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Abstract

Coral diseases are among the most serious threats to coral reefs worldwide, yet most coral diseases remain poorly
understood. How the coral host responds to pathogen infection is an area where very little is known. Here we used
next-generation RNA-sequencing (RNA-seq) to produce a transcriptome-wide profile of the immune response of the
Staghorn coral Acropora cervicornis to White Band Disease (WBD) by comparing infected versus healthy
(asymptomatic) coral tissues. The transcriptome of A. cervicornis was assembled de novo from A-tail selected
Illumina mRNA-seq data from whole coral tissues, and parsed bioinformatically into coral and non-coral transcripts
using existing Acropora genomes in order to identify putative coral transcripts. Differentially expressed transcripts
were identified in the coral and non-coral datasets to identify genes that were up- and down-regulated due to disease
infection. RNA-seq analyses indicate that infected corals exhibited significant changes in gene expression across 4%
(1,805 out of 47,748 transcripts) of the coral transcriptome. The primary response to infection included transcripts
involved in macrophage-mediated pathogen recognition and ROS production, two hallmarks of phagocytosis, as well
as key mediators of apoptosis and calcium homeostasis. The strong up-regulation of the enzyme allene oxide
synthase-lipoxygenase suggests a key role of the allene oxide pathway in coral immunity. Interestingly, none of the
three primary innate immune pathways - Toll-like receptors (TLR), Complement, and prophenoloxydase pathways,
were strongly associated with the response of A. cervicornis to infection. Five-hundred and fifty differentially
expressed non-coral transcripts were classified as metazoan (n = 84), algal or plant (n = 52), fungi (n = 24) and
protozoans (n = 13). None of the 52 putative Symbiodinium or algal transcript had any clear immune functions
indicating that the immune response is driven by the coral host, and not its algal symbionts.
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Introduction

The global rise in disease epidemics linked to climate
change has taken a heavy toll on tropical reef-building corals
and the diverse ecosystems they support [1-4]. A prime
example is White Band Disease (WBD), which beginning in the
late 1970s [5], caused unprecedented Caribbean-wide die-offs
of two species of Acropora corals, the Staghorn coral A.
cervicornis and the Elkhorn coral A. palmata [6-8]. As a result,
both species are now listed as threatened on the US
Endangered Species Act [9] and as critically endangered under
the International Union for the Conservation of Nature (IUCN)
Red List criteria [4]. Despite the devastating impacts of coral
diseases on reefs world-wide, little is known about the basic
etiology and ecology of most coral diseases [10-12] including
basic information about how corals fight diseases [2,12,13],

even though information about the coral immune response may
be crucial to understanding the future resiliency of reef corals
[2].

Genetic surveys indicate that corals and other cnidarians
possess the genetic architecture underlying common innate
immune pathways, including Toll-like receptors (TLR) as well
as components of the complement and prophenoloxidase (PO)
pathways [10,14,15]. PO activity and melanization responses
have been elicited in corals exposed to pathogens [16-18] and
components of the TLR pathway were differentially expressed
in corals infected with non-host specific Symbiodinium types
[19]. Elements of the complement pathway, such as mannose-
binding lectins, appear to be involved in pathogen, symbiont,
and self/nonself recognition in Acropora millepora [20].
Although cnidaria lack specialized immune cells, such as
macrophages, cnidaria possess mobile amebocytes that are

PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e81821

http://creativecommons.org/licenses/by/3.0/


activated upon pathogen exposure or tissue damage [21-24].
Phagocytosis activity in cnidarians is commonly observed in
flagellate gastrodermal cells during food uptake [25]. However,
several studies have demonstrated that, upon immune
stimulation, different populations of amebocytes can exhibit
phagocitic activity directed toward wound healing and removal
of necrotic tissue, as well as encapsulation of foreign particles
[26,27].

Relatively few studies have studied the genetic response of
corals infected with disease [28,29]. A microarray study of
Pocillopora damicornis infected with Vibrio identified six
candidate immune genes including three lectins and three
putative antimicrobial proteins [28]. Exposure of A. millepora to
bacterial and viral pathogen associated molecular patterns
(PAMPs) resulted in up-regulation of few immune related
genes including three GTPase of immunity associated proteins
(GiMAP) [29], a family of conserved small GTPases involved in
the antibacterial response of plants and mammals [30].

White Band Disease represents a good system to investigate
the immune response of a reef-building coral. It is one of the
few coral diseases that is highly transmissible [31] and host-
specific [5,11]. WBD is characterized by an interface of white
dying tissue that advances rapidly along the coral colony
(Figure 1). Current evidence suggests that the pathogen is
bacterial [31-36], but Henle-Koch postulates have not been
satisfied. To date, multiple bacteria have been associated with
WBD infections, including Vibrio harveyi [33,37] as well as a
marine Rickettsia CAR1α [34]. In situ transmission experiments
have identified naturally resistant and susceptible genotypes of
A. cervicornis [31], indicating that the immune response to
WBD varies among individuals.

Here we used next-generation RNA-sequencing to produce a
transcriptome-wide profile of the immune response of A.
cervicornis to WBD by comparing infected versus healthy
(asymptomatic) coral tissues. The transcriptome of A.
cervicornis was assembled de novo from A-tail selected
mRNA-seq data from whole coral tissues, and parsed
bioinformatically into coral and non-coral transcripts using
existing Acropora genomes in order to identify putative coral
transcripts. Differentially expressed transcripts were identified
in the coral and non-coral datasets to identify which genes
were up- and down-regulated due to disease infection and
characterize the immune response of the coral.

Results

A de novo assembly of the A. cervicornis transcriptome was
assembled from 436.5 million Illumina RNA-sequencing reads
from 45 coral samples of A. cervicornis and A. palmata. The
total reads were de novo assembled using Trinity [38], resulting
in 95,389 transcripts, with a N50 of 363 and N75 of 696. A total
of 47,748 transcripts mapped against the existing Acropora
genomes [39,40] and were classified as putative coral
transcripts while the remaining 47,641 were classified as non-
coral transcripts (Table 1).

For this study, five diseased (i.e. infected) and six healthy
corals were used to profile the immune response of Staghorn
corals infected with WBD. The average number of putative

coral reads (±SE) was 4,076,829 (± 898,542) in the diseased
coral samples compared to 4,199,946 (±761,894) in the healthy
samples. In total, 20,503 coral transcripts (43 %) and 14,253
(30%) non-coral transcripts had strong protein annotations
(Blastx e-value < 10-5) (Table 1).

Differentially expressed coral transcripts
Statistical analysis in DEseq [41] identified 1,805

differentially expressed (DE) transcripts (adj p-value < 0.05)
between healthy and WBD coral samples (Table 1, Table S1);
559 of these DE transcripts had reliable protein annotations
(Blastx e-values < 10-5) that could be used to characterize the
immune response of A. cervicornis infected with WBD (Figure
2a, Figure 3). Annotated transcripts were characterized by
gene ontology (GO) and grouped into manually curated

Figure 1.  White Band Disease on Acropora cervicornis.  A
colony of the Staghorn coral A. cervicornis infected with White
Band Disease showing the characteristic white band of dying
and necrotic coral tissue.
doi: 10.1371/journal.pone.0081821.g001

Table 1. Summary of coral and non-coral transcripts.

 All Transcripts  Annotated (E-value < 10-5)

 n DE % Up Down n DE % Up
Coral 47,748 1805 3.78% 1460 345  20,502 559 3.70% 459
Non-Coral 47,641 551 1.16% 549 2  14,253 251 1.76% 251

Total number of transcripts (n), significantly differentially expressed transcripts (adj
p-val<0.05) (DE), number of up-regulated (up) and down-regulated (down)
transcripts among the entire dataset and annotated transcripts only (E-val<10-5).
First row refers to putative coral transcripts, second row to non-coral transcripts.
doi: 10.1371/journal.pone.0081821.t001
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categories based on literature searches highlighting immune
functions (Table 2). WBD-infected corals exhibited strong gene
expression responses for genes related to immunity (n = 72),
apoptosis (n = 18) and arachidonic acid metabolism (n = 5).
Calcification (n = 14) and calcium homeostasis (n = 21) were
also perturbed, as well as cell growth and remodeling (n =
134), cellular processes (n = 188) and general metabolism (n =
43).

Immune-related processes
Sixty-nine DE transcripts were associated with immunity.

Three C-type lectins receptors, C- type mannose receptor 2
(MRC2), macrophage lectin 2 (CLEC10A) and collectin-12
(COLEC12) were up-regulated in infected corals. Two
mediators of phagocytosis were up-regulated - the macrophage
receptor multiple epidermal growth factor-like domains protein
10 (MEGF10) and actin-22 (act22), which is involved in the
phagosome formation. All three subunits of NADPH oxidase
(NOX) involved in reactive oxygen species (ROS) production
were up-regulated, including cytochrome b-245 heavy chain
(CYBB), NADPH oxidase 3 (NOX3) and neutrophil cytosol
factor 2 (p67-phox). Other DE immune related genes included
nine antioxidants participating in the detoxification of ROS such
as peroxidasin (PXDN, n=3) and glutaredoxin (GLRX), and 12
transcripts associated to response to stress such as golgi-
associated plant pathogenesis-related protein 1 (GAPR-1, n =
3) and universal stress protein A-like protein (UspA, n = 2).

Little or no differential expression was detected in the three
primary innate immune pathways – Toll/TLR, complement and
prophenoloxidase (PO) pathways. In the Toll/TLR pathway, two
TLR2 homologs and the adaptor molecule TNF receptor-

associated factor 3 (TRAF3) were up-regulated in WBD corals.
In the complement pathway, two transcripts encoding
macrophage-expressed gene protein 1 (MPEG1) were
differentially expressed, but they were down regulated in WBD
corals. No differentially expressed transcripts were detected in
the PO pathway.

Arachidonic acid metabolism
Six DE transcripts participating to the metabolism of

arachidonic acid (AA) were up-regulated in diseased corals.
Five matched coral allene oxide synthase-lipoxygenase
(AOSL), a catalase related hemoprotein that catalyzes the
biosynthesis of allene oxide, a precursor of marine
eicoesanoids. The sixth transcript matched the enzyme
phospholipase A2 (PLA2), involved formation of AA from
membrane phospholipids.

Apoptosis
Eighteen DE transcripts were associated with apoptosis,

including both pro- and anti-apoptotic regulators such as the
extracellular matrix protein thrombospondin 2 and fibroblast
growth factor receptor 2 (n = 2), respectively. Tumor necrosis
factor receptor superfamily member 1A (TNFRSF1A) and
caspase 3 (CASP-3) were up-regulated while caspase 8
(CASP-8) was down-regulated in WBD corals.

Calcification and calcium homeostasis
DE transcripts in this category included 14 proteins

participating to carbon dioxide transport, biomineralization and
skeletal growth. Two carbonic anhydrases were up-regulated
(CA2 and CA3) and one was down-regulated (CA2) in WBD

Figure 2.  Volcano plots displaying differential gene expression between healthy and disease A. cervicornis.  Figure a. plots
gene expression values of the putative coral transcripts, figure b. plots putative non coral transcripts. Each point represents an
individual gene transcript. Red points represent significantly differentially expressed transcripts (adj p-value < 0.05).
doi: 10.1371/journal.pone.0081821.g002
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corals. Mediators of calcium homeostasis included 27 DE
transcripts participating in calcium ion binding and transport
such as calmodulin (CaM, n = 3), calumenin (CALU) and
calsequestrin-2 (CASQ2) and were all up-regulated.

Cell growth and remodeling
Among the 138 DE transcripts related to cell growth and

remodeling we identified 17 metallopeptidases (15 up, 2 down),
29 cytoskeletal proteins (all up-regulated) and 14 angiogenesis
mediators (11 up, 3 down). A large group of DE transcripts
were cell adhesion proteins (n = 29), including four up-
regulated transcripts encoding sushi, von Willebrand factor

type A, EGF and pentraxin domain-containing protein 1
(polydom/SVEP1).

Cell metabolism
Forty-two DE transcripts were associated with cell

metabolism. These included 14 mediators of lipid metabolism,
in particular, five lipases involved in lipid and phospholipid
catabolism (n = 5, all up), such as pancreatic triacylglycerol
lipase (PL), pancreatic lipase-related protein 2 (PL-RP2) and
phospholipase DDHD1 (DDHD1). Four transcripts participating
in fatty acid biosynthesis, such as fatty acid synthase (FASN),
acetyl-CoA carboxylase (ACC) and acetyl-CoA carboxylase 1
(ACC1), were all down-regulated in WBD corals, and five

Figure 3.  Heatmap of immune-related differentially expressed coral transcripts.  Heatmap showing expression profiles of
healthy (H) and WBD infected (D) A.cervicornis. Transcripts annotations are based on GO terms and manually curated categories.
Relative expression levels are shown in red (up) and blue (down).
doi: 10.1371/journal.pone.0081821.g003
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transcripts involved in the breakdown of fatty acids such as
long-chain-fatty-acid--CoA ligase 1 (LACS1) and 5 (LACS5)
were up-regulated.

Non-coral transcripts
Out of the 47,641 putative non-coral transcripts in the

dataset, 550 were differentially expressed in WBD infected
corals (Table 1, Table S2). Of these 550 DE transcripts, 251

Table 2. Summary of the main pathways involved in A.cervicornis response to WBD.

DE transcripts N Uniprot ID Function log2 (Fold Change)
Immunity 69    
Macrophage-expressed gene 1 protein (n=2)  Q9WV57 complement related 2.2- 1.6 down
C-type lectin domain family 10 member A  Q8IUN9 pathogen recognition receptor 5.39 up
C-type mannose receptor 2  Q4TU93 pathogen recognition receptor 2.21 up
Collectin-12  Q4V885 pathogen recognition receptor 4.10 up
Multiple epidermal growth factor-like domains protein 10  A0JM12 phagocytosis 2.17 up
Putative actin-22  Q553U6 phagocytosis 1.56 up
Glutaredoxin  Q9HU55 response to oxidative stress 2.06 up
Peroxidasin homolog (n=3)  Q3UQ28 response to oxidative stress 3.1-6.6 up
Golgi-associated plant pathogenesis-related protein 1 (n=3)  Q9H4G4 response to stress 1.7- 3.5 up
Universal stress protein A-like protein (n=2)  Q8LGG8 response to stress 2.5- 2.6 up
Cytochrome b-245 heavy chain  O46522 superoxide anion generation 2.35 up
Neutrophil cytosol factor 2  O77775 superoxide anion generation 2.66 up
NADPH oxidase 3  Q672J9 superoxide anion generation 2.19 up
TNF receptor-associated factor 3  Q13114 toll 2.51 up
Toll-like receptor 2 (n=2)  B3Y618 toll 1.7-4.7 up
Apoptosis 18    
Caspase-3  P70677 apoptotic process 2.67 up
Caspase-8  O89110 apoptotic process 2.30 down
Tumor necrosis factor receptor superfamily member 1A  P19438 apoptotic process 1.83 up
Thrombospondin-2  P35440 pro-apoptosis 7.20 up
Arachidonic acid metabolism 6    
Phospholipase A2  P08872 arachidonic acid metabolism 3.03 up
Allene oxide synthase-lipoxygenase protein (n=5)  O16025 allene oxide synthesis 2.1 - 8.4 up
Calcification 14    
Carbonic anhydrase 2 (n=2)  Q8UWA5 one-carbon metabolic process 2.6 down, 2.7 up
Carbonic anhydrase 3  Q5S1S4 one-carbon metabolic process 1.77 up
Calcium Homeostasis     
Calmodulin (n=3)  Q8STF0 calcium ion binding 2.4-4.0
Calumenin  Q5RDD8 calcium ion binding 2.74 up
Calsequestrin-2  P19204 calcium ion binding 1.75 up
Cell growth and remodeling 135    
Polydom  P0C6B8 cell adhesion 1.9-5.3 up
Cellular processes 188    
Metabolism     
Fatty acid synthase  P49327 fatty acid biosynthetic process 2.28 down
Acetyl-CoA carboxylase  P11029 fatty acid biosynthetic process 1.88 down
Acetyl-CoA carboxylase 1  P11497 fatty acid biosynthetic process 2.08 down
Long-chain-fatty-acid--CoA ligase 1  P41216 fatty acid metabolic process 4.45 up
Long-chain-fatty-acid--CoA ligase 5  O88813 fatty acid metabolic process 4.35 up
Pancreatic triacylglycerol lipase  Q6P8U6 lipid catabolic process 4.23 up
Pancreatic lipase-related protein 2  P81139 lipid catabolic process 2.89 up
Phospholipase DDHD1  Q8NEL9 lipid catabolic process 2.28 up
Wnt 8    
Unknown 55    

Number (N) of differentially expressed (DE) transcripts per category. Function defined by GO terms and manually curated categories. Expression values reported as log2fold
change of WBD infected corals relative to healthy corals.
doi: 10.1371/journal.pone.0081821.t002
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were well-annotated and were all up-regulated (Figure 2b).
About 33 % were metazoan, the remaining were putative
zooxanthellae (23%), fungi (10%) and protozoa (5%). A small
number of transcripts matched bacteria (4%) and viruses
(0.1%), while the remaining 23 % were unknown.

Metazoan transcripts (n = 84) included mediators of cell
growth and remodeling (n = 16), metabolism (n = 4), cellular
processes (n = 61) and two uncharacterized transcripts. Only
two immune-related transcripts were identified and were the
antioxidant peroxiredoxin-2 (PRDX2) and the metallopeptidase
aminopeptidase O (AP-O), which may be involved in
leukotrienes synthesis from AA.

Fifty-nine transcripts had plant, algae or Alveolata protein IDs
and are presumed or putative Symbiodinum transcripts. Based
on GO terms, these Symbiodinium transcripts were associated
with cell growth and remodeling (n = 8), cellular processes (n=
38) and metabolism (n = 10), while two were uncharacterized.
One transcript matched cysteine proteinase RD21a (RD21), a
peptidase involved in defense against fungi. Fungal transcripts
(n = 24) belonged to cell processes (n = 20) and metabolism (n
= 3) plus one uncharacterized protein. Out of the 14 transcripts
matching protozoa, 13 were associated to cellular processes,
two to metabolism and one to cell growth and remodeling.

Nine transcripts matched bacterial proteins, six of them were
involved in cellular processes (n = 3), metabolism (n = 3) and
three were uncharacterized. Two transcripts shared protein IDs
annotating to virus proteins (glycoprotein gp2 and one
uncharacterized), while the remaining 59 transcripts did not
have functional annotations.

Discussion

Our study demonstrates that Acropora cervicornis mounts a
vigorous immune response against White Band Disease
(WBD) pathogen(s) involving dramatic changes in gene
expression across 4% of the coral transcriptome. The identities
of the differentially expressed (DE) coral transcripts indicate
that the response of A. cervicornis to WBD infection is driven
by phagocytosis of apoptotic cells (Figure 3, Table 2). Corals
infected with WBD exhibited strong differential expression of
transcripts involved in macrophage-mediated pathogen
recognition and ROS production, two hallmarks of
phagocytosis, as well as key mediators of apoptosis and
calcium homeostasis. The strong up-regulation of transcripts
involved in arachidonic acid (AA) metabolism and allene oxide
synthesis suggests their key role in coral immunity.

The primary signature of phagocytosis activity in WBD
infected corals was the up-regulation of four macrophage
receptors that recognize and bind to conserved motifs on the
surface of target cells. Three of these receptors, MRC2,
CLEC10A and COLEC12 belong to the C-type lectin family of
proteins that include several Pathogen Recognition Receptors
(PRRs). MRC2 recognizes mannose and fucose on
glycoproteins of bacteria, viruses and fungi [42] while
CLEC10A recognizes galactose and N-acetyl-galactosamine
residues [43]. COLEC12is a scavenger receptor that shares
structural similarity with macrophage scavenger receptor class
A type I (SR-AI), a surface membrane receptor that mediates

binding and phagocytosis of gram-positive, gram-negative
bacteria and yeasts [44]. The fourth receptor, MEGF10, is
membrane protein that promotes the clearance of apoptotic
cells by causing macrophages to adhere and engulf them [45].
The stronger up-regulation of the three macrophage PRRs
(2.2, 5.4 and 4.1 fold) compared to the one apoptotic cell
recognizing receptor MEGF10 (2.17 fold) suggests the
response is primarily driven by phagocytosis of microbes. A
second signature of phagocytosis was the up-regulation of
transcripts linked to ROS production, including three subunits
of the enzymatic complex NADPH oxidase (NOX). ROS
production is a general and highly conserved response to
invading pathogens and stress and the release of ROS from
the mitochondria can induce apoptosis in metazoan and yeasts
[46,47]. During phagocytosis, ROS are generated in mature
phagosomes (i.e. specialized vacuoles in phagocytic cells) [48]
to kill engulfed cells [49]. In cnidarians, ROS production has
been observed in the hydroid Hydra vulgaris exposed to the
immune stimulant lipopolysaccaride (LPS) [50] and in reef
corals during thermal and UV-induced bleaching [51,52],
possibly due to the breakdown of the mitochondrial and
photosynthetic membranes [53,54].

In WBD infected corals, it is possible that phagocytosis is
aimed either at the removal of invading pathogens and/or used
to clear damaged apoptotic cells [55]. The genetic signature of
phagocytosis in WBD infected corals raises questions about
the identity of these phagocytic immune cells in A. cervicornis.
Cnidaria lack specialized immune cells, but do possess mobile
amebocytes. Aggregations of amebocytes have been observed
in the gorgonian coral Gorgonia ventalina infected with
pathogenic fungi [24] and near wounded tissues in the soft
coral Plexaurella fusifera [26]. Histological examination
revealed that amebocytes exhibited phagocytic and PO activity
[27] as well as antimicrobial activity against Gram-negative
bacteria and ROS production [56]. Interestingly, certain
populations of ameboid cells always show phagocytic activity,
while others only acquire it upon immune activation [27]. These
findings indicate that cnidaria, traditionally considered “simple”
animals, are able to mount an innate immune response by
employing the functional plasticity of amebocytes, which seem
to represent the primary immune population of phagocytic cells.

Increased apoptosis in WBD infected corals was indicated by
the differential expression of TNFRSF1A and CASP-3. During
apoptosis, TNFRSF1A binds to tumor necrosis factor (TNF),
which then recruits CASP-8 initiating the downstream activation
of CASP-3, the main effector caspase of the apoptotic pathway
[57,58]. While both TNFRSF1A and CASP-3 are up-regulated,
CASP-8 is down-regulated which may suggest that CASP-3 is
activated by some alternative pathway. Active programmed cell
death was also suggested by disruption of calcium
homeostasis as indicated by the strong up-regulation of CaM
and other calcium binding proteins. In both plants and animals
[59,60], apoptosis can be triggered by LPS from gram-negative
bacteria via alteration of TNFRSF1A expression [61]. Some
bacterial pathogens are also able to induce or inhibit apoptosis
in their host [60,62,63] via alteration of membrane permeability
and disruption of Ca2+ homeostasis [64], direct activation of
TNF-α [65], TLR2 [66,67]or CASP-3 [68]. In corals, apoptosis
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occurs normally during metamorphosis [69] and the onset of
symbiosis [70], but it has also been observed during bleaching
as a possible mechanism to expel zooxanthellae in response to
thermal stress [71-73]. Apoptosis has also been detected in the
lesions of three Pacific species of Acropora infected by White
Syndrome (WS), suggesting that it is a mechanism of tissue
loss in WS [74].

Another key, yet unexpected, finding of this study is the
potential role of the arachidonic acid (AA) pathway in the coral
immune response. Genes involved in AA synthesis increased
dramatically in WBD infected corals. The role of AA as an
inflammation regulator is well-known in metazoans [75] , but
has not been described in Cnidaria or in association with any
coral disease. In metazoans, AA is released by apoptotic cells
as chemotactic factor to promote clearance by phagocytes [76],
but it can also induce apoptosis via rapid increase of calcium
concentration and activation of CASP-3 in a CASP-8-
independent way [77]. These findings are consistent with our
data showing up-regulation of CASP-3, but not CASP-8,
suggesting that AA may act similarly as immunomodulator in A.
cervicornis. The five transcripts matching allene oxide
synthase-lypoxigenases (AOSL) from the soft coral Plexaura
homomalla, on the other hand, indicated that AA is converted
into allene oxide, an intermediate compound of prostanoid
synthesis in plants and soft corals [78-82].

Allene oxide has received considerable attention as a
putative precursor of clavulones [83], a class of unique marine
prostanoids known for their anti-viral and anti-cancer activity
[84,85]. The link between the AOSL pathway and clavulones
synthesis in corals, although still under debate, was suggested
by the similarities with the biosynthetic pathway of jasmonic
acid [83] a plant hormone that is produced via an allene oxide
intermediate upon mechanical injury [86] and herbivore attack
[87]. Although further study is needed to understand the role
allene oxide in corals, our data represent the first evidence
implicating AOSL in coral immunity and suggest that AOSL
may be involved in controlling levels of free AA produced by
apoptotic cells.

Several other immune related genes exhibited altered
expression in infected corals. The majority were anti-oxidants
including PXDN, peroxidasin-like proteins and GLRX - a
glutathione-dependent enzyme. PXDN has been shown to be
DE in some thermally stressed corals, but not in a consistent
manner. For example, in Montastraea faveolata, PXDN was
up-regulated in thermally-stressed larvae [88], but was down-
regulated in thermally-bleached adult colonies [89]. Active cell
remodeling and cell matrix degradation was indicated by
several DE cytoskeletal proteins, metalloproteases and cell
adhesion proteins, probably associated with cellular and
cytoskeletal rearrangements linked to phagocytosis and
apoptosis. CASP-3 activation, in particular, initiates apoptosis
by altering the expression of metalloproteases and hydrolytic
enzymes such as cathepsins that degrade extracellular matrix
components [90]. Interestingly, WBD infected corals up-
regulated three transcripts encoding polydom, a cell adhesion
protein belonging to the pentraxin family of lectins. Recent
studies suggest an immune function for polydom based on its
similarities in its protein domains to complement proteins and

C-type lectins with antimicrobial activity [91]. In cnidarians, the
potential immune role for polydom is bolstered by its up-
regulation in the hydroid Hydractinia symbiolongicarpus after
fungal and bacterial exposure [92].

Surprisingly, none of the three main innate immune
pathways - TLR, complement and PO - played a prominent role
in the immune signature of A. cervicornis infected with WBD,
even though transcripts from these pathways are well-
represented in our transcriptome. Only three transcripts in the
TLR pathway were differentially expressed: two TLRs matching
to human TLR2 and TRAF3. In the lectin complement pathway,
the only two DE transcripts were two proteins matching
MPEG1, a MAC/PF (membrane attack complex/perforin)
containing protein that is involved in the response against
Gram negative bacteria in sponges and is up-regulated upon
LPS exposure [93]. None of the transcripts belonging to the PO
pathway were differentially expressed during WBD infection,
even though in other corals PO activity acts as an important
defense against invading pathogens and tissue damage
[16-18].

Non-coral transcripts
The taxonomic distribution of non-coral transcripts

highlighted the presence of several members of the coral
holobiont, i.e. the coral host and associated symbiotic
microorganisms, including zooxanthellae, fungi and protozoa.
The majority of these non-coral transcripts matched metazoan
and putative zooxanthaellae proteins, while the remaining
transcripts matched fungi, protozoa and bacteria. GO term
analysis revealed that most of these non-coral transcripts
encoded mediators of cell homeostasis and general
metabolism. Transcripts with metazoan identities were likely
coral transcripts that did not have identities in the coral
reference genomes and may thus represent transcripts unique
to A. cervicornis. Putative zooxanthellae transcripts were
identified as transcripts annotating to Viridiplantae,
Heterokontophyta (i.e. algae), cyanobacteria and the
superphylum Alveolata. Interestingly, no genetic signature of
immune activity from the algal symbionts was evident in our
transcriptome. Instead, our data suggest drastic changes in
photosynthesis and cell metabolism of the zooxanthellae; this
is consistent with a previous study showing that Symbiodinum
undergo major alteration of carbon metabolism in response to
stress [94].

Conclusions

Our data reveal that the coral host, but not its algal
symbionts, undergoes dramatic alterations in gene expression
during response to WBD infection. Transcriptional changes
affected mediators of innate immunity, in particular receptors
on the surface of phagocytic cells, enzymes involved in ROS
production and modulators of apoptosis. Taken together, our
data suggest that WBD infection in A. cervicornis is associated
with apoptosis, and that WBD pathogen triggers a powerful
immune response driven by phagocytic cells that encapsulate
and degrade apoptotic cells. This study also indicates a key
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role for arachidonic acid and in particular the enzyme AOSL in
A. cervicornis immunity.

Materials and Methods

Total RNA was extracted from diseased and healthy
Acropora cervicornis sampled from Crawl Cay reef in Bocas del
Toro, Panama under Autoridad Nacional del Ambiente (ANAM)
Collecting permit SE/A-71-08. For the diseased samples,
corals with active mobile WBD interfaces were identified by
monitoring the mobility of disease interfaces for two days, and
then sampling a 2 cm region of tissue at and above the disease
interface. A comparably sized and located tissue sample was
taken from healthy (i.e. asymptomatic) corals. The coral tissues
were flash frozen in liquid nitrogen and stored at -80°C. Total
RNA was extracted in TriReagent (Molecular Research Center,
Inc.) following the manufacturer's protocol. Total RNA quality
was assessed using the RNA Pico Chips on an Agilent
Bioanalyzer 2100, and only extractions showing distinctive 28S
and 18S bands and RIN values of 6 or higher were prepped for
RNA sequencing.

RNA sequencing was performed on five diseased and six
healthy coral samples using a multiplexed Illumina mRNA-seq
protocol [95] with the following modifications. Instead of
fragmenting the mRNA prior to cDNA synthesis, we obtained
much better success fragmenting the double stranded cDNA
using DNA fragmentase (New England Biolabs) for 30 minutes
at 37°C. RNA-seq libraries were then prepared using next-
generation sequencing modules (New England Biolabs) and
custom paired-end adapters with 4bp barcodes. Multiplexed
samples were run (2-3 samples per lane) on the Illumina GAII
platform (Illumina, Inc, San Diego, California, USA) at the FAS
Center for System Biology at Harvard University. Barcoded
samples were de-multiplexed and raw sequencing reads were
quality trimmed to remove sequences and regions with a Phred
score of less than 30 and a read length less than 15bp long
using custom Perl Scripts in the FASTX-Toolkit (http://
hannonlab. cshl.edu/fastx_toolkit/).

A de novo transcriptome was assembled using Trinity [38]
from 463.5 million single-end Illumina RNA-Seq reads from 39
A. cervicornis and 6 A. palmata samples, including the 11 A.
cervicornis samples included in this paper. The assembled
transcriptome produced 95,389 transcripts with a N50 of 363
and N75 of 696. RNA-seq data were produced using whole
coral tissue, which putatively contains sequences from the
coral host, its algal symbiont Symbiodinium, and other
members of the coral holobiont (e.g. fungi, bacteria, and
viruses).

In order to resolve the holobiont, and putatively classify the
source of the transcripts that were assembled as either coral or
non-coral, we utilized a multistep pipeline leveraging the
existing genomes of two congener species – A. digitifera [39]
and A. millepora [40]. RNA-seq reads were mapped against
both Acropora reference genomes using Bowtie [96] to produce
two exomes. Transcripts from our de novo assembly were
aligned using BLAST [97] against each exome. Transcripts
were assigned as putatively coral if they matched either exome
with an e-value of less than 10-10. Transcripts without significant

coral hits were assigned as non-coral and could potentially
include novel coral and/or algal symbiont Symbiodinium
transcripts, as well as other associated eukaryotes, like
endolithic fungi. Bacterial and viral transcripts are possible, but
less likely given that A-tail selection to isolate eukaryotic
mRNAs was performed prior to cDNA synthesis.

Putative gene identities for each transcript were identified by
performing homology searches against the Swiss-Prot and
TReMBLE protein databases [98], using tBLASTx. Matches
with an e-value of less than10-5 were considered homologous
protein-coding genes. Subsequently, GenBank Flat Files
corresponding to the hits’ Accession ID’s were downloaded and
used to extract taxonomic data for each used as a second
method to identify the putative source of the transcripts. GO
terms and gene functions were obtained for the annotated
transcripts on UniProt. The reference transcriptome sequences
are available on Bioproject (accession number PRJNA222758).

Differences in gene expression between healthy and disease
A.cervicornis specimens were estimated using the R package
DESeq [38]. First, all contigs were separated into two datasets
–i.e. coral and non-coral- based on their matches to the
Acropora genomes. Size factor estimation and normalization
were then performed separately on each dataset using the
functions estimateSizeFactors and estimateDispersions,
respectively. Differentially expressed contigs were detected by
running a negative binomial test using the function nbinomTest.
Only differentially expressed transcripts (adjusted p-value <
0.05) that were also annotated (e-values < 10-5) were used for
this study.
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