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Abstract

While the importance of random sequencing errors decreases at higher DNA or RNA sequencing depths, systematic
sequencing errors (SSEs) dominate at high sequencing depths and can be difficult to distinguish from biological variants.
These SSEs can cause base quality scores to underestimate the probability of error at certain genomic positions, resulting in
false positive variant calls, particularly in mixtures such as samples with RNA editing, tumors, circulating tumor cells,
bacteria, mitochondrial heteroplasmy, or pooled DNA. Most algorithms proposed for correction of SSEs require a data set
used to calculate association of SSEs with various features in the reads and sequence context. This data set is typically either
from a part of the data set being ‘‘recalibrated’’ (Genome Analysis ToolKit, or GATK) or from a separate data set with special
characteristics (SysCall). Here, we combine the advantages of these approaches by adding synthetic RNA spike-in standards
to human RNA, and use GATK to recalibrate base quality scores with reads mapped to the spike-in standards. Compared to
conventional GATK recalibration that uses reads mapped to the genome, spike-ins improve the accuracy of Illumina base
quality scores by a mean of 5 Phred-scaled quality score units, and by as much as 13 units at CpG sites. In addition, since the
spike-in data used for recalibration are independent of the genome being sequenced, our method allows run-specific
recalibration even for the many species without a comprehensive and accurate SNP database. We also use GATK with the
spike-in standards to demonstrate that the Illumina RNA sequencing runs overestimate quality scores for AC, CC, GC, GG,
and TC dinucleotides, while SOLiD has less dinucleotide SSEs but more SSEs for certain cycles. We conclude that using these
DNA and RNA spike-in standards with GATK improves base quality score recalibration.
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Introduction

As sequencing costs drop, it is becoming cost-effective to

sequence even whole genomes to a sufficient depth that random

errors become insignificant. However, systematic sequencing

errors (SSEs) and biases remain problematic even at high

sequencing depths, so recent research has started to focus on

understanding these SSEs and biases [1,2]. In this work, we focus

on SSEs rather than coverage biases, where SSEs are systematic

errors in sample preparation and sequencing processes that cause

base call errors to accumulate preferentially at certain base

positions in the genome, and coverage biases are biases in the

number of reads covering certain genomic regions such as GC-

bias [3–5]. Examples of SSEs, as well as random errors, are

portrayed in Figure 1(a). Compensating for these SSEs is critical

for applications in which a variant might be expected to be in only

a small fraction of the reads, such as samples containing RNA-

editing [6,7], cancer tissues and circulating tumor cells [8–11],

fetal DNA in mother’s blood [12], mixtures of bacterial strains

[13], mitochondrial heteroplasmy [14], mosaic disorders [15], and

pooled samples [16,17]. Since the causes of many SSEs are not

well understood and may vary due to batch effects in a run-specific

manner, compensating for them requires training data sets. The

two previously proposed approaches either use a separate data set

with special characteristics (e.g., SysCall uses overlapping paired-

end reads [1]) or use the data set itself excluding regions known to

have variants (e.g., Genome Analysis Toolkit, or GATK, base

quality score recalibration [2]). Here, we combine the advantages

of these approaches by using DNA or RNA spike-in standards

without homology to almost all biological organisms.

The first approach, SysCall, used a methyl-Seq dataset that had

overlapping paired-end reads to detect SSEs depending on

sequencing direction for the Illumina sequencer [1]. The region

in which the reads overlap can be used to find systematic errors

that preferentially occur on one DNA strand compared to the

other strand. To improve variant calls, the SysCall method uses

a separate dataset with overlapping reads to train a logistic

regression model that accounts for SSEs correlated with several

covariates: (1) the 2 preceding bases + the base in question (each

base independently), (2) directionality bias of the errors, the

proportion of non-reference reads, and (3) a comparison of the

quality scores of the error base to the next base. Most sequencing

runs do not contain overlapping paired reads, so SysCall assumes

the SSEs in a training data set are the same as the SSEs in other
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independent sequencing runs without overlapping reads. Howev-

er, even when comparing SSEs from two sequencing runs on the

same sample, significant differences were found between the runs

[1]. SSEs may vary even more due to constantly evolving sample

preparation reagents and protocols, sequencing reagents and

technologies, and bioinformatics methods. In this respect, SysCall

is at a disadvantage compared to methods that perform run-

specific SSE correction, such as GATK.

The second approach, GATK, is a suite of tools used for variant

calling based on the map-reduce framework [2,18]. A widely used

tool implemented in GATK performs base quality score recalibra-

tion (BQSR, see Figure 1(b)). BQSR recalibrates base qualities

using pre-specified and/or user-defined covariates related to the

properties of the read. The covariates in BQSR are factors that are

suspected to be correlated with SSEs. The most commonly used

covariates implemented in GATK-BQSR are read group, base

quality score, machine cycle, and dinucleotide context. BQSR

calculates the empirical quality score for each combination of

covariates based on the proportion of base call errors observed.

Then, it compares the empirical to the reported quality scores, and

recalibrates the quality scores of each base in each read depending

on its corresponding covariate values. After recalibration, the base

quality scores were much more predictive of the empirical quality

scores [2].

One attractive feature of the GATK BQSR package is that it

compensates for biases in the machine’s estimation of base calls

and their quality scores by lowering the base qualities of SSEs

independently in each sample, so that it can correct run- or batch-

specific systematic sequencing errors. This appears to contradict

established metrological practice for quantity (or numerical) values

(see Metrology for ‘‘nominal properties’’ in Methods S1), where results

are corrected for bias, and measurement uncertainty adjusted for

propagation of error arising from the bias correction. In the

absence of mature metrological guidance for nominal properties

(such as sequence), adjustment of the quality score is a practical

solution with the desirable property of straightforward propagation

into bioinformatics pipelines such as variant calling.

In order to find run-specific SSEs, GATK BQSR typically

assumes that the sample contains neither mis-mapped/mis-aligned

reads nor variants (except at the bases defined by dbSNP). Since

many rare variants are not in dbSNP and some SSEs might be in

dbSNP [1,19], BQSR will count many rare variants as SSEs and

may miss some SSEs that are included in dbSNP (see Figure 1(a)),

resulting in a bias against variants not in dbSNP. This problem is

compounded for the many non-human species for which

comprehensive SNP databases are not available, so many real

variants will be counted as SSEs for these species. For RNA-seq,

recalibrating based on dbSNP will also be biased against detecting

any possible RNA editing that occurs at non-dbSNP locations. For

DNA and RNA sequencing, certain motifs that are highly mutable

(e.g., CpG dinucleotides) are likely to receive lower recalibrated

quality scores due to incomplete dbSNP databases, resulting in

variant bases receiving lower weight in the precise locations where

real variants are more likely to be found. In addition, mapping

errors due to closely related sequences or complex variants could

cause both false positive SSEs when accurately sequenced bases

are incorrectly mapped to mismatching bases, as well as false

Figure 1. Systematic errors and base quality score recalibration. (a) Observed variants in the reads can result from a variety of biological
causes and sequencing errors and biases. (1) Random sequencing errors are relatively rare at any given position in the reference, and are generally
reflected accurately in the reported base quality score from the instrument. (2) Biological variants that are included in the SNP database (e.g., dbSNP
for humans) are excluded from the base quality score recalibration (BQSR), and therefore do not decrease the empirical quality scores. (3) RNA editing
can occur at frequencies less than 50%, so it can be difficult to distinguish from SSEs. These observed variants are treated as SSEs by the BQSR
algorithm, incorrectly decreasing their base quality scores and quality scores of similar bases in other locations in the genome. (4) Biological variants
that are not in dbSNP are also treated as SSEs by the BQSR algorithm, again decreasing their and similar bases’ recalibrated quality scores. (5) Since
variant bases are only seen on one strand, they are likely to be SSEs. In this case, the BQSR algorithm would decrease the quality scores of the
dinucleotide on the forward strand (GG). (b) Example reads and the covariates for each base used by GATK BQSR. The red columns would be counted
as errors when calculating empirical quality scores. (c) Schematic of the GATK BQSR process, in which reported quality scores from the instrument are
adjusted (or ‘‘recalibrated’’) using empirical quality scores associated with the covariates reported quality score, machine cycle, and dinucleotide
context.
doi:10.1371/journal.pone.0041356.g001
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negative SSEs when inaccurately sequenced bases are incorrectly

mapped to matching bases.

A few previous methods have used external spike-ins to calibrate

base or variant calls. The Ibis base caller for Illumina uses the

PhiX spike-in provided by Illumina to achieve more accurate base

calls and quality scores by correcting machine cycle biases [20].

This method has the advantage of using the raw fluorescent

intensity values in its base calling method, but the small size of the

PhiX genome (<5 kb) limits the number of covariates that can be

calibrated. Another approach used short 1–2 kb external spike-in

plasmids with known indels to both recalibrate quality scores and

tune their parameters for detecting rare indels in large cohorts

[17]. Their algorithm, called SPLINTER, used the base and the

two previous bases to calibrate error rates, but they did not

investigate whether the length of their short plasmids was sufficient

for statistically robust calibration.

Here, we set out to test whether synthetic spike-in DNA or RNA

standards with well-characterized sequence purities can be used in

the GATK BQSR framework to improve detection and correction

of SSEs in any sample without the need for a comprehensive and

accurate SNP database.

Results

Synthetic Spike-in Standards
A set of 96 DNA plasmids with 273 to 2022 base pair standard

sequences inserted in a ,2800 base pair vector are a prospective

NIST Standard Reference Material and a product of the External

RNA Control Consortium (ERCC). The DNA plasmids were

designed to be templates for RNA spike-in standards for gene

expression measurements. Although the spike-in standards are

generally used for quantitation, the DNA plasmids were exten-

sively characterized by Sanger, Illumina, SOLiD2, and SOLiD3

sequencing and thus are useful for characterizing SSEs as well.

These spike-in standards could be used for characterizing SSEs

both in DNA and RNA sequencing, but in this paper we focus on

RNA spike-ins.

Determining High-purity Bases in Synthetic Spike-in
Standard Sequences
The base quality scores reported by the instrument are

frequently not accurate measures of error rates, in part due to

SSEs associated with covariates such as machine cycle and

dinucleotide context. Base quality score recalibration is commonly

used to compensate for SSEs by adjusting base qualities, using the

empirical error rates measured for bases with specific covariate

values. These empirical error rates can be converted to Phred-

scaled quality scores, and the difference between these empirical

base quality scores and the reported base quality scores are the

‘‘recalibration coefficients’’ used to recalibrate the base quality

scores. Ideally, only highly pure bases (i.e., bases without variants)

are included when calculating the empirical error rates and

recalibration coefficients, so that real sequence variants are not

erroneously interpreted as an SSE. Therefore, because the DNA

has been extensively sequenced by the multiple methods stated

above, we developed a method to determine those bases in the

synthetic spike-in DNA that have .95% probability of being

.99% pure. By sequencing with multiple methods and assuming

that platform-specific SSEs will only cause lower purities, we

determined that <99.95% of the bases in the spike-in standards

have .95% probability of being .99% pure. Sixty percent (24/

40) of the excluded bases were in the first 20 bases of the spike-in

standards, where sequencing coverage was insufficient (,200) with

Illumina sequencing to have .95% probability of being .99%

pure, so they may in fact be of high purity, but were still excluded.

The purity was estimated by examining each strand both

independently and together and by using either only high quality

bases or all bases, so that most of the bases with SSEs were

included in the high-confidence data set. Only 8 bases in the spike-

in standards had ,95% purity on all platforms, and all 8 of these

were excluded. These impure bases might be caused by mutations

during replication of the DNA plasmids. By excluding bases that

may not be highly pure, we can perform BQSR using a large set of

bases (78950) in the spike-in standards for which we have .95%

confidence that they are .99% pure. Note that more stringent

filtering for bases with even higher purities may be necessary as

sequencing technologies and their error rates improve.

What Should the Coverage and Size of a Spike-in
Standard ‘‘Genome’’ be for Accurate BQSR?
The 78950 highly pure bases in the spike-in standards are much

fewer than in the whole genome or transcriptome, but the

coverage is much higher. Therefore, it is important to understand

possible inaccuracies in calculating the GATK BQSR coefficients

due to the limited size of the standards. Recalibration of base

quality (BQ) scores is typically based on three covariates: reported

quality score (RpQS), machine cycle (position in the read), and

dinucleotide context (the base and the previous base). To achieve

statistically relevant recalibration scores for the large number of

combinations of these covariates, recalibration must be performed

using a sufficient number of bases in the reference and sufficient

coverage by reads mapping to the reference. To determine

whether the coverage and number of bases in the spike-in

standards are sufficient, we randomly removed mapped reads

and/or reference bases from the recalibration calculations, and

calculated the effect on the recalibration scores.

As expected, reducing coverage or the size of the spike-in

standard ‘‘genome’’ results in some inaccuracies in BQSR (see

Figure S1 for details). For example, 1 million 1006100 bp reads

mapped to the spike-in standards results in a mean error of about

0.3 and 0.2 in recalibrated quality scores for cycle and di-

nucleotide, respectively. For the same number of mapped reads,

reducing the size of the spike-in ‘‘genome’’ has little effect on cycle

recalibration, but significantly increases the error for dinucleotide

recalibration. Therefore, accurate cycle recalibration could be

performed accurately using very high coverage of a short spike-in

(e.g., PhiX), but dinucleotide recalibration requires a longer spike-

in such as the set of spike-in standards used in this work, which

contain 78950 usable highly pure bases.

Comparison of BQSR from Spike-in Standards vs. Whole
Genome

Spike-in standards improve recalibration. To demon-

strate the relative performance of BQSR using the spike-in

standards compared to the typical method using the whole

genome, we compared the recalibration inaccuracies caused by

the limited size and coverage of the spike-in standards to the

inaccuracies caused by recalibrating based on the genome. For this

comparison, the 96 RNA spike-in standard sequences were spiked

into human genomic RNA samples. To obtain an upper limit on

the errors introduced by the limited size and coverage of the spike-

in standards, half of the bases were randomly selected from the

spike-in standards (spike-in set A). Then, the mean absolute

difference was calculated between the recalibration values

obtained from the selected bases and the recalibration values

obtained from the other half of the bases in the spike-in standards

(spike-in set B). In addition, the mean absolute difference was

Spike-ins for Systematic Sequencing Error Analysis
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calculated between recalibrating based on the genome and

recalibrating based on the spike-in standards. These calculations

were performed for samples with the standards spiked-in either at

equal concentrations (Illumina-EP in Figure 2) or at a large

dynamic range of concentrations (SOLiD-DR in Figure 2). The p

values for these differences are shown in Figure S2. Because the

sequences of the spike-in standards are approximately random, the

mean absolute difference between the two entirely different

randomly selected sets of bases gives an estimate of the variance

of the spike-in recalibration values around the true recalibration

values for a random sequence. Since the mean absolute differences

are significantly smaller between spike-in set A and spike-in set B

than between spike-in and genome recalibration, the mean

absolute differences serve as reasonable estimates of accuracy of

the recalibration values for a random sequence. Biological genome

sequences are not random and may contain more complex

sequence motifs associated with SSEs, mapping errors, or

alignment errors. However, it is likely better to perform

recalibration on random sequence for simple covariates like

reported quality score, dinucleotide, and cycle so that, for

example, errors associated with complex sequence motifs do not

get applied to all dinucleotide motifs.

The accuracy of genome recalibration was significantly reduced

(p,1024) for reported quality scores (RpQS), dinucleotide context

(Dinuc), and machine cycle (Cycle) for both Illumina-EP and

SOLiD-DR. Genome recalibration was particularly more biased

for Illumina-EP and for the dinucleotide and RpQS covariates.

The biases for spike-in standard recalibration were very small for

Illumina-EP both because the spike-in standards were at

equimolar concentrations and because they had higher coverage.

However, even when spiking in standards at a wide range of

concentrations, as is often done for differential gene expression

measurements [21], the biases associated with genome recalibra-

tion are larger than biases associated with spike-in standard

recalibration. In the next section, we examine the sources of the

particularly large biases associated with recalibrating the RpQS

and dinucleotide covariates based on the genome.

Whole genome recalibration introduces higher error rate

and dinucleotide-specific biases. To understand the biases

caused by recalibrating based on the whole genome, we performed

a statistical comparison of recalibration scores obtained from the

whole genome to those obtained from the spike-in standards, with

reported quality score, machine cycle, and dinucleotide context as

factors (Figure 3). Two clear trends emerge: (1) the empirical error

rates measured from the whole genome are generally significantly

higher (empirical quality scores are an average of 5 units lower for

whole genome recalibration), and (2) the CG dinucleotide in

particular has a much higher error rate based on the whole

genome (empirical quality scores are as much as 13 units lower for

whole genome recalibration).

A likely explanation for the generally higher empirical error

rates (or lower empirical quality scores) measured based on the

whole genome is that dbSNP does not include all variants,

especially variants found at a low population frequency. The

variants not included in dbSNP, as well as non-reference bases

resulting from RNA editing and mismapped reads (see Figure 1),

are treated as sequencing errors, resulting in erroneously high

empirical error rates. These variants also explain the large

Figure 2. BQSR recalibration inaccuracies due to limited size and coverage of the ERCC spike-in standards, compared to the
inaccuracies caused by recalibrating from the genome excluding known variant sites in dbSNP. The errors due to the limitations of the
spike-in standards are the mean absolute difference between the recalibration coefficients calculated from randomly selected 50% of the spike-in
standard bases (ERCC Set A) and the opposite 50% of the bases (ERCC Set B). Because the mean absolute differences are lower for the spike-in
standards, they serve as a reasonable proxy for accuracy of the recalibration coefficients. Differences are calculated for the base quality score reported
from the instrument (RpQS), dinucleotide context (Dinuc), and machine cycle (Cycle). The differences are the mean6 SD (n = 4) for SOLiD4 with spike-
in standards spiked-in in a large dynamic concentration range with 250–7006mean coverage (SOLiD-DR), and for Illumina HiSeq with spike-in
standards spiked-in at equimolar concentrations with 5500–85006 mean coverage (Illumina-EP). The use of spike-in standards for recalibration
significantly improves upon the traditional genome recalibration in all cases (p,1024).
doi:10.1371/journal.pone.0041356.g002
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differences observed in Figure 2 between recalibrating based on

the genome and recalibrating based on the spike-in standards for

reported quality score. In addition, reads that map incorrectly to

the whole genome can cause both false positive SSEs when

accurately sequenced bases are incorrectly mapped to mismatch-

ing reference bases, as well as false negative SSEs when

inaccurately sequenced bases are incorrectly mapped to matching

reference bases. Incorrectly mapped reads could cause bases with

high RpQS to have higher than expected empirical error rates,

and bases with low RpQS to have lower than expected empirical

error rates. RNA-seq reads may have even higher empirical error

rates DNA-seq reads due to mismapped bases around exon-exon

junctions. However, the high error rates at CG dinucleotides

suggest that variants not in dbSNP also contribute to the higher

error rates when calibrating based on the genome.

The particularly high error rates measured at CG dinucleotides

for genome recalibration likely result from the higher mutation

rate of methylated cytosines in CpG dinucleotides [22]. GATK

measures the empirical error rate of the G in CpG dinucleotides,

which has a high mutation rate because the opposite strand is also

a CpG dinucleotide and has a C at this position. This high

empirical error rate for CG dinucleotides is also evident in results

published using GATK to perform BQSR for whole genome DNA

sequencing (see Figure 2 in [2]). Similar to our results in which the

CG error rate is high both for Illumina and SOLiD when

recalibrating based on the genome, their results also show high CG

Figure 3. Comparison of GATK BQSR scores for recalibration based on the genome vs.
ty

score and dinucleotide (b and d) for Illumina (a and b) and SOLiD (c and d). White blocks correspond to very large differences, generally with very few
errors. The differences are (genome – spike-in standard), so blue (,0) indicates that genome recalibration would result in recalibrated quality scores
that are too low, and yellow/red (.0) results in recalibrated quality scores that are too high. The p values for the differences are shown in Figure S2.
doi:10.1371/journal.pone.0041356.g003

Spike-ins for Systematic Sequencing Error Analysis
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error rates for DNA sequencing for all platforms, including

Illumina GaIIx, Illumina HiSeq, SOLiD, and 454. Their results

confirm that recalibrating based on the genome is likely also biased

at CpG dinucleotides for DNA sequencing. The bias in genome

recalibration at CpG dinucleotides explains the differences

between recalibrating based on the genome and recalibrating

based on the spike-in standards observed in Figure 2 for

dinucleotide.

It is interesting that the empirical error rates for genome

recalibration are significantly lower for some dinucleotides at low

reported BQs. While the reason for this difference is unclear, it is

possible that it could be caused by reads that are mis-mapped to

nearly homologous regions that contain the base error.

Platform-specific Biases Measured by Spike-in Standards
The primary goal of the GATK BQSR algorithm is to identify

the association of SSEs with covariates such as dinucleotide and

cycle, and compensate for them by adjusting base quality scores.

We used GATK to measure sequencing platform-specific biases by

calculating the mean differences between the empirical and

reported base quality scores for each combination of reported

quality score and cycle, or reported quality score and dinucleotide.

As shown in Figure 4, in general, the highest reported base quality

scores are higher than their empirical quality scores for both

instruments. However, it is difficult to measure very high empirical

quality scores since even very low-level mutations in the RNA or in

their reverse transcription into cDNA will lower the empirical

quality scores. The mid-range reported quality scores for Illumina

and the lowest reported quality scores for SOLiD tend to be lower

than the empirical quality scores, which may be partly because

bases not matching the reference are preferentially discarded

during the mapping process. Illumina has minimal biases with

respect to cycle (Figure 4a), whereas SOLiD has higher than

expected empirical quality scores near the middle of the read

(Figure 4c), which may result from idiosyncrasies in the way

SOLiD reads are mapped by the ABI software Bioscope. In

contrast, SOLiD has relatively small biases with respect to

dinucleotide (Figure 4d), whereas Illumina has lower than

expected empirical quality scores for AC, CC, GC, GG, and

TC dinucleotides. These Illumina biases are similar the HiSeq

biases observed in Figure 2d in [2], with the exception of the low

CG empirical quality scores in the previous work, which likely are

an artifact due to biological mutations at CG sites, as discussed

above. The higher empirical quality scores for GT compared to

GG dinucleotides are also consistent with the previously observed

Illumina-specific SSE of GGT being mistakenly sequenced as

GGG [1].

Comparison of Nucleotide Change Errors between
Recalibration Methods and Sequencing Platforms
In addition to dinucleotide and cycle biases, certain nucleotide

changes have been associated with SSEs [1], DNA mutations [22],

and RNA editing [6,7]. For human DNA mutations, transitions

(A,-.G and C,-.T) have been estimated to outnumber

transversions (all other changes) by a factor of over 2 in the whole

genome and over 4 in the exome. Random sequencing errors have

a transition/transversion ratio (Ti/Tv) of 0.5. The C.T transition

mutation is very common at CpG dinucleotides. Deaminase

enzymes are known to cause A.G and C.I/T (C changes to

inosine, which is read as T) transitions in RNA. T.G

transversions were found to be common SSEs on the Illumina

GAIIx platform [1].

We calculated the frequency of each nucleotide change for

Illumina and SOLiD when recalibrating based on the genome or

the standard (Figure 5). These nucleotide change error rates were

the proportion of each base not matching the reference base

compared to the total number of each type of base (whether it

matches the reference or not). The error rates were calculated

separately for the genome (excluding dbSNP sites) and spike-in

standards (excluding impure bases) from the same datasets used in

Figures 3, 4. To minimize random errors and thereby determine

the presence of biological mutations in the data, only bases with

reported BQs above 30 were included in the analysis. Because

transition mutations tend to occur much more frequently than

transversions, whereas sequencing errors tend to be more

transversions, the Ti/Tv ratio has been used as a measure of the

frequency of sequencing errors in variant calls. Therefore, we

calculated the Ti/Tv ratio from the nucleotide change error rates

described in Figure 5. For both SOLiD and Illumina sequencing,

the Ti/Tv ratio is much higher for errors in the genome than in

the spike-in standards, suggesting that a significant number of

biological variants exist in the genome that are not in dbSNP. This

higher Ti/Tv ratio also supports our finding in Figure 3 above,

where CpG dinucleotides, which are highly mutable, have much

higher error rates in the genome than in the spike-in standards.

In Figure 5, the error rates for high-quality SOLiD bases are

much lower than the error rates for high-quality Illumina bases.

However, it should be noted that the SOLiD mapping process can

be biased towards reference calls, since colorspace errors are

changed to match the reference. Therefore, the lower apparent

error rate for SOLiD may result from reference bias, lower

sequencing error rates, or some combination. In this way, the

BQSR method can be negatively affected by reference bias,

mapping errors, or any other systematic errors not included as

covariates in the recalibration process.

Discussion

In this work, we have demonstrated the utility of synthetic spike-

in standards to interrogate run-specific SSEs in DNA or RNA

sequencing. These standards can be used within the GATK

framework to recalibrate base quality scores when sequencing

species that do not have a comprehensive SNP database. Even for

human DNA, which has a very large SNP database, rare variants

cause significant biases in the typical GATK recalibration process,

which uses reads mapped to genomic bases not in dbSNP. These

biases are particularly large for CpG dinucleotides, which have

a high mutation rate, so GATK recalibration without spike-in

standards significantly degrades variant base qualities at the base

positions where variants are much more likely to occur.

It should be noted that some of the differences between

recalibration based on the spike-in standards vs. based on the

genome could result from SSEs or mapping errors in complex

CpG-related sequence motifs in the genome that are not present in

the spike-in standards. However, for this to be true, these

sequencing motifs would have to cause the same SSEs in multiple

sequencing platforms, since CpG dinucleotides have very low

empirical quality scores for both Illumina and SOLiD in this work,

and for Illumina GAIIx, Illumina HiSeq, SOLiD, and 454 in

previous work [2]. In addition, if complex sequencing motifs cause

SSEs, then an algorithm should ideally penalize only the complex

sequence motifs causing the SSEs, rather than penalizing all CpG

dinucleotides. Future work should be dedicated towards identify-

ing more complex sequence motifs and other covariates associated

with SSEs, which could be incorporated into GATK.

By using synthetic spike-in standards, the mean errors in

recalibrated quality scores (for RpQS, cycle, and dinucleotide) can

be significantly decreased to ,0.5 (in quality score units) for 5
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million 100-bp reads (or about 0.5% of a 306 human whole

genome sequencing run). For RNA-sequencing, the synthetic

spike-in standards significantly reduce biases even when spiked-in

at a large dynamic range of concentrations for differential

expression analysis and using less than 106 50-bp reads, and

biases can be reduced even further when using the spiked-ins at

equimolar concentrations and at higher concentrations. In

summary, we have demonstrated that adding synthetic spike-in

standards can improve SSE recalibration within the current

GATK framework for human sequencing, and they allow SSE

recalibration for species without comprehensive SNP databases,

even when only a small fraction of the total reads is dedicated to

the synthetic spike-ins.

Materials and Methods

ERCC Spike-in Standards
The candidate NIST Standard Reference Material (SRM) 2374

DNA plasmids were used for DNA sequencing. These plasmids

consist of ,2800 bases of vector sequence with 273–2022 base

standard sequence inserted in the vector. In addition, libraries of

RNA were prepared from the 96 DNA plasmids in this SRM by in

vitro transcription and pooled either at equimolar concentrations

(for Illumina sequencing) or at a large <106 dynamic range of

concentrations (for SOLiD sequencing), as described in Methods

S1 and Supporting Information S1 - NIST Prepared RNA pools

from SRM 2374.xlsx.

Figure 4. Differences between empirical and reported quality scores calculated by GATK BQSR for recalibration based on the spike-
in standards. Blue (,0) indicates the reported quality scores are too high, and red/yellow (.0) indicates the reported quality scores are too low. The
mean differences across all samples are calculated for each combination of reported quality score and cycle (a and c) or reported quality score and
dinucleotide (b and d) for Illumina (a and b) and SOLiD (c and d), respectively.
doi:10.1371/journal.pone.0041356.g004
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Preparation of DNA Spike-in Standards for Sequencing
Sequencing of the DNA spike-in standards was performed on

Illumina GA, SOLiD v2, and SOLiD v3+ using standard methods

described in detail in Methods S1. On Illumina GA, <9.1 million

single-end 39-bp reads from the pooled 96 ERCC spike-in

standards, 10 of which contained the vector. On SOLiD 2, <70

million single-end 35-bp reads from the pooled 96 ERCC spike-in

standards, all of which contained the vector. On SOLiD 3+, <420

million 50650-bp mate-pair reads (mean insert size of <530 bp)

from the pooled 96 ERCC spike-in standards, all of which

contained the vector.

Preparation of RNA BLM Libraries with Spike-in Standards
for Sequencing
Mixtures of RNA from brain, liver, and muscle tissues were

prepared, similar to those described previously [23]. A large

dynamic concentration range pool of ERCC spike-in standard

RNA was added at 3% of the total RNA concentration, resulting

in approximately 10% of the total reads coming from the spike-ins.

Bar-coded RNA sequencing on SOLiD 4 was performed as

described in Methods S1, resulting in 5 to 15 million 50-bp single-

end reads from each sample (GEO Accession Number

GSE36217).

Cell Line Establishment and Cell Culture for Illumina RNA
Sequencing
Lymphoblastoid cell lines (LCLs) were established from four

human male subjects of Caucasian origin by Epstein-Barr Virus

transformation of B-lymphocytes using standard procedures [24].

For each of these LCLs, culture was seeded with 106 cells in 5 ml

of RMPI1640 (Invitrogen, CA) with 20% Fetal Bovine Serum

(Invitrogen, CA), incubated at 37uC with 5% CO2 and grown at

Figure 5. Comparison of error rates for each type of nucleotide change for spike-in standard or genome recalibration with (a)
SOLiD 4 data with standards spiked-in in a large dynamic concentration range or (b) Illumina HiSeq data with standards spiked-in
at equimolar concentrations. The plots are annotated with transition/transversion (Ti/Tv) ratios, where random base changes result in Ti/Tv = 0.5,
and biological mutations result in Ti/Tv ..0.5. To determine the significance of biological variants in the data, only bases with reported reported
base quality scores above 30 are included in this analysis. All values are the mean 6 SD of 2 samples with 2 biological replicates or of 4 sequenced
samples with no replicates.
doi:10.1371/journal.pone.0041356.g005
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a density of 2–36105 cells/ml. Cells were harvested when the

culture reached 107 cells in total, washed with 50 ml of 1X PBS

(Invitrogen, CA) and frozen at 280uC in aliquots of 46106 cells

for downstream processing. These cell lines were established with

written informed consent from the human subjects with approval

from the National Institutes of Health Institutional Review Board

under the ClinSeq project.

RNA-Seq Library Preparation and Illumina Sequencing
Total RNA was extracted using the RNeasy Mini kit (Qiagen,

MD). RNA integrity was assessed using the Agilent 2100

Bioanalyzer RNA 6000 Nano Assay (Agilent, CA). All samples

had RIN (RNA Integrity Number) higher than 9.5 as measured by

this assay. For each cell line, aliquots of 5 micrograms of total

RNA were spiked with 3% by weight of an equimolar mix of the

ERCC spike-in standards and RNA-Seq libraries were constructed

using a modified version of the technique described in Marioni et

al (2008). The following notable changes were made to their

protocol: RNA fragmentation was performed using the Covaris S2

AFA platform (Covaris, MA) and size selection of adapter-ligated

cDNA was done using the Pippin Prep instrument (Sage Science,

MA). RNA-Seq libraries were sequenced on an Illumina GAIIx
DNA sequencer (Illumina, CA). Raw image data generated by the

sequencer was processed using Illumina RTA software (version

1.8.70.0). One paired-end 101 bp lane of data was generated for

each library, resulting in <100 million reads from each of the four

samples (GEO Accession Number GSE36217).

Determining Bases in Spike-in Standards with .95%
Probability of .99% Purity
To determine which bases in the spike-in standards to include in

the BQSR, we used a Bayesian statistical model to calculate which

bases had a .95% probability of having a purity $99%. Our

statistical model is described in detail in Methods S1, with

associated Perl and Matlab scripts in Code S1 - PileupParse-

QualFilt.pl, Code S2 - calcpurpropthresh.m, and Code S3 -

PileupSummaryPurityProbThreshBases.m. A vcf with the exclud-

ed bases is Supporting Information S2 - ercclowpur99skip50ba-

sepolyA.vcf.

Determining Optimal Coverage of Spike-in Standards
and Effect of Recalibrating on a Shorter Sequence
To determine the effect of coverage on the recalibration values,

the mapped F3 reads in the bam file from the mate-pair library

(MP) were downsampled using the Picard (v. 1.5) tool Down-

sampleSam.java, which randomly removes reads from the bam

file. The reads were downsampled by factors of 3, 9, and 27, with

the factor of 27 resulting in coverage of the spike-in standards

similar to the Illumina and SOLiD2 libraries.

Similarly, one might want to know whether a smaller set of spike-

in standards (e.g., PhiX) could be used to perform recalibration.

Therefore, to determine the effect of recalibrating from shorter

sequences (i.e., fewer bases in the ‘‘genome’’), random bases were

excluded from the GATK analysis by adding them to the vcf file

(normally used by GATK to exclude bases with known biological

variation). Between 10%and 90%of the high-purity ERCC spike-in

standard reference bases were randomly selected using the sample

function in R, and then added to the vcf file for GATK analysis. The

CountCovariatesmethod inGATK (v. 1.2–62) was used to calculate

the recalibration values for each combination of covariates, using

read group, reported quality score, dinucleotide, and machine cycle

as covariates, and with default parameters except with the options –

solid_recal_mode REMOVE_REF_BIAS and –solid_nocall_strat-

egy PURGE_READ.

To be consistent with how GATK performs recalibration, we

aggregated the recalibration values by reported quality score and

cycle or by reported quality score and dinucleotide, and then

calculated the weighted mean absolute differences between the

downsampled recalibration values and the original recalibration

values (without downsampling). The values were weighted by the

number of observations in each group to obtain the expected

mean error in recalibration due to downsampling.

Errors Associated with Genome Recalibration and
Limited Length/coverage of Spike-in Standards
For all RNA-sequencing data, reads were mapped to the hg18

human reference with the ERCC spike-in standard sequences

appended. Reads from SOLiD 3+ were mapped using the Whole

Transcriptome pipeline in Bioscope (v. 1.3) with default parameters.

Reads from IlluminaHiSeq weremapped using BWA (v. 0.5.9) with

default parameters. The resulting bam files were split into two bam

files with reads mapping to hg18 or with reads mapping to the spike-

in standards using the Picard tool ReorderSam. GATK was used

with the same parameters as described above, except with the

dbSNP v.132 vcf file (downloaded from the GATK website) for

reads mapped to hg18, and with the modified vcf files containing

randomly selected 50% of the bases in the spike-in standards, as

described in Methods S1. Differences between BQSR recalibration

based on the genome vs. based on the spike-in standards were

calculated for each combination of reported quality score and

machine cycle or reported quality score and dinucleotide, similar to

the GATK BQSR process. Similarly, the differences between the

empirical quality scores calculated based on the spike-in standards

and the reported quality score were calculated. More detailed

methods and their associated scripts are provided in Methods S1.

The statistical calculations were performed using the R scripts Code

S4 - makeData.R, Code S5 - analysis.R, and Code S6 -

QempvQrep.R for Illumina; Code S7 - makeDataWT.R, Code

S8 - analysisWT.R, and Code S9 - QempvQrepWT.R for SOLiD;

and Code S10 - biasAgg.R.

Comparison of Nucleotide Change Errors between
Recalibration Methods and Sequencing Platforms
To calculate error rates for each type of nucleotide change, we

used custom Perl scripts (included in the supporting information) to

parse the samtools (v. 0.1.13) pileup output, calculating the error

rates for each type of nucleotide change, excluding bases in dbSNP

(v. 132) from the genome, and only including high purity bases in the

spike-in standards. To minimize the influence of random errors,

only baseswith reportedBQscores of at least 30were included in this

analysis. For each nucleotide change, the mean errors using ERCCs

or the genome for recalibration were statistically compared using

paired t-tests with a pooled variance, accounting for multiple

comparisons with a Bonferroni adjustment.

Sequencing Data Accession Numbers
Sequencing data has been submitted to the Short Read Archive

at NCBI via GEO, with accession numbers submitted during review.

Supporting Information

Figure S1 Effects of decreasing coverage and/or num-
ber of bases in the recalibration reference on (a) cycle
and (b) dinucleotide recalibration values. To decrease

coverage, reads were randomly downsampled to 33%, 11%, or

3.7% of the total mapped reads, and empirical quality scores were
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calculated. To decrease bases in the reference, 0% to 90% of the

bases (in increment of 10%) in the spike-in standard were

randomly removed from the calculations of the empirical quality

scores. The mean absolute difference of the empirical quality

scores (i.e., the difference between using all bases/reads and using

a subset of bases and/or reads) was calculated from high-coverage

(<500006 mean) SOLiD3+ mate-pair sequencing of the 78950

highly pure bases in the DNA spike-in standards. Decreasing the

size of the reference has a similar effect as decreasing the coverage

on the cycle recalibration scores, but is more deleterious for the

dinucleotide recalibration scores.

(TIF)

Figure S2 Statistical comparison of GATK BQSR scores
for recalibration based on the genome vs. recalibration

based on the standards in Fig. 3. The p values are calculated using

the multivariate logistic regression model described in Supporting

Methods S1 and compensated for multiple comparisons.

(TIF)

Methods S1 Detailed methods for library preparation
and statistics.

(DOCX)

Supporting Information S1 concentrations of each of the
ERCC spike-ins.

(XLSX)

Supporting Information S2 vcf with ERCC spike-in bases
excluded from GATK analysis.

(VCF)

Code S1 Pileup parsing script.

(PL)

Code S2 Matlab script to calculate purity probability
thresholds for spike-in bases.

(M)

Code S3 Matlab script to calculate purity probability
thresholds for spike-in bases.
(M)

Code S4 R script to import Illumina BQSR data.
(R)

Code S5 R script to analyze Illumina BQSR data.
(R)

Code S6 R script to plot Illumina BQSR data.
(R)

Code S7 R script to import SOLiD BQSR data.
(R)

Code S8 R script to analyze SOLiD BQSR data.
(R)

Code S9 R script to plot SOLiD BQSR data.
(R)

Code S10 R script to aggregate BQSR data.
(R)
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