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Abstract

Background: The application of viral elements in tumor therapy is one facet of cancer research. Recombinant capsid protein
VP1 (rVP1) of foot-and-mouth disease virus has previously been demonstrated to induce apoptosis in cancer cell lines. Here,
we aim to further investigate its apoptotic mechanism and possible anti-metastatic effect in murine models of
hepatocellular carcinoma (HCC), one of the most common human cancers worldwide.

Methodology/Principal Findings: Treatment with rVP1 inhibited cell proliferation in two murine HCC cell lines, BNL and
Hepa1-6, with IC50 values in the range of 0.1–0.2 mM. rVP1 also induced apoptosis in these cells, which was mediated by Akt
deactivation and dissociation of Ku70-Bax, and resulted in conformational changes and mitochondrial translocation of Bax,
leading to the activation of caspases-9, -3 and -7. Treatment with 0.025 mM rVP1, which did not affect the viability of normal
hepatocytes, suppressed cell migration and invasion via attenuating CCL2 production. The production of CCL2 was
modulated by Akt-dependent NF-kB activation that was decreased after rVP1 treatment. The in vivo antitumor effects of
rVP1 were assessed in both subcutaneous and orthotopic mouse models of HCC in immune-competent BALB/c mice.
Intratumoral delivery of rVP1 inhibited subcutaneous tumor growth as a result of increased apoptosis. Intravenous
administration of rVP1 in an orthotopic HCC model suppressed tumor growth, inhibited intra-hepatic metastasis, and
prolonged survival. Furthermore, a decrease in the serum level of CCL2 was observed in rVP1-treated mice.

Conclusions/Significance: The data presented herein suggest that, via inhibiting Akt phosphorylation, rVP1 suppresses the
growth, migration, and invasion of murine HCC cells by inducing apoptosis and attenuating CCL2 production both in vitro
and in vivo. Recombinant protein VP1 thus has the potential to be developed as a new therapeutic agent for HCC.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common

cancers worldwide [1]. Although the etiology of HCC has been

largely explained, HCC is still a focus of cancer research due to its

poor prognosis and high rates of recurrence resulting from local

invasion and intra-hepatic metastasis [2,3]. Since HCC is highly

resistant to conventional cytotoxic chemotherapy, most recent

investigations have focused on molecular targeted therapies. The

Ras/Raf/Mek/Erk and PI3K/Akt/mTOR signaling pathways

are important in hepatocarcinogenesis, and several inhibitors

targeting those pathways are currently under clinical development

[4–7]. Despite these advances, the continued investigation of new

therapeutic modalities for HCC is warranted due to the shortage

of effective systemic therapy for advanced cases and the highly

unfavorable prognosis of the disease.

Bacterial and viral elements that promote cancer cell death have

long been described in the literature. Azurin, a periplasmic protein

secreted by Pseudomonas aeruginosa, inhibits the growth of various

cancer cells and induces apoptosis upon cell entry [8]. Apoptin

and E4orf4, viral proteins derived from chicken anemia virus and

human adenovirus, respectively, have been shown to induce cell

apoptosis and tumor regression in various pre-clinical animal

models [9–11]. Previous studies thus indicate that bacterial or viral

proteins can be exploited for treatment of cancers.

Foot-and-mouth disease virus (FMDV), an etiological agent of

FMD, is composed of 60 copies of each of four capsid proteins

termed VP1 to VP4. These proteins form a closed capsid sur-

rounding a long single strand of RNA [12]. We previously purified

a water-soluble, recombinant VP1 protein of FMDV (rVP1) and

found that it induced apoptosis of BHK-21 cells through binding

to integrins [13]. The apoptosis-related events shown in rVP1-

treated BHK-21 cells included DNA fragmentation, Akt deacti-

vation, and enhancement of several pro-apoptotic responses such

as dephosphorylation of GSK-3b and cleavage of pro-caspases-9,

-7 and -3. In addition, treatment with rVP1 caused apoptosis in
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three cancer cell lines: the breast carcinoma cell line MCF-7, the

androgen-independent prostate cancer cell line PC-3, and the

androgen-dependent prostate cancer cell line 22Rv1 [13]. How-

ever, the molecular mechanism underlying apoptosis in cancer

cells induced by rVP1 remains unclear.

The Bcl-2 (B-cell lymphoma 2) family of proteins regulates cell

apoptosis by controlling the integrity of mitochondria. Bax (Bcl-2-

associated X protein), a crucial member of pro-apoptotic Bcl-2

family proteins, is largely retained in the cytosol by some suppressor

proteins in a quiescent state while survival signal dominates. Ku70,

the 70-kDa subunit of the Ku protein complex composed of Ku70

and Ku80, is a Bax suppressor protein [14]. It has been demon-

strated that the interaction between Ku70 and Bax is maintained by

Akt activation [15]. Upon apoptotic stress, the level of Ku70 is

decreased, allowing the dissociation of Bax from Ku70 [14,15].

In addition, Bax undergoes a conformational change (activation)

followed by mitochondrial translocation and insertion into the outer

mitochondrial membrane, leading to the initiation of a downstream

caspase cascade and subsequent apoptosis [16].

Emerging evidence suggests that the CC chemokine CCL2/

MCP-1 (monocyte chemotactic protein-1) plays pleiotropic roles in

cancer development. Hepatic myofibroblasts have been shown to

secret CCL2 to promote migration and invasion of hepatoma cells

[17]. Moreover, a higher mRNA level of CCL2 is found in human

HCC [18]. Several other types of cancer cells, including prostate

cancer, breast cancer, and myeloma cells, have also been demon-

strated to express CCL2 and its receptor CCR2 [19–21], both of

which are correlated with prostate cancer development [19,22]. In

patients with breast or ovarian cancer, high serum levels of CCL2

positively correlated with tumor development [23,24]. On the

other hand, CCL2 blockade inhibited tumor growth and metasta-

sis in lung cancer mouse models [25]. Mounting evidence also

indicates that CCL2 is a key player in the development of bone

metastases [26], although its function in bone lesion formation has

not been fully elucidated. In addition, CCL2 has also been

associated with cell protection [27,28].

In this study, we aimed to investigate the pro-apoptotic and

anti-metastatic/anti-invasive effects of rVP1 on HCC in vitro and in

vivo. We propose that the apoptosis induced by rVP1 occurs

through a mechanism that involves dissociation of Bax from Ku70.

Furthermore, rVP1 inhibited metastasis/invasion via attenuating

CCL2 production. In vivo experiments, using both subcutaneous

and orthotopic mouse models of HCC, revealed that rVP1

suppressed tumor growth, inhibited intra-hepatic metastasis, and

showed survival benefit.

Materials and Methods

Cell line and culture conditions
Murine hepatocellular carcinoma cell lines BNL 1 ME A.7R.1

(BNL) and Hepa1-6 were kindly provided by Dr. Mi-Hua Tao,

Institute of Biomedical Sciences, Academia Sinica (Taipei, Taiwan).

The BNL and Hepa1-6 cells were maintained in Dulbecco’s

modified Eagle’s medium (DMEM; Gibco, Gaithersburg, MD)

supplemented with 10% heat-inactivated fetal bovine serum (FBS;

Gibco), 2 mM L-glutamine, 100 U/ml penicillin and 100 mg/ml

streptomycin in a humidified incubator at 37uC under 5% CO2.

The AML 12 (alpha mouse liver 12) cell line derived from normal

murine hepatocytes was purchased from the Bioresource Collection

and Research Center (Hsinchu, Taiwan) and maintained in a

mixture of DMEM and Ham’s F12 medium supplemented with

0.005 mg/ml insulin, 0.005 mg/ml transferrin, 5 ng/ml selenium

(Gibco), 40 ng/ml dexamethasone (Sigma, St. Louis, MO), and

10% FBS.

Purification of recombinant VP1 proteins
Purification of recombinant VP1 proteins was carried out

according to procedures published previously [13,29–31]. In brief,

the VP1 gene with a T7 and a His tag at the N- and C-terminus,

respectively, was ligated between the BamHI and XhoI sites of

pET24a(+) (Novagen, Madison, WI), and then expressed in BL21

(DE3) Escherichia coli (Stratagene, La Jolla, CA). The recombinant

VP1 was isolated by breaking up the bacterial cells with a

Microfluidizer in TEN buffer (50 mM Tris-HCl, pH 8.0, 1 mM

EDTA, 0.1 M NaCl). The resultant cell lysate was centrifuged and

the pellet was washed three times with 0.5% deoxycholate in TEN

buffer. After rinsing with TEN buffer, the pellet was resuspended

in freshly prepared binding buffer (20 mM Tris–HCl, pH 8,

0.5 M NaCl, 8 M urea). The solution was then applied to a metal-

chelating affinity column and the fractions containing rVP1 protein

were collected. SDS was then added to the protein solution to a final

concentration of 1%. The protein solution was subsequently applied

to a Superdex 200 column (Amersham, UK) equilibrated with

a buffer solution containing 25 mM Tris-HCl, pH 8.0, 1 mM

EDTA, 0.1 M NaCl, and 0.05% SDS. Fractions containing rVP1

protein were identified by SDS-PAGE and pooled. The protein was

concentrated and dialyzed against PBS before use.

Cell growth inhibition assay
Cells maintained in medium with 10% FBS were seeded in 96-

well plates at a density of 26104 cells/well overnight. The wells

were washed with PBS buffer (Gibco) prior to the addition of rVP1

at various concentrations, diluted with serum-free medium, and

incubated for 16 h. An MTT assay was then used to evaluate the

cell viability, and the concentration of rVP1 required to inhibit cell

growth by 50% (IC50) was determined by interpolation from the

concentration-response curve.

Flow cytometric analysis of apoptotic cells
For evaluation of annexin V activity, cells were treated with

1 mM rVP1 for 16 h and then detached for labeling. Cells were

collected by centrifugation, resuspended in binding buffer, and

incubated with annexin V-FITC and propidium iodide (Annexin

V-FITC apoptosis detection kit, Biovision, Mountain View, CA)

for 5 minutes in the dark before flow cytometric analysis on a

FACSCalibur system (BD, Franklin Lakes, NJ).

Mice and subcutaneous allograft model of HCC
BALB/c mice were purchased from the National Laboratory

Animal Center (Taiwan). All animal experiments were approved

by the Institutional Animal Care and Utilization Committee of

Academia Sinica, Taiwan (approval ID: MMiIBALS 2006069).

BNL cells (56106 cells per mouse) were suspended in 100 ml of

serum-free DMEM and injected subcutaneously into mice, aged 6

to 8 weeks. When tumors were detected, tumor volume was mea-

sured using the formula: 1/26the largest diameter6(the smallest

diameter)2, as reported in previous cancer studies [32–34]. Mice

with similar tumor volumes (about 250 mm3) were randomly

sorted into groups for intratumoral injection of rVP1. The animals

were administered rVP1 (25 to 100 mg/kg) three times a week

for a total of 9 treatments. Measurement of tumor volume was

periodically performed with calipers. At the end of rVP1 treat-

ment, two mice in each group were sacrificed for western blot and

immunohistochemical analyses.

Orthotopic allograft HCC model
An orthotopic HCC model was established by intra-hepatic

implantation of BNL cells as described previously [35]. Briefly,
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BALB/c mice were anaesthetized with isoflurane, and a small

transverse incision was made in the left abdomen. One hundred

thousand BNL cells suspended in 20 ml PBS containing 50%

Matrigel (BD Biosciences, Bedford, MA) were slowly injected with a

30-gauge needle into the left liver lobe which was exposed through

the incision. After injection, the incision was closed by suture with

absorbable material. One day after the surgery, mice received the

first dose of rVP1 or PBS via tail vein. Mice were subsequently

injected three times a week for 3 weeks. Mice sacrificed after five

rVP1 treatments were used for pathological analysis.

Detection of cytokine/chemokine production
Serum levels of CCL2/MCP-1, IL-6, IL-10, IL-12p70, IFN-c,

and TNF in mice bearing subcutaneous BNL tumors were

measured by cytometric bead array assay (Mouse Inflammation

Kit; BD Biosciences). Production of CCL2, IL-6 and TNF-a by

BNL cells was measured by ELISA. Briefly, BNL cells were seeded

in a 24-well plate and cultured overnight before addition of rVP1

or NF-kB activation inhibitor, 6-amino-4-(4-phenoxyphenylethy-

lamino)quinazoline (InSolutionTM, Calbiochem, San Diego, CA).

After incubation for 48 h, the levels of cytokines present in culture

supernatants of BNL cells treated with or without rVP1 were

quantified by commercial ELISA kits (eBioscience, San Diego,

CA). The number of viable cells in individual wells was deter-

mined by MTT assay and used to normalize the ELISA data.

Immunohistochemistry
Apoptotic cells in frozen sections of subcutaneous allografts

were detected with a TumorTACS In Situ Apoptosis Detection

Kit (R&D Systems, Minneapolis, MN) following the manufactur-

er’s instructions. Five fields per slide were examined at 4006
magnification, and the percentage of positively stained cells was

calculated using the AxioVision v4.6 image processing software

(Zeiss, Germany). The paraffin-embedded orthotopic tumors were

processed according to standard immunohistochemistry protocols.

Antigen retrieval was performed with Target Retrieval Solution

(S1700, DAKO), followed by quenching of endogenous peroxidase

activity. After blocking, sections were incubated with anti-Ki-67 or

anti-Ku70 antibody (Biocare Medical, Concord, CA) at 4uC
overnight in a humid chamber. An ABC staining system (Santa

Cruz Biotechnology, St. Louis, MO) was used to detect the

reaction products. In situ detection of apoptotic cells was carried

out with the TumorTACS kit as described above.

Western blot analysis
Total proteins were extracted using protein extraction reagents

(Pierce, Rockford, IL) from cell line lysates or homogenized tumor

specimens removed 24 h after the last rVP1 injection. The

concentration of protein extract was determined using the BCA

protein assay kit (Pierce). The protein extracts were resolved by 4–

12% SDS-PAGE (30–50 mg of protein/lane), transferred onto a

PVDF membrane (Millipore, Bedford, MA), and probed with

specific antibodies, including anti-pAkt, anti-Akt, anti-pro-cas-

pases, anti-cleaved-caspases, and anti-pIKK (Cell Signaling,

Beverly, MA); anti-IKKa (Upstate); anti-Ku70 (H-308, Santa

Cruz Biotechnology); anti-conformationally active BAX (clone

6A7, BD Pharmingen, San Diego, CA); as well as anti-actin and

anti-GAPDH (Chemicon, Temecula, CA). The blots were

developed using chemiluminescent substrates (Pierce).

Immunoprecipitation
For detection of Ku70-Bax interactions in BNL and Hepa1-6

cells, cells treated with or without rVP1 were harvested in protein

extraction reagents (Pierce), and 0.2–1 mg of cell lysates were

immunoprecipitated with 4–10 mg of anti-Bax antibody (Sigma).

The immunocomplexes were captured using an immunoprecipi-

tation matrix (ExactaCruz C, Santa Cruz Biotechnology) following

the manufacturer’s protocol. Mouse IgG (Zymed, San Francisco,

CA) was used as a negative control. After washing with PBS five

times, western blot analysis of pre-immunoprecipitated (Input) and

immunoprecipitated (IP) samples was performed with an anti-

Ku70 antibody.

Luciferase activity assay
BNL cells (16104) were seeded into each well of a 96-well plate

24 h before transfection. Cells were then transiently transfected

with 0.06 mg of NF-kB-luciferase reporter plasmid, 0.02 mg of

EGFP plasmid, and 0.02 mg of wild type/dominant active Akt or

vector control plasmid (Upstate) in serum-free medium using the

LipofectamineTM 2000 reagent (Invitrogen). After incubation for

6 h, the medium was replaced with fresh DMEM containing 10%

FBS. On the following day, the cells were treated with 1 mM rVP1

in 0.5% (v/v) FBS/DMEM for 6 h and the luciferase activity was

determined using the luciferase assay system with lysis buffer from

Promega. The results are expressed as relative NF-kB activity

compared with controls after normalizing for EGFP values.

Boyden chamber migration/invasion assay
Membranes of insets (8 mm pore size, Corning, Corning, NY)

were coated with fibronection (20 mg/ml, Millipore) or Matrigel

(500 mg/ml, BD Biosciences) for measurement of cell migration or

invasion, respectively. Cells (16104) were seeded in the inserts in

serum-free DMEM, and media supplemented with 10% FBS were

placed in the lower chamber. One hour later, rVP1 with or

without recombinant mouse CCL2 proteins (Peprotech, Rocky

Hill, NJ) were added into inserts followed by incubation for 24 h.

Inserts were then removed from the chambers and submerged in

methanol to fix cells. Non-migrated cells on the upper side of the

membrane were removed by gently scraping the top side of

the insert with a cotton swab. Cells that migrated to the other side

of the membrane were stained with Liu’s stain (Muto Pure

Chemicals, Tokyo, Japan). The number of migrated/invaded cells

was calculated under a microscope at 1006magnification.

Statistical analysis
Testing for statistically significant differences between two

groups of data was done using a 2-tailed Student’s t test. The

log-rank test was used to compare the survival curves of mice with

orthotopic HCC. ELISA data were compared using ANOVA with

Dunnett’s post test. All data analyses were performed with

GraphPad Prism 5.0 for Microsoft Windows (GraphPad Software,

La Jolla, CA). P values less than 0.05 were considered statistically

significant. *P,0.05; **P,0.01; ***P,0.001.

Results

rVP1 inhibits cell growth and induces apoptosis in HCC
cells

Previously, we reported that rVP1 induces apoptosis in breast

and prostate cancer cell lines [13]. To investigate whether rVP1

holds any potential for treatment of HCC, we first examined its

effect on cell growth and induction of apoptosis in HCC cells. As

shown in Figure 1A, treatment with rVP1 inhibited cell prolife-

ration in two HCC cell lines, BNL and Hepa1-6, and a normal

murine hepatocyte cell line, AML12, in a concentration-depen-

dent manner. The IC50 values of rVP1 for BNL, Hepa1-6 and

AML12 cells were 0.14, 0.19 and 0.79 mM, respectively. The

Antitumor Effect of rVP1 on Liver Cancer
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ability of rVP1 to induce apoptosis was analyzed by annexin V-

FITC/propidium iodide (PI) staining and flow cytometry. As

shown in Figure 1B, treatment with rVP1 resulted in HCC cell

death via apoptosis. Activation of the PI3K/Akt pathway is known

to cause cell proliferation, whereas deactivation of Akt causes

apoptosis. Therefore, we next examined whether rVP1 treatment

could modulate the level of pAkt and its downstream apoptosis-

associated caspase activation. When murine HCC cells were

treated with rVP1, Akt phosphorylation was inhibited in a time-

and dose-dependent manner (Figures 1C and D). By contrast, such

an effect was not observed in AML12 cells. Western blot analysis

of mitochondria-dependent caspases revealed similar results.

Treatment with rVP1 decreased the expression of pro-caspase-9

and increased the cleavage of both caspase-3 and -7 in BNL cells,

whereas no change in the expression of pro-caspases-9, -3, and -7

was observed in AML12 cells within 4 hours of 1 mM rVP1

treatment. Collectively, these results corroborate the data obtained

in the MTT assay and flow cytometry (Figures 1A and B).

rVP1-induced apoptosis is associated with diminished
Ku70-Bax interaction

Earlier studies have shown that Akt inhibits Bax-mediated

apoptosis by maintaining the binding of Bax to Ku70 in the cytosol

and thus preventing its translocation to mitochondria [15].

Furthermore, a decrease in the level of Ku70 in response to

apoptotic stress can release Bax from inhibition [14]. As detailed

above, rVP1 treatment reduced Akt phosphorylation and

increased the cleavage of mitochondria-dependent caspases. We

thus became interested in the effect of rVP1 on the interaction

between Bax and Ku70. We first examined the expression of Ku70

in rVP1-treated BNL and Hepa1-6 cells. As shown in Figure 2A,

rVP1 treatment decreased the level of Ku70 in both HCC cell

Figure 1. Treatment with rVP1 inhibits growth and induces apoptosis in HCC cell lines. (A) Cells were treated with various concentrations
of rVP1 in serum-free medium for 16 h and assayed for viability. All assays were performed in triplicate, and data shown are representative of three
independent experiments. (B) Flow cytometric detection of apoptosis by annexin V and propidium iodide (PI). Cells were treated with or without
1 mM rVP1 in serum-free medium for 16 h. (C) Western blots of phospho-Akt (pAkt) and cleavage of pro-caspase-9, -3 and -7. BNL and AML12 cells
were treated with 1 mM rVP1 for the times indicated. (D) Dose-dependent effect of rVP1 on pAkt and cleavage of pro-caspase-3 in BNL and Hepa1-6
cells. Cells were treated with indicated concentrations of rVP1 for 1 and 4 h for pAkt and caspase 3 detection, respectively.
doi:10.1371/journal.pone.0023317.g001

Figure 2. Bax is activated and dissociates from Ku70 in response to rVP1 treatment. (A) Akt inhibits rVP1-induced conformational change
of Bax. BNL cells were transfected with either wild-type (WT) or dominant active Akt (DA) and cultured for 24 h. Cells were then treated with or
without 1 mM rVP1 diluted in serum-free medium for 1 h and analyzed by western blotting using 6A7 monoclonal antibody (detecting
conformationally active Bax). (B) The level of Ku70 decreases after rVP1 treatment. BNL and Hepa1-6 cells were treated with rVP1 diluted in medium
containing 1% FBS, as indicated, for 24 h. (C) rVP1 treatment diminishes the interaction between Ku70 and Bax. BNL cells were treated with or
without 1 mM rVP1 in serum-free medium for 1 h and Hepa1-6 cells were treated with 2 mM rVP1 diluted in medium containing 1% FBS for 4 h. Cell
lysates were immunoprecipitated with anti-Bax antibody and immunoblots were probed with anti-Ku70 antibody.
doi:10.1371/journal.pone.0023317.g002
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lines. A decrease in Ku70 expression was also demonstrated in BNL

cells treated with a pan-kinase inhibitor, staurosporine (STS), as a

positive control (data not shown). The diminished interaction

between Ku70 and Bax was further confirmed by immunoprecip-

itation analysis. Treatment of rVP1 significantly decreased the

association between Ku70 and Bax in BNL and Hepa1-6 cells

(Figure 2B). Upon induction of apoptosis, Bax undergoes a confor-

mational change and becomes an activated form [15], which can be

recognized by antibody 6A7. By using this antibody, we also

demonstrated that rVP1 treatment, which diminished Ku70-Bax

interaction, increased the expression of active Bax and active Akt

inhibited this activation, as shown in BNL cells transiently trans-

fected with a dominant active Akt plasmid (Figure 2C). These data

provide evidence that rVP1-induced Bax activation is Akt-dependent.

Intratumoral therapy with rVP1 suppresses tumor growth
and induces apoptosis of HCC BNL allografts in BALB/c
mice

To further test the effects of rVP1 on HCC cells in vivo, HCC

was established by subcutaneous implantation of BNL cells into

BALB/c mice. Tumors of approximately 250 mm3 were detected

two weeks after injection of BNL cells. Four groups of mice were

then injected intratumorally with various doses of rVP1 (25 mg/

kg, 75 mg/kg, or 100 mg/kg) or PBS three times a week for three

weeks. Untreated mice (those receiving PBS) reached the

maximum tumor size allowed under the animal care guidelines

(approximately 2.5 cm3) 39 days after tumor induction (Figure 3A);

therefore, tumors of all groups were compared at that time point.

Mice treated with rVP1 at doses of 25 mg/kg had significantly

smaller tumors than control mice, with higher doses of rVP1

resulting in even smaller tumors. A few mice treated with high

doses of rVP1 (75 mg/kg and 100 mg/kg) showed complete tumor

regression with no measurable tumor mass.

We further examined apoptosis in the BNL tumor implants by

immunohistochemistry and western blot analyses. Tumor speci-

mens collected from mice sacrificed at the end of rVP1 treatment

revealed that intratumoral injection of rVP1 substantially

increased the number of apoptotic tumor cells as demonstrated

by terminal deoxynucleotidyl transferase dUTP nick end labeling

(TUNEL) assay (Figure 3B). A decrease in Akt phosphorylation

and Ku70 expression as well as an increase in the expression of

active Bax and cleavage of caspase-3 were observed in rVP1-

treated BNL subcutaneous implants (Figure 3C). These data

suggest that increased apoptosis directly contributed to the reduced

tumor growth observed in rVP1-treated mice. In addition, we

measured the serum levels of various chemokines/cytokines, i.e.,

CCL2/MCP-1, IL-6, IL-10, IL-12, IFN-c, and TNF in mice

treated with or without rVP1 using cytometric bead array assay.

The results showed that mice treated with rVP1 had lower

concentrations of CCL2 in sera as compared to the control mice

(Figure 3D). In contrast to CCL2, the serum concentrations of the

other cytokines tested were relatively low in both control and treated

mice. A few of the control mice had a measurable amount of IL-10;

however, IL-10 was not detected in any of the rVP1-treated mice.

The serum levels of IL-6, IL-12, IFN-c, and TNF did not vary

between treatment groups.

CCL2/MCP-1 (monocyte chemotactic protein-1) is a CC

chemokine known to attract macrophages. Recent studies have

suggested a role for CCL2 in cell protection [27,28]. To determine

whether CCL2 plays a role in the survival of HCC cells, we

examined the effect of recombinant CCL2 protein on the viability

of rVP1-treated BNL and Hepa1-6 cells in vitro. Figure 3E shows

that recombinant CCL2 proteins attenuated the inhibitory effect

of rVP1 on cell growth, indicating that the reduced level of CCL2

in rVP1-treated mice may also be involved in the mechanism of

delayed tumor progression.

A decrease in CCL2 production induced by rVP1
mediates cell migration/invasion

Inhibition of metastasis is still a focus of research on cancer

therapy. Given that cancer cell migration and invasion are crucial

for metastasis, we examined whether rVP1 had any effect on BNL

migration and invasion. As shown in Figure 4A, rVP1 used at a

concentration as low as 0.025 mM inhibited both cell migration

and invasion. This concentration is 40 times lower than that used

in the apoptosis experiments described above (1 mM) and did not

affect the viability of normal AML12 hepatocytes (Figure 1A). Our

data so far indicate that when used at 1 mM, rVP1 induced

apoptosis in BNL cells in vitro, whereas a much lower concentration

of rVP1 (0.025 mM) exhibited inhibitory effects on cell migration

and invasion. Both CCL2 and IL-6 have been implicated in the

process of cancer metastasis [25,36]. In the subcutaneous HCC

model, a decrease in serum level of CCL2 was observed in rVP1-

treated mice (Figure 3D). To examine the role of CCL2 and IL-6

in rVP1-mediated inhibition of cell migration and invasion, we

first measured their levels in culture supernatants of BNL cells by

ELISA. A high level of CCL2 was detected in the supernatants,

and rVP1 treatment reduced CCL2 secretion by BNL cells in a

dose-dependent manner (Figure 4B). However, IL-6 production

was not affected by rVP1 treatment. When BNL and Hepa1-6

cells were treated with rVP1 in the presence of recombinant CCL2

protein, the inhibitory effects of rVP1 on cell migration and inva-

sion were reversed (Figure 4C), suggesting that CCL2 took part in

the migration/invasion processes of these cells.

Dephosphorylation of IKK and impairment of NF-kB
activation by rVP1 contributes to CCL2 reduction

Since CCL2 has been reported to be regulated by NF-kB in

both normal and cancer cells [37,38], we further examined the

effect of rVP1 on NF-kB activation and determined whether it is

Figure 3. Intratumoral injection of rVP1 attenuates subcutaneous BNL tumor growth by inducing apoptosis and decreasing the
level of CCL2. (A) Dose-dependent effect of rVP1 on tumor growth. BALB/c mice bearing subcutaneous BNL tumors with a mean volume of
0.25 cm3 received 25, 75, or 100 mg/kg doses of rVP1 intratumorally three times a week for 3 weeks. Mice injected with PBS served as controls. Tumor
volume was measured 3 times per week at the time points indicated. Tumor growth was significantly inhibited in rVP1-treated groups (P#0.001 for
75 and 100 mg/kg dose groups, and P,0.05 for the 25 mg/kg dose group on day 39) as compared to the PBS group (n = 5). Data shown are
representative of three independent experiments. (B) Immunohistochemical analysis of apoptosis in BNL tumors. Apoptosis was detected by TUNEL
assay. Immunoreactivity was detected using DAB substrate, which produces an intense brown stain. Negatively stained cells show a greenish-blue
color from the counterstain. Images were taken at 4006 magnification and are representative samples from rVP1-treated (75 mg/kg) and control
(PBS) mice sacrificed one day after the final rVP1 treatment. Specimens were also collected for analyses shown in (C). Scale bars: 20 mm. (C) Western
blot analysis of subcutaneous BNL allografts. Total lysates were obtained from tumor specimens of BALB/c mice (75 mg/kg of rVP1). Data shown are
representative of three independent experiments. (D) Serum levels of CCL2, IL-6, IL-10, IL-12, IFN-c, and TNF in rVP-treated (75 mg/kg) and control
mice. Blood samples were collected after the completion of the full course of rVP1 treatment. ND: not detected, *P,0.05. (E) Recombinant mouse
CCL2 protein (rmCCL2) reverses the inhibitory effect of rVP1 on HCC cell growth. BNL and Hepa1-6 cells were treated with 0.5 and 1 mM of rVP1 in
serum-free DMEM in the absence/presence of rmCCL2 for 16 and 24 h, respectively, and assayed for viability by MTT.
doi:10.1371/journal.pone.0023317.g003
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also mediated by Akt. As shown in Figure 5A, treatment of rVP1

decreased NF-kB activity in BNL cells, which was reversed by

transfecting cells with a dominant active Akt plasmid. These results

indicate that Akt is, at least in part, involved in the signaling that

leads to deactivation of NF-kB induced by rVP1. Furthermore, we

confirmed that NF-kB directly regulated CCL2 production in

BNL cells, as a significant decrease in CCL2 production was

observed in cells treated with InSolutionTM NF-kB activation

inhibitor, a quinazoline derivative (Figure 5A). Hence, we have

shown that rVP1 inhibited Akt phosphorylation (Figures 1C and

D) and NF-kB activation. To further investigate the signaling

between these two molecules, we examined the effect of rVP1 on

IKK phosphorylation. In line with the results of Akt phosphor-

ylation and NF-kB activation, IKK phosphorylation was inhibited

by rVP1 (Figure 5B), suggesting that decreased NF-kB activation

and the subsequent drop of CCL2 production induced by rVP1

was mediated by Akt and its downstream IKK activity.

Intravenous administration of rVP1 prolongs survival in
BNL orthotopically allografted BALB/c mice

To investigate the inhibitory effect of rVP1 on metastasis in vivo,

we established an orthotopic HCC model by implanting BALB/c

mouse livers with BNL cells. Twenty-four h after implantation,

mice were treated with rVP1 (25 mg/kg) by intravenous injection

three times a week until no control mice that received PBS

injection survived. Tumor development was examined after five

rVP1 treatments. Representative macroscopic images of ortho-

topic HCC are shown in Figure 6A. We observed a prominent

difference in tumor size between the treatment groups (top panel,

yellow circles), indicating that intravenous injection of rVP1

inhibited orthotopic tumor growth. Notably, the pathological

examination of liver specimens from control mice by H&E staining

revealed intra-hepatic metastasis (Figure 6A). In three out of four

control mice examined, tumor foci were observed in the lobe

adjacent to the lobe where BNL cells were implanted. However,

tumor metastasis to a lobe other than the implant lobe was absent

in rVP1-treated mice. Under high magnification (10006), a large

number of apoptotic cells were observed in the orthotopic tumors

of rVP1-treated mice. Cell proliferation, apoptosis and Ku70

expression in the orthotopic tumors were further examined by

immunohistochemistry (Figure 6B). Staining for proliferative

tumor cells with Ki-67 antibody and for apoptotic cells by

TUNEL assay showed that rVP1 significantly decreased the

number of proliferative tumor cells and increased the number of

apoptotic cells. A decrease in Ku70 expression was also observed

in rVP1-treated tumors. Furthermore, mice treated with rVP1

survived longer, and the difference between groups was statistically

significant (Figure 6C). Although mice receiving rVP1 injection

Figure 4. The inhibitory effect of rVP1 on cell migration and invasion is mediated by CCL2. (A) rVP1 inhibits BNL cell migration and
invasion in a dose-dependent manner as measured by Boyden chamber assay. (B) rVP1 dose-dependently reduces CCL2 but not IL-6 production by
BNL cells. Cells were treated with rVP1 diluted in DMEM with 10% FBS as indicated. After incubation for 48 h, supernatants were collected and the
level of CCL2 was measured by ELISA. Values were normalized to viable-cell numbers determined by MTT assay. (C) RmCCL2 attenuates the anti-
metastatic and anti-invasive effect of rVP1. BNL and Hepa1-6 cells were treated with or without 0.05 mM rVP1 and 5 mg/mL rmCCL2 for 24 h.
doi:10.1371/journal.pone.0023317.g004

Figure 5. Treatment with rVP1 decreases NF-kB activation that modulates CCL2 production. (A) Left panel: rVP1 inhibits NF-kB activation
in an Akt-dependent manner. BNL cells transfected with empty vector, wild-type Akt (WT-AKT) or dominant active Akt (DA-AKT) were co-transfected
with a NF-kB-luc reporter plasmid and a vector carrying the EGFP gene for 24 h. Cells were then treated with rVP1 diluted in medium containing 0.5%
FBS for 6 h and lysed for NF-kB luciferase assay. The determined values of luciferase activity were normalized to EGFP expression. Each treatment was
performed in triplicate, and data shown are representative of at least three independent experiments. Right panel: CCL2 production in BNL cells
treated with InSolutionTM NF-kB activation inhibitor (quinazoline derivative). The culture supernatants were assayed after incubation for 2 days. (B)
Western blots of phospho-IKK. BNL cells were treated with 10 mg/ml LPS in the presence/absence of rVP1 for 30 min.
doi:10.1371/journal.pone.0023317.g005

Antitumor Effect of rVP1 on Liver Cancer

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e23317



Antitumor Effect of rVP1 on Liver Cancer

PLoS ONE | www.plosone.org 10 August 2011 | Volume 6 | Issue 8 | e23317



were initially slightly lighter than control mice as a result of

randomized grouping, the body weight of the treated mice did not

appear to be affected by administration of rVP1 at a dose of

25 mg/kg when compared to that of control mice during the

period of treatment (Figure 6D). Together, these results indicate

that rVP1 suppressed the growth of orthotopic BNL tumors,

inhibited intra-hepatic metastasis, and increased the survival rate

of mice by hindering tumor proliferation and promoting tumor

apoptosis.

Discussion

Due to the highly chemo-resistant nature of advanced HCC and

the consequent limited effective treatment options, the continued

development of new therapeutic strategies for HCC is necessary.

The exploration of bacterial and viral elements is a direction that

should not be overlooked in the search for cancer therapies. Such

elements have been shown to inhibit cancer cell growth in human

breast cancer MCF-7 cells and mouse melanoma B16-F10 cells

[8,9]. The finding that viral vectors expressing apoptin protein

induced significant tumor regression in murine HCC models [9]

suggested that further investigation of other viral elements may be

warranted for HCC therapy. Here, we show that rVP1 protein of

FMDV suppresses HCC progression by modulating two pathways.

First, rVP1 induces mitochondria-mediated and caspase-depen-

dent apoptosis via inhibiting Akt phosphorylation and disrupting

the association between Ku70 and Bax. Second, by inhibiting Akt

phosphorylation, rVP1 also attenuates IKK phosphorylation, NF-

kB activation, and CCL2 production, thus suppressing tumor

migration/invasion and promoting tumor cell death (Figure 7).

The inhibitory effect of rVP1 on tumor growth and intra-hepatic

metastasis was further demonstrated in vivo using both subcutane-

ous and orthotopic mouse models of HCC (Figures 3 and 6). To

our knowledge, this is the first report of the application of a

recombinant viral protein in HCC therapy.

Toxicity to normal tissues limits current cancer therapies, and

agents with tumor-specific actions are much desired. Some studies

have demonstrated that the adenovirus-derived protein E4orf4

and the chicken anemia virus-derived protein apoptin induce

apoptosis in tumor/transformed cell lines, but not in normal cells

[10,11]. Although high concentrations of rVP1 caused AML12 cell

death (Figure 1A), we found here that the majority of AML12 cells

were still viable when rVP1 was used at a concentration that killed

all BNL cells. This differential effect suggests that there may be a

dose of rVP1 that would be therapeutically effective against cancer

cells, while still maintaining a very low toxicity towards normal

hepatocytes. Further investigation needs to be conducted to verify

this assumption.

The induction of apoptosis in tumor cells is a major therapeutic

strategy for cancer. Flow cytometric analysis of annexin V-PI co-

labeling demonstrated that rVP1-induced apoptosis of HCC cells

(Figure 1B). Immunohistochemical analysis of rVP1-treated

subcutaneous tumors revealed intense apoptosis (Figure 3B),

suggesting that the inhibitory effect of rVP1 on tumor growth

was mainly due to apoptosis of tumor cells. To further investigate

the mechanisms underlying this effect, we first examined Akt

phosphorylation and caspase cleavage in response to rVP1 treat-

ment. The association between PI3K/Akt pathway activation and

malignant transformation and anti-apoptotic signaling is well

known [39,40]. Activation of the Akt/mTOR signaling pathway

occurs in approximately half of the patients with HCC [7].

Although we did not test if mTOR is also a target of rVP1, our

results so far suggest that, in BNL and Hepa1-6 cells, rVP1

treatment downregulates Akt and induces apoptosis via the

caspase pathway. We observed a clear difference in the effect of

rVP1 on cleavage of pro-caspases-9, -3 and -7 in BNL and AML12

cells. In contrast to BNL cells, cleavage of these pro-caspases did

not occur in AML12 cells within 4 h of treatment with 1 mM

Figure 6. Intravenous injection of rVP1 suppresses tumor progression in an orthotopic allograft mouse model of HCC. (A)
Macroscopic photographs and H&E staining of representative orthotopic tumors from two treatment groups. Orthotopic BNL tumor allografts were
established in BALB/c mice. Twenty-four hours after surgery mice were treated with rVP1 (25 mg/kg) or PBS via tail vein (n = 6/group). Treatments
were performed three times per week until no control mice survived. Specimens are from mice sacrificed after 5 rVP1 treatments and the presence of
tumor was confirmed (yellow circles). H&E sections (46) show the loci of BNL implantation (arrowheads) and intra-hepatic metastasis in a control
mouse (arrow). Abundant apoptotic tumor cells characterized by cell shrinkage and chromatin condensation (red arrows) were observed in the rVP1
group at 10006 magnification. The yellow arrows represent mitotic cells. (B) Immunohistochemical analyses of proliferation, apoptosis and Ku70
expression of orthotopic tumors. Tumor proliferation and Ku70 expression were detected with Ki-67 and Ku70 antibodies, respectively, and apoptosis
was analyzed by TUNEL assay. Ki-67 positive cells were calculated as number of positive (brown) cells6100/total number of cells counted. TUNEL-
positive cells were calculated as number of positive cells (showing brown staining or apoptotic morphology) per field at 4006magnification (scale
bars: 20 mm). ***P#0.001 (Student’s t test). (C) Kaplan-Meier survival curves (P,0.05, log-rank test). (D) Mean body weight for each treatment group
measured at an approximately 10-day interval.
doi:10.1371/journal.pone.0023317.g006

Figure 7. Proposed mechanism of suppression of HCC
progression by rVP1. rVP1 inhibits Akt phosphorylation and, through
dissociation of the Ku70-Bax complex, activates Bax to promote
mitochondria-dependent caspase cascades, leading to apoptosis. The
effect of rVP1 on Akt also causes suppression on NF-kB activation and
downstream CCL2 production, which enhances cell death and inhibits
cell migration and invasion.
doi:10.1371/journal.pone.0023317.g007
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rVP1. Future investigations aimed at elucidating the distinct

responses of HCC and normal hepatocyte cell lines to rVP1

treatment may provide the possibility of uncovering a therapeutic

target that can minimize the detrimental effect of cancer therapy

on normal hepatocytes.

Bax belongs to the Bcl-2 gene family which includes at least 20

pro- and anti-apoptotic genes [41]. Overexpression of the anti-

apoptotic gene bcl-XL and downregulation of bax and bcl-Xs, two

pro-apoptotic members of the family, have been reported in HCC

[42,43]. In this study, we found that rVP1 promoted Bax

activation that stemmed from the dissociation of Bax from Ku70

and was associated with a decrease in the level of Ku70. Our

results thus support previous findings suggesting that downregu-

lation of Ku70 is beneficial for cancer therapy [44,45]. Overall,

the findings shown in Figures 1 and 2 indicate that rVP1 treatment

inhibits Akt phosphorylation, which causes dissociation of the

Ku70-Bax complex. The dissociation of this complex and con-

formational changes of Bax promote the translocation of Bax to

the mitochondria. This process in turn triggers activation of

caspases-9, -3, and -7, which leads to apoptotic cell death. The

effect of rVP1 on Bax and Ku70 may thus aid in shifting the

dysregulated balance of apoptosis/survival signals in HCC.

Recently, much attention has been focused on molecular

targeted therapies for HCC. Sorafenib has shown survival benefits

in patients with advanced HCC in phase III clinical trials and thus

represents the first systemic therapy to be found effective in

advanced HCC cases. Although sorafenib provided survival

benefit, a corresponding impact in tumor shrinkage has not been

observed [46]. To evaluate the potency of rVP1 on tumor

shrinkage, we first established a subcutaneous HCC model and

administered rVP1 by intratumoral injection. Our results showed

not only a dose-dependent inhibition of tumor growth, but also

complete tumor regression in some mice treated with high doses of

rVP1. In an orthotopic model, intravenous injection of rVP1

prevented growth of orthotopic tumors, inhibited intra-hepatic

metastasis and increased survival rate. In contrast to the large

number of apoptotic cells observed in the orthotopic tumors of

rVP1-treated mice (Figure 6A), normal liver tissue of these mice

did not reveal any significant apoptosis (Figure S1). This is

somehow different from the in vitro results which show that rVP1

treatment causes cell death in some AML12 cells (Figures 1A and

B). A likely explanation is that normal hepatocytes, in the presence

of surrounding microenvironment, are more resistant to rVP1 in

vivo. As both HCC models were established in BALB/c mice, these

data suggest that under ‘‘immune-competent conditions’’ rVP1 is

able to delay tumor progression and tumor size in a manner that

affects mouse survival. We speculate that, in addition, the anti-

metastatic effect of rVP1 seen in the orthotopic model may play an

important role in determining survival outcomes. Since intra-

hepatic metastases are a major hallmark of metastatic HCC

contributing to dismal long-term survival in HCC patients [47,48],

how rVP1 interferes with the metastasis of HCC and its potential

application in anti-metastasis therapy is worth further investigation.

Research interest in developing cancer therapeutics that target

CCL2 is increasing rapidly. In the present study, we showed that

rVP1 treatment decreased the serum level of CCL2 in a

subcutaneous murine HCC model. Our data also revealed that

recombinant CCL2 proteins inhibited the anti-growth activity and

anti-metastatic as well as anti-invasive effects of rVP1. Based on these

findings, we suggest that the decrease in CCL2 production by BNL

cells after rVP1 treatment is at least in part associated with the

antitumor activity of rVP1. We propose that CCL2 may affect two

aspects of tumor development by enhancing the pro-apoptotic

function of rVP1 and by contributing to the absence of intra-hepatic

metastasis (between lobes) in rVP1-treated mice. Since CCL2 can

attract immunosuppressive Tregs and myeloid-derived suppressor

cells to the tumor microenvironment [49], treatment with rVP1 may

also help overcome the evasion of anti-tumor immune response.

NF-kB is a transcription factor downstream of Akt that can be

activated by a variety of stimuli such as TNFa, IL-1, LPS, and

viral proteins [50,51]. It is also involved in the embryonic

development of the liver and during liver regeneration [52]. It has

been demonstrated that the NF-kB pathway is constitutively

activated in HCC tissues [53]. Figure 5 shows that rVP1 treatment

impairs NF-kB activation in an Akt-dependent manner. Inhibition

of NF-kB has been shown to improve chemotherapy through an

increase in apoptosis [54]. The pro-apoptotic activity of rVP1 may

render it a suitable candidate for use in combination with other

anticancer drugs to offer greater efficacy and less toxicity.

In summary, our study demonstrated that rVP1 suppresses

HCC growth, inhibits intra-hepatic metastasis, and prolongs

survival in immune-competent mice by inducing apoptosis

through inhibition of Akt phosphorylation, dissociation of Ku70-

Bax, and activation of caspases-9, -3, and -7. The decrease in

CCL2 production induced by rVP1 is also involved in the

suppression process. These results suggest that rVP1 has the

potential to be developed as a novel therapeutic agent for HCC

and support further evaluation of its antitumor properties.

Supporting Information

Figure S1 H&E staining of normal liver tissue from
mice orthotopically implanted with BNL cells. In both

PBS- and rVP1-treated mice, no significant apoptosis was

observed in normal liver tissue after 5 intravenous injections of

rVP1 (25 mg/kg). Images of three individual mice from each

group were taken from the lobe where BNL cells were implanted

(2006magnification).

(TIF)
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