. Stress-induced increases in CN-Aa levels enhance
phosphorylation of PERK and elF2a. (A) Western blot analysis of
CN-Aa levels before and after 60 minutes of OGD treatment. Astrocyte
cytosolic extracts were resolved on a 12% SDS-PAGE, transferred to
nitrocellulose and probed with anti CN-A antibody (Assay Designs cat#
SPA-610). A densitometry histogram normalized with actin levels is
presented below (n = 5, p,0.05). (B) Co-IP between CN-Aa and PERK
corresponding to untreated cells (0 minutes) and OGD treated (30
minutes). The samples were resolved on a 7% SDS-PAGE by loading the
CN-Aa immunoprecipitate from astrocytes and transferred to nitrocel-
lulose. The IP was performed with the same anti CN-A antibody,
followed by a Western blot with anti PERK antibody (ABGENT cat#
AP8054b). A sample from the immunoprecipitate was stained with
Coomassie as loading control. Densitometry histogram normalized with
Commassie (n = 4, p,0.05). (C) Western blot analysis of CN-Aa levels in
astrocytes transfected with siRNA or reagents only (mock) and
subsequently treated with vehicle (Veh) or thapsigarin (Tg) for 1 hour.
Densitometry histogram is normalized with actin (n = 4, p,0.01). (D)
Western blots of astrocyte extracts probed with anti P-eIF2a antibody.
Densitometry histogram is normalized with actin (n = 4, p,0.01).
doi:10.1371/journal.pone.0011925.g006
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sequence one step further by showing that CN-A binds to PERK

and induces additional autophosphorylation at high cytosolic Ca2+.

Interestingly, a ligand for PERK with the properties that we have

described has been previously sought after [9]. We suggest that CN

is a strong candidate for this ligand. Modulation of PERK activity

by CN would represent a fine-tuning mechanism for optimal ER

stress signaling. Moreover, CN/PERK interaction may constitute

an example of at least partial dissociation from stress sensor

activation, since ATF6, IRE1a and PERK would not all be

activated by the same mechanism of titration from BiP. In this

scenario, members of the proapoptotic Bcl-2 family, BAX and BAK

[45], have been shown to interact with the cytosolic domain of

IRE1a during ER stress [46]. It would appear that both IRE1a and

PERK are actively regulated by cytoplasmic signals.

Another interesting finding was that PERK phosphorylated

CN-A at resting concentrations of cytosolic Ca2+. Phosphorylation

decreased the Vmax of CN to 70%, without changing its affinity

(Km) for substrate (Table S1). It is possible that phosphorylation of

CN-A by PERK generates a more pronounced effect when CaM

dissociates from CN upon Ca2+ decrease. This event could have

more physiological relevance when ER Ca2+ homeostasis is being

restored after stress by Ca2+ removal from the cytosol. Phosphor-

ylation of CN has previously been observed in vitro by both CaM

Kinase II and PKC [47,48]. In all cases, phosphorylated CN

exhibits less phosphatase activity. Interestingly, PERK phosphor-

ylation was reduced at low Ca2+ concentration, when CN-A was

phosphorylated. This appears unlikely to be the result of

dephosphorylation by CN, since its phosphatase activity is

significantly reduced in both low Ca2+ and when it is

phosphorylated. The decrease of PERK phosphorylation is more

likely a consequence of CN dissociating from PERK at low Ca2+

concentrations as suggested in Figure 3C.

Physiologically, we presented evidence suggesting that knock

down of early CN levels with morpholinos increased the

susceptibility of the Xenopus oocytes to undergo apoptosis. This

suggested an important regulatory role of CN in preventing or

delaying apoptosis during ER stress. This interpretation is in

agreement with other reports suggesting that the susceptibility of

cells to undergo apoptosis during stress depends on the amount of

releasable Ca2+ from the ER [49,50]. CN dependent dephos-

phorylation of CLNX, which increases SERCA 2b activity, is

likely to minimize problems with protein folding during acute ER

stress by rapidly restoring ER Ca2+ stores. At the same time, the

interaction of CN with PERK would be expected to rescue cells

from apoptosis by strongly attenuated new protein translation.

In summary, this study reveals a novel role for CN at the

initiation of the ER stress cascade. We have incorporated these

mechanistic insights into a comprehensive model (Figure 8) that

Figure 7. Knockdown of CN-A increases the appearance of apoptotic nuclei in Xenopus oocyte extracts. (A) Apoptotic potency of
cytosolic extracts obtained from control oocytes treated with Tg (Cntrl + Tg) or from oocytes injected with CN-A morpholino 1 & 2 treated with Tg
(Morpho CN 1&2 + Tg) compared with buffer alone. Images of liver nuclei were obtained at 2 hours. Note the large number apoptotic-like nuclei at
2 hours for Morpho + Tg oocyte extract. (B) Lineplot of the average of the percentage of apoptotic nuclei at 0, 2 and 4 hours for cytosolic extract
obtained from control oocytes with and without Tg treatment (Cntrl, Cntrl + Tg), from oocytes injected with standard morpholino with and without
Tg treatment (Std Morpho, Std Morpho + Tg) and from oocytes injected with CN-A morpholino oligos 1 & 2 with and without Tg treatment (Morpho
CN1&2, Morpho CN1&2+ Tg), compared to nuclei incubated with buffer alone. Data were obtained from 4 independent experiments in which 150
oocytes per group were used for each condition. **p,0.01.
doi:10.1371/journal.pone.0011925.g007
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also accommodates findings related to PERK activation and

CLNX-ribosome association as described by others [8,9,25]. Our

discovery that CN activity plays an important role in the acute

phase of ER Stress reveals an additional level of complexity to the

UPR. It is important to distinguish this new role of CN during the

early UPR from its distinct cell death function during later time

points of the UPR. In particular, it has been reported that

prolonged exposure of cells to CN inhibitors leads to upregulation

of CHOP and subsequent apoptosis [51]. The new function of CN

that we uncovered in this manuscript occurs at an earlier step in

the UPR, prior to induction of CHOP. UPR has been implicated

in a variety of cellular processes such as control of nutritional

and differentiation programs [52]. It is also associated with

numerous diseases like neurodegenerative disorders [53], cancer

[54], viral infection [55] or ischemic injury [56]. Understanding

the impact of CN activity in ER stress will yield new insights into

the underlying causes of these physiological and pathological

processes.

Materials and Methods

Vectors and Reagents
The Xenopus expression vectors for rat CLNX have previously

been described [4]. The cDNAs encoding mouse PERK and the

inactive kinase PERK K/A [32] were subcloned into pHN vector

[57]. Fusion proteins corresponding to the cytosolic domain of

PERK and PERK K/A in fusion with GST (GST-cPERK and

GST-cPERK K/A) were generated by PCR and subcloned into

pGEX-4T-2 (Amersham Biosciences, Piscataway, NJ). For GST-

cPERK and its mutant, the forward primer was 59-ACTG-

GAATTCCCATGCGCAGGCTTTTCCATCCTCAG and the

reverse primer was 59-ACTGCTCGAGCTAGTTGCCAGG-

CAGTGGGCTGTA using pHNb-PERK or pHNb-PERK K/A

as templates. The PCR products were subcloned into EcoRI and

XhoI sites. Automatic sequencing of all cDNA constructs was

performed at the UTHSCSA core facility. All oligonucleotides and

restriction enzymes were purchased from Invitrogen Life Tech-

nologies (Carlsbad, CA).

Unless otherwise specified, all chemicals were purchased from

Sigma-Aldrich Corp. (St. Louis, MO). Stock solutions of Tg were

resuspended in DMSO (2 mM) and stock solutions of Tm were

resuspended in methanol at 45uC (5,000 mg/ml).

In Vitro Transcription and Oocyte Protocols
CLNX mRNA was prepared as described previously [57].

CN-Aa siRNA knockdown
C8D1A cells (ATCC; Manassas, VA; cat# CRL-2541) were

plated at 16105 per well in a 6 well format prior to transfection.

CN-Aa siRNA (PPP3CA) (Dharmacon; Lafayette, CO) was used

at 100 nM and transfected with Dharmafect #4 (Dharmacon,

Lafayette, CO; cat# T2004-02). Transfections were carried out

following the manufactuers protocol. Astrocytes were transfected

for 17 hours and observed 48 hours post transfection. At 48 hrs,

astrocytes were subjected to 1 mM final DMSO vehicle or 1 mM

thapsigargin treatment for 1 hour at 37uC. Astrocytes were then

rinsed twice with PBS and scrapped into 100 ml of SDS sample

buffer (62.5 mM Tris-HCl, pH 6.8, 2% w/v SDS, 10% glycerol,

50 mM dithiothreitol) and supplemented with 1 mM sodium

orthovanadate (Sigma; St. Louis, MO), 10 units/ml Leupeptin

(Sigma; St. Louis, MO), and 10 units/ml aprotinin (Sigma; St.

Louis, MO) and used for Western blotting.

Western blots, Immunoprecipitations and Co-
immunoprecipitations

Oocytes extracts were prepared as described in [57] with the

modification that the cytosolic fraction (supernatant) and/or the

microsomal fraction (pellet) were separated for analysis. CLNX

and CN-A were detected with antibodies from Assay Designs (Ann

Figure 8. Role of CN in the early phases of ER stress. (1) Resting conditions of the ER: CLNX is phosphorylated, interacting with SERCA 2b and
inhibiting its activity. CLNX is also interacting with the ribosome, increasing the capacity of protein folding. PERK is associated with BiP, which
prevents its autophosphorylation. Protein processing and folding is optimal (depicted by spirals). (2) ER stress: unfolded proteins accumulate in the
ER lumen, BiP dissociates from PERK, permitting its dimerization and autophosphorylation, which leads to attenuation of protein synthesis. At the
same time, Ca2+ is released, activating CN, inducing dephosphorylation of CLNX, thereby removing pump inhibition. (3) CN levels are increased,
leading to the association of CN with pre-activated PERK, which induces further PERK auto-phosphorylation, increasing the phosphorylation level of
eIF2a. This emphasizes the protein translation inhibition. If cell Ca2+ levels are restored (1), CN becomes phosphorylated by PERK, decreasing its
activity. CN expression also returns to resting levels further reducing its signaling. These steps, in combination with a full Ca2+ store and BiP re-
association with PERK, restore normal protein translation and ER homeostasis.
doi:10.1371/journal.pone.0011925.g008

Calcineurin, PERK and Stress

PLoS ONE | www.plosone.org 10 August 2010 | Volume 5 | Issue 8 | e11925



Arbor, MI, Cat #SPA-860 and Cat # C1956). PERK antibody

was from ABGENT (San Diego, CA, Cat# AP8054b). P-eIF2a
and BiP were detected with antibodies from Assay Designs (Ann

Arbor, MI, Cat # KAP-CP131E and Cat# SPA-826). a-actin

antibody was obtained from Santa Cruz Biotechnology, Inc.

(Santa Cruz, CA). HRP-conjugated Donkey anti rabbit IgG and

anti mouse IgG (Jackson ImmunoResearch Laboratories, Inc.,

West Grove, PA) were used as secondary antibodies. Oocyte

immunoprecipitation (IP) of [c-32]P-labeled CLNX was performed

as described previously [4]. For Co-immunoprecipitations,

microsomal pellets were obtained and membrane proteins were

extracted as described previously [4].

Cultured C8D1A astrocytes (ATCC; Manassas, VA; cat# CRL-

2541) were rinsed twice with PBS and scraped down with a rubber

policeman in the presence of 100 ml of lysis buffer per 35 mm dish

used. Lysis Buffer was prepared as 15 mM Tris HCl, pH 7.6,

150 mM NaCl, 10% Glycerol, 1% TritonX 100, 1 mM EDTA

supplemented with phosphatase inhibitors (5 mM NaF, 0.4 mM

Na3VO4, 1 mMNaPPi, 0.1 mM ZnCl2, 1 mM NaMOb) and

protease inhibitors (0.2 mM AEBSF, 10 mM Leupeptin, 1 uM

Pepstatin A and 0.8 mM Benzmaidine. Cell lysis was achieved by

passing the astrocyte suspension 10 times through a 1 ml syringe

with a 25 G 5/8 needle and collected in an eppendorf tube. Nuclei

and cell debri were removed by centrifugation at 1000 g for 10

minutes. Supernatant containing astrocyte cell extract was collected

and retained for Western blots or Immunoprecipitations. Calci-

neurin A and P-eIF2a were detected with antibodies from Assay

Designs (Ann Arbor, MI; cat# SPA-610 and cat# KAP-CP131E

respectively). Actin was detected with a mouse monoclonal antibody

(Millipore; Billerica, MA; cat# MAB 1501). PERK antibody was

obtained from ABGENT (San Diego, CA, Catalog# AP8054b).

Cytosolic Free Ca2+ Concentration Measurements
Ca2+ changes were measured in individual oocytes by fluores-

cence microscopy using the Ca2+ indicator Fura-2 (Invitrogen-

Molecular Probes, Eugene, OR). Oocytes were injected with 50 nl

Fura-2 salt (50 mM final concentration) for 20–30 min at 18uC until

equilibration was reached. Measurements were performed in ND96

low Ca2+ (5 mM Hepes, pH 7.5, 96 mM NaCl, 2 mM KCl, 1 m

MgCl2) at 18–20uC using a Nikon Eclipse TE 300 microscope with

a 2060.75 NA multi-immersion (water for our experiments) lens.

Fura-2 was excited at a wavelength of 340 and 380 nm, and emitted

fluorescence was collected via a 510 nm long pass filter, using a

ORCA-ER charge-coupled video camera device (Hamamatsu

Photonics, Hamamatsu, Japan). Frames were collected every 2 s

and the 340/380 ratio was analyzed using Open Lab software

(Improvision, Lexington, MA) following background subtraction.

Ca2+ calibration of Fura-2 fluorescence was performed in vitro using

the Ca2+ calibration Buffer Kit #2 (Invitrogen-Molecular Probes,

Eugene, OR). An affinity constant of 200 nM was obtained and

used to convert Fura-2 ratios into Ca2+ concentrations according to

[58]. Rmax, Rmin and Sb/Sf were measured as 8.0785, 0.40001 and

8.7369, respectively.

GST Fusion Protein Purification
The GST fusion protein purification was performed as

described in [22]. To avoid the formation of inclusion bodies,

bacteria expressing GST- cPERK K/A were incubated at 28uC
and rotated at 300 rpm. Elution of bound protein and dialysis

were performed according to [22].

GST Pull-down Assays
Binding of human recombinant CN-Aa/B (2 pmoles) (EMD

Bioscience, San Diego, CA) to GST-cPERK (0.40 nmoles) was

performed at 4uC during 1 hour with over-end rotation. As

controls, either GST alone or GST-cPERK K/A (0.40 nmoles),

and when indicated CaM (2 pmoles), were used. Proteins were

incubated and the washes were performed as previously described

[22] with the exception that the buffers were supplemented with

the corresponding free Ca2+ concentrations. The proteins were

eluted by boiling in reducing Laemmli Buffer and were resolved

through 12% SDS-PAGE using a mouse anti CN-A antibody and

visualized by enhanced chemiluminescence. Ca2+ concentrations

were calculated according to existing algorithms [59].

In Vitro Kinase Assay
CN-Aa/B phosphorylation and autophosphorylation of cPERK

were performed as follows. GST-cPERK, GST-cPERK K/A or

GST alone (0.1 mM), were incubated for 3 min at 30uC in a 30 ml

reaction mixture [20 mM Tris-Cl, pH 7.5, 100 mM NaCl,

10 mM MgCl2, 1.5 mM DTT, 0.5 mM EGTA, 1 mM NaOAc,

6% glycerol and 0.1 mM ATP, 50 mCi [c32P]ATP (6,000 Ci/

mmol, PerkinElmer Life Sciences, Inc., Boston, MA) in the

presence of 2 free Ca2+ concentrations (30 nM or 1.4 mM). CaM

at 1.6 mM was added as indicated. After 3 min, CN-Aa/B

(1.7 mM) was added and incubated for 30 min. The reactions were

stopped by boiling in reducing Laemmli Buffer and the proteins

were resolved through 10% SDS-PAGE. The gel was fixed, dried,

and proteins were visualized by autoradiography.

Microinjection of Morpholino Antisense Oligos against
CN-A

The morpholino antisense oligos: Morpho oligo1 (59- TAGA-

GAAATCTGTGTGGGAAATGTC) and Morpho oligo 2 (59-

AGGCGATCAATTGACAGCTGCTTCT) against CN2A and

the standard oligo morpholino were obtained from Gene Tools

(Philomath, OR). Morpholinos to Xenopus laevis CN-A sequence

were designed from accession #s BC049001, AB037146 and

AF019569, dissolved in dH2O and injected into the oocytes at a

final concentration of 5 mM.

Pulse-labeling of Proteins
Groups of oocytes (10, each) previously injected or not with the

corresponding morpholino, were starved for 30 min in a

Methionine/Cysteine-free medium RPMI-1640 (diluted 33%,

Sigma) and injected with a 50-nl bolus of [35S]Methionine-

Cysteine (1175 Ci/mmol, 14 mCi, Perkin Elmer). After a 45

minutes period of incubation, oocytes were instantly frozen on dry

ice. The total homogenate prepared as follows: oocytes were

resuspended in 200 ml of Lysis Buffer (40 mM Tris-HCl, pH 7.5,

50 mM NaCl, 250 mM sucrose,10 mM MgCl2, 2 mM EDTA,

0.5 mM EGTA) supplemented protease inhibitors (800 mM

benzamidine, 200 mM AEBSF, 20 mM Leupeptin, and 1 mM

Pepstatin A), homogenized and centrifuged at 100 g. The

corresponding supernatants were boiled in reducing Laemmli

Buffer. The proteins (30 ml of each supernantant) were resolved

through 10% SDS-PAGE. The gel was fixed, dried, and proteins

were visualized by autoradiography.

Cell-free Apoptosis in Xenopus laevis Oocytes Extracts
The cell-free apoptosis assay was carried out as originally

described by [36] and as modified for Xenopus oocytes by Saelim

et al. [37].

Statistical Analysis
Statistical significance was determined by Student t-test, one-

way ANOVA, or Tukey’s Multiple Comparison Test as
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appropriate. One and two asterisks indicate statistical significance

differences at p,0.05 or p,0.001, respectively. Error bars are

expressed as SEM. The number (n) refers to the number of

experimental, independent replicates.

Supporting Information

Figure S1 Overexpressed (exogenous) CLNX exhibits higher

levels of phosphorylation compared to endogenous CLNX. CLNX

immunoprecipitations showing [c-32P] ATP-labeled CLNX from

Xenopus oocytes extracts (top). Immunoprecipitated proteins from

control oocytes (injected with ddH20) (Cntrl) or from oocytes

overexpressing CLNX (mRNA CLNX) were resolved through a

10% SDS-PAGE. Phosphorylated CLNX was visualized by

autoradiography. Each lane corresponds to immunoprecipitated

CLNX from 15 oocytes per group. (bottom) Western blots of

CLNX were performed from the same oocyte extracts before IP.

Note that endogenous levels of CLNX phosphorylation are

relatively minor and obscured by exogenous phosphorylated

CLNX.

Found at: doi:10.1371/journal.pone.0011925.s001 (0.07 MB TIF)

Figure S2 Calcineurin inhibitors CsA and FK506 do not induce

ER Stress. (A) Western blot showing phosphorylation levels of

eIF2a and BiP from vehicle control oocytes (lane 1) or oocytes

treated with CsA (200 nM) and FK506 (20 nM) for 16 hours (lane

2). Two oocyte equivalents were loaded per lane and proteins were

resolved through 12% SDS-PAGE (P-elF2a) or 7% SDS-PAGE

(BiP). P-eIF2a antibody used from Assay Designs (cat# KAP-

CP131E). Actin Western blot is shown as loading control. BiP

antibody used from Assay Designs (cat# SPA-826).(B) Histograms

from 5 independent Western blots pooled from 3 different frogs

with n = 15 oocytes per group. Intensity values were normalized

with Actin and are represented as the mean 6 SEM. ns indicates

no statistical significance.

Found at: doi:10.1371/journal.pone.0011925.s002 (0.08 MB TIF)

Figure S3 Levels of PERK and CN-A immunoprecipitated with

anti-CN-A from oocyte cell extracts. (A) CN-A immunoprecipi-

tation (IP) followed by PERK Western blot from control oocyte

extracts (lane 1) or oocytes treated with 1 uM Tg for 15, 30 or 60

minutes (lanes 2, 3 and 4, respectively), or oocytes treated with

DTT for 60 minutes and washed for 0, 20 or 60 minutes (lanes 5, 6

and 7, respectively). Immunoprecipitated proteins were resolved

through 7% SDS-PAGE, transferred to nitrocellulose and probed

for PERK with an antibody from ABGENT(cat# AP8054b). Note

the presence of two dark bands around 150 kD (above and below

150 kD) corresponding possibly to P-PERK and PERK respec-

tively in lanes from ER stress-induced treatment (lanes 2–6).

Interestingly, the band corresponding to P-PERK is reduced in

control oocyte extracts (lane 1) or in extracts from DTT treated/

washed oocytes for 60 minutes (lane 7). (B) Nitrocellulose

membrane shown in A was stripped and probed for CN-A with

an antibody from Assay Designs (cat# SPA-610). Note the

increase in CN immunoreactivity detected in extracts from ER-

stress-induced oocytes (lanes 2–6), which is practically undetect-

able in control oocytes (lane 1) or DTT treated/washed oocytes for

60 minutes (lane 7). The darker band running at around 50 kD

corresponds to detection of IgG from the immunoprecipitation.

Found at: doi:10.1371/journal.pone.0011925.s003 (0.27 MB TIF)

Figure S4 Specificity of PERK binding to anti-PERK labeled

beads and characterization of anti-PERK antibodies. (A) Com-

massie blue stained 7% SDS-PAGE gel loaded with Xenopus

oocyte extracts that were obtained from a co-imunoprecipitation

with an antibody against CN-A from Assay Designs (cat# SPA-

610) (lanes 2 and 4) or incubated with protein A/G agarose beads

alone (lanes 1 and 3). After Protein A/G agarose pellet was

obtained, proteins were resolved through a 7% SDS-PAGE. (B) A

fraction of the immunoprecipitated sample was loaded on the gel

and transferred to nitrocellulose, probed with PERK antibody

(ABGENT cat# AP8054b) and developed by autoradiography.

Bands around the molecular weight of PERK (dashed area around

150 kD) were obtained from the immunoprecipitated samples

(lanes 2 and 4). These bands are absent in the agarose beads

controls (lanes 1 and 3) indicating no specific binding of PERK to

the agarose beads. The bottom gel in B shows that protein was

loaded in lanes 1 and 3, but did not contain an PERK

immunoreactivity. The darker spots in lanes 2 and 4 most likely

correspond to the immunoglobulin from the immunoprecipitates.

Oo extr 16and Ooc extr 26corresponds to extracts from 15 and

30 oocytes, respectively. (C) Western Blot from mouse cultured

astrocyte extracts (ATCC catalog # CRL-2541) at rest (Cntrl) or

after 60 minutes of ER stress induction by oxygen glucose

deprivation (OGD). Protein extracts were run on 7% SDS-PAGE

and transferred to nitrocellulose membranes. Membrane on the

left panel was probed with a PERK antibody generated in house

(anti-PERKUT). Notice the presence of distinct bands around the

molecular weight of PERK (dashed area around 150 kD). Right

panel corresponds to a similar membrane probed with the anti-

PERKUT antibody, in combination with the antigenic peptide

used to generate the antibody. Notice the disappearance of bands

at the molecular weight of PERK (dashed area around 150 kD)

indicating competition of the antigenic peptide for PERK proteins

present on the right membrane. The other bands remain

unchanged in both membranes on top and bottom panels and

are considered non-specific. (D) Western Blot probed with the Pre-

immune serum and compared to the anti-PERKUT for primary

mouse astrocyte extracts. Proteins were resolved through 7% SDS-

PAGE and transferred to nitrocellulose membranes. Membrane

probed with rabbit serum before immunization is non-reactive in

comparison with middle panel membrane that was probed with

anti-PERKUT antibody. Note again that the bands around

150 kD are competed off with the peptide used to immunize the

rabbits. (E) Immunoprecipitation from primary mouse astrocytes

using different concentrations of the generated anti-PERKUT

antibody (lanes 2, 4 and 5) or pre-immune serum (lanes 1 and 3)

followed by Western Blot with a commercial antibody from

Abgent (cat# AP8054b), anti-PERKCM. Note the top band in the

dashed rectangle is darker than the lower band at 150 kD and

likely corresponds to P-PERK and PERK, respectively. P-PERK

is known to migrate higher than PERK. (F) Western Blot from

primary mouse astrocytes using pre immune serum (left panel) or

anti-PERKUT antibody (middle panels) or commercial antibody

anti-PERKCM (from Cell signaling cat#3179S). Extracts were

obtained from cultured astrocytes at rest (lanes 1 and 3, Ctrl) and

after 60 minutes OGD were used (lanes 2 and 4). Extracts from

astrocytes were also treated with Vehicle (lane 5, Veh) and

300 nM thapsigargin (lane 6, Thap). Note the stress induced

increase in PERK-P using the anti-PERKUT, but not the anti-

PERKCM antibody.

Found at: doi:10.1371/journal.pone.0011925.s004 (0.42 MB TIF)

Figure S5 Quantification of PERK loading for GST pull-down

assay. Molar amounts of protein for GST-pull-down assays were

calibrated by loading known volumes of proteins (GST, GST-

cPERK and GST-cPERKK/A) side by side on the same gel with

known volumes of Albumin (1 mg/ml) as a standard. Proteins were

resolved through a 10% SDS-PAGE and stained with Coomassie

blue. The concentration of GST, GST-cPERK and GST-cPERK

K/A was converted to mmoles using the Albumin standard curve
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and apparent molecular weight of GST = 25 kD; GST-

cPERK = 90 kD and GST-cPERKK/A = 75 kD.

Found at: doi:10.1371/journal.pone.0011925.s005 (0.37 MB TIF)

Figure S6 Coomassie blue stained gel shown as loading control

for the kinase assay on Figure 4A. Proteins were resolved through

a 12% SDS-PAGE. Notice a distinct band at around 56 kD

corresponding to CN-A only in lanes where CN-A/B has been

added (lanes 1–6 and 8). Loading of cPERK is almost undetectable

by Coomassie staining.

Found at: doi:10.1371/journal.pone.0011925.s006 (0.12 MB TIF)

Figure S7 Phosphatase activity of CN-A. The specific activity of

human recombinant CN-A was measured spectrophotometrically

(O.D.410 nm) using p-NPP as substrate varying concentrations

from 5 to 150 mM. The assay was initiated by addition of p-NPP,

incubated at 30uC for 20 min and stopped by addition of 200 ml of

13% K2HPO4 and immediately chilled on ice. Specific activity

was based on a pKa of 7.17 obtaining a measured molar extinction

coefficient of 17,300 M-1 cm-1 at 410 nm at pH 8.58 for p-NPP.

(A) The specific activity of CN-A without ATP (CN w/o ATP),

without PERK (CN w/o PERK) compared to phosphorylated

CN-A (P-CN) in high (3.2 mM) Ca2+. (B) Specific activity of CN-

ATP, CN-PERK and P-CN in low (46 nM) Ca2+. Data are an

average of 5 independent experiments. Error bars are within the

size of the symbols (see Table S1).

Found at: doi:10.1371/journal.pone.0011925.s007 (0.06 MB TIF)

Figure S8 [35S]-Methionine-Cysteine incorporation in oocytes

injected with CN morpholinos and treated with Thapsigargin. (A)

Autoradiography of total protein of total protein synthesized in

control oocytes or injected with morpholinos as was described

Figure 5, that has been untreated or exposed to Tg before a 45

minutes pulse label with [35S]-Methionine-Cysteine. (B) Histo-

gram corresponding to densitometric analysis of total protein.

Data are from three independent experiments (n = 3), * p,0.05.

Found at: doi:10.1371/journal.pone.0011925.s008 (0.16 MB TIF)

Figure S9 Temporal progression of apoptotic-like morphology

in isolated liver nuclei incubated with oocyte cytosolic extract. The

percentage of apoptotic nuclei increases by 2 hours (first panels)

and peaks by 4 hours (middle panels) for control extracts. In

comparison, no change in the morphology of apoptotic nuclei is

observed with buffer alone at 4 hours (right panels). Nuclei are

stained with Hoechst dye (100 mg/ml) for visualization. Upper

panels are high magnification of lower images for the white-

framed regions.

Found at: doi:10.1371/journal.pone.0011925.s009 (0.27 MB TIF)

Table S1 CN-A phosphatase activity.

Found at: doi:10.1371/journal.pone.0011925.s010 (0.03 MB

DOC)
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