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Abstract

To search for evolutionary forces that might act upon transcript length, we use the singular value decomposition (SVD) to
identify the length distribution functions of sets and subsets of human and yeast transcripts from profiles of mRNA
abundance levels across gel electrophoresis migration distances that were previously measured by DNA microarrays. We
show that the SVD identifies the transcript length distribution functions as ‘‘asymmetric generalized coherent states’’ from
the DNA microarray data and with no a-priori assumptions. Comparing subsets of human and yeast transcripts of the same
gene ontology annotations, we find that in both disparate eukaryotes, transcripts involved in protein synthesis or
mitochondrial metabolism are significantly shorter than typical, and in particular, significantly shorter than those involved in
glucose metabolism. Comparing the subsets of human transcripts that are overexpressed in glioblastoma multiforme (GBM)
or normal brain tissue samples from The Cancer Genome Atlas, we find that GBM maintains normal brain overexpression of
significantly short transcripts, enriched in transcripts that are involved in protein synthesis or mitochondrial metabolism, but
suppresses normal overexpression of significantly longer transcripts, enriched in transcripts that are involved in glucose
metabolism and brain activity. These global relations among transcript length, cellular metabolism and tumor development
suggest a previously unrecognized physical mode for tumor and normal cells to differentially regulate metabolism in a
transcript length-dependent manner. The identified distribution functions support a previous hypothesis from
mathematical modeling of evolutionary forces that act upon transcript length in the manner of the restoring force of
the harmonic oscillator.
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Introduction

Transcription of messenger RNA (mRNA) associates a cell’s

genotype with its phenotype in all known organisms. In

eukaryotes, unlike prokaryotes, multiple possible mRNAs of, e.g.,

different lengths, can be and usually are produced, i.e., transcribed

and processed in the cell’s nucleus and modified in the cytoplasm,

which correspond to just a single gene. This diversity of mRNAs

has been suggested as a possible origin of the diversity of

eukaryotes in general [1] and of neurons in the human brain in

particular [2].

Eukaryotic mRNA transcription usually starts with the binding

of DNA-dependent RNA polymerase (RNAP) II at one of several

possible sites for the 59 end of the synthesized transcript, at the

DNA-encoded promoter region upstream of the 59 end of a gene.

Transcription proceeds when RNAP II escapes the promoter and

commits to elongating the mRNA precursor (pre-mRNA) with a

sequence of RNA nucleotides complementary to the nucleotides

encoded by the template strand, which encodes the DNA sequence

complementary to that of the gene. Processing starts soon after

RNAP II commits to elongation, with the capping of the pre-

mRNA at its 59 end by a methylated guanosine. Throughout its

synthesis, the pre-mRNA is additionally processed via, e.g.,

alternative splicing that removes one of multiple possible

combinations of DNA-encoded regions from the RNA sequence,

or alternative editing that effectively, independent of the DNA

template, deletes some nucleotides from and inserts some

nucleotides into the RNA sequence. Transcription almost always

ends with polyadenylation at one of multiple possible sites for the

39 end of the pre-mRNA, at the DNA-encoded region down-

stream of the 39 end of the gene, where a poly(A) tail, of up to, e.g.,

250 adenosines in human and 100 adenosines in the yeast

Saccharomyces cerevisiae, is added to the transcript. The mRNA

transcript is then exported from the nucleus to the cytoplasm,

where its sequence is translated according to the genetic code into

any number of approximately identical sequences of amino acids,

i.e., proteins, and where the mRNA transcript may be degraded at

any time, with typical mRNA half-lives of, e.g., several hours in

human and 10–20 minutes in yeast.
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The lengths of the nascent RNA, pre-mRNA and mRNA

transcript contribute to the regulation of mRNA transcription and

processing. For example, RNAs lesser than five nucleotides (nt) in

length form unstable complexes with RNAP II, and therefore,

during transcription initiation, RNAP II usually alternates several

times between releasing the RNA and reinitiating transcription

before a nascent RNA of more than five nt is polymerized [3]. The

nascent RNA has to reach a length of approximately 10 nt before

RNAP II can dissociate from the transcription factors that bind it

to the DNA promoter and commit to traversing the DNA template

[4]. The pre-mRNA has to reach a length of &25 nt before the C-

terminal end of RNAP II can be hyperphosphorylated to form the

elongation complex [5] and the pre-mRNA can be capped at its 59

end [6].

In another example, only mRNAs that are greater than &200–

300 nt in length are exclusively transported across the nuclear

membrane via the mRNA-specific nuclear export pathway [7].

Progressive shortening of intronless mRNAs to less than 200–300

nt in length was found to increase the likelihood of mRNA export

via a pathway that is usually reserved for the RNAP II-transcribed

uridine-rich small nuclear RNAs (U snRNAs). At lengths v120 nt,

mRNAs are exclusively transported via the U snRNA export

pathway. It was recently shown that this sorting of RNAs by length

is due to the heterotetramer of the heterogeneous nuclear

ribonucleoprotein C1/C2 that is essential for export via the

mRNA-exclusive pathway, selectively binding to unstructured

RNA regions that are w200–300 nt in length [8].

In yet another example, the fruit fly Drosophila melanogaster was

shown to abort nascent transcripts at each mitosis, and therefore

suppress, during early embryonic development, the expression of

transcripts that are too long to be completed in a single, rapid

embryonic nuclear division cycle, including transcripts that are

needed for later developmental stages [9]. In the postembryonic

fly, the timing of a gene’s activation in response to the steroid

hormone ecdysone was shown to be largely determined by the

lengths of the gene’s mRNA isoforms, where the shorter isoforms

are active before the longer ones [10].

We, therefore, propose that evolutionary forces act upon the

diversity of eukaryotic mRNA transcript lengths. To search for

such evolutionary forces, we use the singular value decomposition

(SVD) [11] to identify the length distribution functions of sets and

subsets of human and yeast transcripts from profiles of mRNA

abundance levels across gel electrophoresis migration distances

that were previously measured by DNA microarrays [12,13].

Comparing subsets of human and yeast transcripts of the same

gene ontology (GO) annotations [14], our underlying assumption

is that transcripts involved in similar or even conserved pathways

in the two organisms may be subject to similar evolutionary forces

[15]. Comparing subsets of human transcripts that are overex-

pressed in either normal brain or glioblastoma multiforme (GBM)

tumor tissue samples from The Cancer Genome Atlas [16,17], our

underlying assumption is that similar gene expression in response

to the normal brain’s transformation to a GBM tumor may be

subject to similar evolutionary forces [18].

Note that, in general, while it is possible to estimate some of the

statistical moments of a distribution function from data that

sample the function, it is not necessarily possible to identify the

function from the data [19]. This is because identifying a

distribution function is mathematically equivalent to estimating

the infinite number of moments that are associated with the

function. For example, the average and variance, which are

defined by the first and second moments, are necessary but not

sufficient to identify the function. Therefore, a distribution

function for the description of observed diversity is usually derived

by assuming an underlying stochastic process, and is tested by its

fit, or the fit of its moments, to data. Examples include the

Brownian motion [20], the bacterial sensitivity and resistance to

viruses [21], and recently, measurements of mRNA expression in

single cells [22–24].

The SVD of data that sample a distribution function, however,

may approximately identify the distribution function from the data

and with no a-priori assumptions. This is because identifying a

distribution function is also equivalent to estimating its eigenfunc-

tions and corresponding eigenvalues. The SVD uncovers in the

data unique eigenvectors and corresponding eigenvalues. The finite

(and, possibly, few) most significant eigenvectors and correspond-

ing eigenvalues – most significant in terms of the fractions of the

information that they capture in the data – may approximate the

data. If these significant eigenvectors and corresponding eigenval-

ues fit a series of orthogonal functions and a corresponding series

of nonnegative numbers, which are known to be among the

eigenfunctions and corresponding eigenvalues, respectively, of a

specific distribution function, then this function is identified by the

SVD as the distribution function that the data sample.

For example, previously we showed that the few most significant

eigenvectors and corresponding eigenvalues, uncovered by the

SVD of yeast global transcript length distribution data, fit a series

of ‘‘asymmetric Hermite functions’’ and a corresponding geomet-

ric series, respectively [25]. From these eigenvectors and

eigenvalues it follows that the length distribution function of the

global set of yeast transcripts approximately fits an ‘‘asymmetric

generalized coherent state,’’ where each transcript’s profile fits an

‘‘asymmetric Gaussian,’’ and where the distribution of the peaks of

these profiles also fits an asymmetric Gaussian.

We now find that, first, the SVD identifies the length

distribution functions of the human and yeast global sets and

subsets of transcripts as asymmetric generalized coherent states

from the DNA microarray data and with no a-priori assumptions.

Second, in both human and yeast, transcripts involved in protein

synthesis or mitochondrial metabolism are significantly shorter

than typical, and in particular, significantly shorter than those

involved in glucose metabolism. Third, as a normal tissue is

transformed to a tumor tissue, overexpression of significantly short

transcripts, enriched in transcripts that are involved in protein

synthesis or mitochondrial metabolism, is maintained. However,

significantly longer transcripts that are normally overexpressed,

enriched in transcripts that are involved in glucose metabolism

and brain activity, are suppressed in the tumor.

We propose that it is the GBM tumor’s shorter-than-normal

brain cell cycle period that limits the production of longer-than-

typical transcripts in the GBM tumor cell but not the normal brain

cell. The global relations among transcript length, cellular

metabolism and tumor development suggest a previously unrec-

ognized physical mode for tumor and normal cells to differentially

regulate metabolism in a transcript length-dependent manner.

The identified distribution functions support our previous

hypothesis from mathematical modeling of evolutionary forces

that act upon transcript length in the manner of the restoring force

of the harmonic oscillator.

Methods

SVD identifies the length distribution functions of human
and yeast sets and subsets of transcripts as asymmetric
generalized coherent states

Hurowitz et al used DNA microarrays to assay the abundance

levels of mRNAs from normal human brain tissue in 50 agarose

gel slices of two mm each, spanning an electrophoretic migration

SVD Reveals Forces Affecting GBM Metabolism
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range of 26–124 mm and the corresponding transcript length

range of approximately 6,400–500 nt [12]. Yeast mRNA

abundance levels were similarly assayed in 30 gel slices spanning

electrophoretic migration of 42–100 mm and transcript lengths of

&4,500–300 nt [13]. The transcript length distribution data sets

we analyze tabulate the mRNA abundance levels of the 4,109

human genes and 3,620 yeast open reading frames (ORFs) with no

missing data across the 50 human and 30 yeast DNA microarrays,

respectively (Datasets S1 and S2).

Let the matrix D tabulate the abundance levels of the set or

subset of P transcripts across X gel slices. The SVD [11],

D~USVT , ð1Þ

uncovers X unique left singular vectors, comprising the columns of

the column-wise orthonormal matrix U, X corresponding singular

values, comprising the diagonal of the nonnegative diagonal

matrix S~diag(sq), and X corresponding right singular vectors,

comprising the rows of the orthonormal matrix VT (Figure 1 and

Notebook S1). The right singular vectors are also the eigenvectors

of the symmetric matrix DT D~VS2VT , with the corresponding

eigenvalues fs2
qg. Both the left singular vectors and the right

singular vectors, i.e., the eigenvectors, are arranged in decreasing

order of the corresponding singular values fsqg, which is also the

decreasing order of the eigenvalues fs2
qg and the eigenvalue

fractions, i.e., fwqg~fs2
qg=

XX

q~1
s2

q. The ‘‘normalized Shannon

entropy’’ of D, i.e., d~{( log X ){1
XX

q~1
wq log wq, measures

the complexity of the data from the distribution of the fractions

among the eigenvectors. An entropy of d~0 corresponds to an

ordered and redundant dataset where just a single eigenvector has

a nonzero fraction, such that w1~1 and wq~0 for all q=1. An

entropy of d~1 corresponds to a disordered and random dataset

where all eigenvectors have identical fractions, such that wq~1=X

for all q.

Consider the X unique eigenvectors and corresponding

eigenvalues. We find that the most significant eigenvectors fit a

series of orthogonal asymmetric Hermite functions, where the

(qz1)th eigenvector is proportional to the qth asymmetric

Hermite function.

k{1=4
x hq(

ffiffiffiffiffi
kx

p
x)~ 22nn!2p

� �{1=4
exp {

kxx2

2

� �
Hq(

ffiffiffiffiffi
kx

p
x), ð2Þ

and where Hq(
ffiffiffi
k
p

x) is the qth Hermite polynomial. This function

generalizes the qth eigenfunction of the quantum harmonic

oscillator [19,26] with a ‘‘generalized Hooke’s constant’’ kx that

is asymmetric with respect to the equilibrium x~0,

kx ~
sk, xv0

k, xw0

�
: ð3Þ

The inflection points of the first through (qz1)th asymmetric

Hermite functions k{1=4
x hq(

ffiffiffiffiffi
kx

p
x), therefore, sample the ‘‘asym-

metric parabola’’ kxx2=2~qz1=2 at unit intervals. We also find

that the corresponding series of eigenvalues is proportional to the

geometric series flqg.
As we previously showed [25], it follows from these most

significant eigenvectors and corresponding eigenvalues that the

length distribution function of the set or subset of transcripts is

approximately proportional to the asymmetric generalized coher-

ent state f (x)g(p,x), where

f (x)~ exp {
kxx2

2

1{l2

4l

 !" #
,

g(p,x)~ exp {
kp(p{x)2

2

1zl

1{l

� �" #
: ð4Þ

According to this distribution function [27,28], the distribution

of the peaks of the P transcript profiles across the X gel slices fits

an asymmetric Gaussian f (x) which width is asymmetric with

respect to the Gaussian’s center at the equilibrium x~0, i.e.,

inversely proportional to kx. The profile of the pth transcript also

fits an asymmetric Gaussian g(p,x) which width is asymmetric

with respect to the Gaussian’s center at p~x with the same

asymmetry s, i.e., inversely proportional to the generalized

Hooke’s constant.

kp ~
sk, p{xv0

k, p{xw0

�
: ð5Þ

To identify the length distribution functions of the human and

yeast global transcript sets, therefore, we use the SVD of

Equation (1). Fitting the five most significant eigenvectors of the

human and separately the yeast transcript length distribution data

sets with the series of asymmetric Hermite functions of Equations

(2) and (3) for qz1~1,2, . . . ,5, we find that the asymmetry of the

generalized coherent state of Equations (4) and (5) is similar for

the human and yeast global sets, with s&2 for both organisms

(Figure 2). The equilibrium x~0 of the human global distribution

is at the gel migration distance of 84 mm, which according to

Hurowitz et al corresponds to a transcript length of approximately

1,7006100 nt. The equilibrium of the yeast global distribution is

at the migration distance of 78 mm and a transcript length of

&1,0256100 nt. The average correlation between the qth

asymmetric Hermite function and the (qz1)th eigenvector for

the five most significant eigenvectors is 0.78 for the human and

0.89 for the yeast. Note that the five most significant eigenvectors

capture w0.8 and 0.7 of the information in the human and yeast

data sets, respectively.

Fitting the eigenvalues fs2
qz1g with the geometric series flqg

for qz1~2,3, . . . ,15, we find that l&0:76 for both the human

and yeast. It follows that the ratio of the width of f (x), which fits

the distribution of the peaks of the transcript profiles, to that of

g(p,x), which fits the profile of each transcript, is similar for the

human and yeast global sets, with 4l=(1{l)2&52&1 for both

organisms. The correlation between the eigenvalues and the

geometric series is .0.99 for both organisms.

To test the fit of the asymmetric generalized coherent state to

the human and yeast transcript length distribution data sets, we

calculate the correlation between f (x) and the overall transcript

profile, i.e., the sum of the profiles of the human and separately

yeast transcripts (Figure 3). As we previously showed, the overall

transcript profile is approximately proportional to the distribution

of the peaks of the profiles in the limits of P&X and

4l=(1{l)2&1. We find that the correlation between the overall

transcript profile and f (x) is w0.99 for both human and yeast.

SVD Reveals Forces Affecting GBM Metabolism
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We also calculate the correlation between g(p,x) and the

transcript profiles of three example pairs of human and yeast genes

of the same GO annotations. Consider, for example, the human

gene CDK4 and the yeast gene CDC28. These genes encode highly

homologous serine/threonine kinases that function as catalytic

subunits of cyclin-dependent protein kinase complexes essential to

the progression of the cell division cycle in human and yeast,

respectively. The peaks p~x of the transcript profiles of CDK4 and

CDC28 are near the equilibria of the human and yeast global

distributions, at the migration distances of 86 and 74 mm,

respectively. This is in agreement with the transcript lengths

determined by Hurowitz et al, of 1,566 nt for CDK4 and 1,195 nt

for CDC28. The human gene COX7A2 and the yeast gene COX9

encode isoforms of structural subunits of cytochrome-c oxidase

(COX), the terminal enzyme of the mitochondrial respiratory

chain. Their transcript profiles are centered at the greater

Figure 1. The SVD identifies the length distribution functions of the human and yeast global sets and subsets of transcripts as
asymmetric generalized coherent states from the DNA microarray data and with no a-priori assumptions. In general, it is not necessarily
possible to identify a distribution function from data that sample the function. This is because identifying a distribution function is mathematically
equivalent to estimating the infinite number of moments that are associated with the function. The SVD of data that sample a distribution function,
however, may approximately identify the distribution function from the data and with no a-priori assumptions. This is because identifying a
distribution function is also equivalent to estimating its eigenfunctions and corresponding eigenvalues. (a) The SVD of Equation (1) of the matrix D
that tabulates the mRNA abundance levels of the human global set of transcripts, in increasing order of the transcript lengths as determined by
Hurowitz et al, across X gel electrophoresis migration distances, uncovers X unique left singular vectors, X corresponding singular values and X
corresponding right singular vectors. The orthonormal right singular vectors are also eigenvectors of the matrix DT D, with the eigenvalues
proportional to the singular values. The finite (and, possibly, few) most significant eigenvectors and corresponding eigenvalues – most significant in
terms of the fractions of the information that they capture in the data – may approximate the data. (b) The finite and few most significant
eigenvectors uncovered by the SVD of the human global transcript length distribution data fit a series of orthogonal asymmetric Hermite functions,
where the (qz1)th eigenvector is proportional to the qth asymmetric Hermite function of Equations (2) and (3). (c) The corresponding eigenvalues
and eigenvalue fractions fit a corresponding geometric series. (d) The series of asymmetric Hermite functions and the corresponding geometric series
are known to be among the eigenfunctions and corresponding eigenvalues, respectively, of the asymmetric generalized coherent state of Equations
(4) and (5). Therefore, the asymmetric generalized coherent state, where each transcript’s profile fits an asymmetric Gaussian, and where the
distribution of the peaks of these profiles also fits an asymmetric Gaussian, is identified by the SVD as the distribution function that the data sample.
doi:10.1371/journal.pone.0078913.g001

SVD Reveals Forces Affecting GBM Metabolism
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migration distances of 106 and 90 mm, in agreement with the

lesser transcript lengths of 735 and 560 nt, respectively. The

human PFKP and the yeast PFK2 encode isoforms of phospho-

fructokinase (PFK), a key enzyme in glycolysis that catalyzes the

irreversible conversion of fructose-6-phosphate to fructose-1,6-

bisphosphate [29]. Their transcript profiles are centered at the

lesser migration distances of 72 and 52 mm, in agreement with the

greater transcript lengths of 2,305 and 2,990 nt, respectively. We

find that the average correlation between these example gene

profiles and g(p,x) is 0.87 for the human transcripts and 0.89 for

the yeast transcripts.

Results

Length distributions of subsets of transcripts reveal
statistically significant relations, conserved in human and
yeast, between a gene’s metabolic ontology and its
transcript length.

To search for evolutionary forces that might act upon transcript

length, we use the SVD to similarly identify the length distribution

functions of subsets of human and yeast transcripts of the same

GO annotations [14]. Our underlying assumption is that

transcripts involved in similar or even conserved pathways in the

Figure 2. The SVD of the transcript length distribution data of the human and yeast global sets and protein synthesis subsets. (a)
Raster display of the eigenvectors VT of Equation (1) of the human global set, i.e., X~50 patterns of mRNA abundance level variation across the 50
human DNA microarrays, with overabundance (red), no change in abundance (black) and underabundance (green) around the ‘‘ground state’’ of
abundance, which is captured by the first, most significant eigenvector. The inflection points of the (qz1)th eigenvector approximately sample the

asymmetric parabola kxx2=2~qz1=2 (blue), where kx is the generalized Hooke’s constant of Equation (3). (b) Bar chart of the corresponding

eigenvalue fractions fwqg, with the normalized Shannon entropy d~0:49. The qz1~2,3, . . . ,15 eigenvalues fs2
qz1g and eigenvalue fractions

approximately fit the geometric series flqg (blue), with l&0:76. (c) Line-joined graphs of the first (red), second (orange), third (green), fourth (blue)
and fifth (violet) most significant eigenvectors of the human global set. The (qz1)th eigenvector is approximately proportional to the qth

asymmetric Hermite function k{1=4
x hq(

ffiffiffiffiffi
kx

p
x) of Equation (2), where the correlation is in the range of 0.75 to 0.84. The equilibrium x~0 of the

asymmetric parabola (dashed and shaded), and therefore also of the corresponding transcript length distribution function, is at the gel migration
distance of 84 mm, corresponding to a transcript length of &1,7006100 nt. The asymmetry is s&2. (d) Graphs of the first (red) through fifth (violet)
eigenvectors of the human translation (GO:0006412) subset. The equilibrium is shifted from that of the human global set to the greater migration
distance of 96 mm and lesser transcript length of 1,125675 nt. The width is lesser than that of the human global set, where the magnitude k of the
generalized Hooke’s constant kx is twice that of the global set, while the asymmetry s is similar. (e) Eigenvectors of the human ribosome
(GO:0005840) subset. The equilibrium is shifted from those of the global set and translation subset to the greater migration distance of 100 mm and
lesser transcript length of 975675 nt. The width is lesser than those of the global set or translation subset, where k is three times that of the global
set, while s is similar. (f) Raster display of the X~30 eigenvectors of the yeast global set. (g) Bar chart of the corresponding eigenvalue fractions. The
qz1~2,3, . . . ,15 eigenvalues and eigenvalue fractions approximately fit the geometric series flqg (blue), with l&0:76 for the yeast global set. (h)
Line-joined graphs of the first (red) through fifth (violet) eigenvectors of the yeast global set. The (qz1)th eigenvector is approximately proportional
to the qth asymmetric Hermite function, where the correlation is in the range of 0.85 to 0.92. The equilibrium of the transcript length distribution
function of the global yeast set is at the gel migration distance of 78 mm and the transcript length of &1,0256100 nt. The asymmetry s&2 is similar
to that of the human global set. (i) Eigenvectors of the yeast translation subset. The equilibrium is shifted from that of the yeast global set to the
greater migration distance of 84 mm and lesser transcript length of 775675 nt. The width is lesser than that of the yeast global set, where the
magnitude k of the generalized Hooke’s constant is twice that of the global set, while the asymmetry s is similar. (j) Eigenvectors of the yeast
ribosome subset. The equilibrium is similar to that of the yeast translation subset. The width is lesser than those of the global set or translation
subset, where k is three times that of the global set, while s is similar.
doi:10.1371/journal.pone.0078913.g002
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Figure 3. Asymmetric generalized coherent states fit the transcript length distributions of the human and yeast global sets. (a) The
overall transcript profile of the human global set, i.e., the sum of the profiles of the human transcripts (line-joined), is approximately proportional to the
asymmetric generalized coherent state f (x)g(p,x) of Equation (4) with p~x, i.e., the asymmetric Gaussian f (x) (dashed and shaded), with the
equilibrium x~0 at the migration distance of 84 mm, where the correlation is w0.99. Graphs of f (p)g(p,x) describe the contributions of the subsets of
transcript profiles, which peaks p~x are at the migration distances of 124 (red) through 34 (violet) mm, to the overall transcript profile of the human
global set. (b) The profiles of the human genes COX7A2 (green), CDK4 (blue) and PFKP (red) are approximately proportional to the asymmetric Gaussians
g(p,x) (dashed and shaded) centered at the migration distances of 106, 86 and 72 mm, where the correlations are 0.99, 0.88 and 0.73, respectively. The
transcript of COX7A2, which is involved in mitochondrial metabolism, is overexpressed in both the normal brain and GBM tumor, at each of the
overexpression cutoffs of c~250,300, . . . ,500. The transcript of CDK4 is overexpressed in the GBM tumor only. The transcript of PFKP, which is involved
in glucose metabolism, is overexpressed in the normal brain only. (c) The overall transcript profile of the yeast global set (line-joined) is approximately
proportional to the asymmetric Gaussian f (x) (dashed and shaded), with the equilibrium x~0 at the migration distance of 78 mm. Graphs of f (p)g(p,x)
describe the contributions of the subsets of transcript profiles, which peaks p~x are at the migration distances of 96 (red) through 42 (violet) mm, to the
overall transcript profile of the yeast global set. (d) The profiles of the yeast genes COX9 (green), CDC28 (blue) and PFK2 (red) are approximately
proportional to the asymmetric Gaussian g(p,x) (dashed and shaded) centered at the migration distances of 90, 74 and 52 mm, where the correlations
are 0.96, 0.83 and 0.89, respectively. Note that COX9 is involved in mitochondrial metabolism, whereas PFK2 is involved in glucose metabolism.
doi:10.1371/journal.pone.0078913.g003

SVD Reveals Forces Affecting GBM Metabolism
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two organisms may be subject to similar evolutionary forces [15].

We find that in both disparate organisms, transcripts involved in

protein synthesis or mitochondrial metabolism (including, e.g., the

transcripts of the human gene COX7A2 and the yeast gene COX9)

are significantly shorter than typical, and in particular, signifi-

cantly shorter than those involved in glucose metabolism

(including, e.g., the transcripts of the human gene PFKP and the

yeast gene PFK2).

For transcripts involved in protein synthesis, we consider the

translation (GO:0006412) and ribosome (GO:0005840) subsets. In

both human and yeast, we find the equilibria of the global set and

the translation and ribosome subset distributions at increasing

migration distances, corresponding to decreasing transcript

lengths, and with decreasing widths (Figure 2 and Table S1 in

Appendix S1). The equilibrium of the human translation subset

distribution is shifted six gel slices from that of the human global

Figure 4. Eigenvectors and overall transcript profiles of the length distribution data of the subsets of human transcripts
overexpressed in either the normal brain only, the GBM tumor only or both. (a) Line-joined graphs of the first (red), second (orange), third
(green), fourth (blue) and fifth (violet) most significant eigenvectors of the subset of human transcripts that are most abundant in the normal brain
but not the GBM tumor (including, e.g., PFKP), at the overexpression cutoff of c~250. The (qz1)th eigenvector is approximately proportional to the
qth asymmetric Hermite function, where the correlation is in the range of 0.6 to 0.93. The inflection points of the (qz1)th eigenvector approximately

sample the asymmetric parabola kxx2=2~qz1=2 (dashed and shaded). The equilibrium x~0 of the asymmetric parabola, and therefore also of the
corresponding transcript length distribution function, is shifted from that of the human global set to the lesser migration distance of 80 mm and
greater transcript length of &1,8756100 nt. (b) Eigenvectors of the subset of transcripts that are most abundant in the GBM tumor but not the
normal brain (including, e.g., CDK4), at the cutoff of c~250. The equilibrium is shifted from those of the normal brain only subset and global set to
the greater migration distance of 90 mm and lesser transcript length of 1,3756100 nt. The width of the corresponding length distribution function of
the tumor only subset is lesser than that of the normal only subset, where the asymmetry s of the generalized Hooke’s constant kx of the GBM tumor
only subset is twice that in the normal brain only subset, while the magnitude k is similar. (c) Eigenvectors of the subset of transcripts that are most
abundant in both the normal and tumor (including, e.g., COX7A2), at the cutoff of c~250. The equilibrium is shifted to the greater migration distance
of 96 mm and lesser transcript length of 1,125675 nt. The width is lesser than those of the normal only subset as well as the tumor only subset,
where the asymmetry is four times that in the normal only subset, while the magnitude is similar. (d) The asymmetric parabolas that fit the inflection
points of the eigenvectors of the length distribution data of the subsets of human transcripts overexpressed in either the normal only (red and
shaded), the tumor only (blue and shaded) or both (green and shaded). The equilibria of these parabolas are at increasing migration distances,
corresponding to decreasing transcript lengths, and with decreasing widths. (e) The overall transcript profile of the subset of human transcripts that
are most abundant in the normal brain only, i.e., the sum of the profiles of these transcripts (line-joined), is approximately proportional to the
asymmetric Gaussian f (x) (dashed and shaded), with the equilibrium x~0 at the migration distance of 80 mm, where the correlation is .0.99. (f) The
overall profile of the subset of human transcripts that are most abundant in the tumor only (line-joined) is approximately proportional to the
asymmetric Gaussian f (x) (dashed and shaded), with the equilibrium at 90 mm. (g) The overall profile of the subset of human transcripts that are
most abundant in both the normal and tumor (line-joined) is approximately proportional to the asymmetric Gaussian f (x) (dashed and shaded), with
the equilibrium at 96 mm. (h) The asymmetric Gaussians that fit the overall transcript profiles of the length distribution data of the subsets of human
transcripts overexpressed in either the normal only (red and shaded), the tumor only (blue and shaded) or both (green and shaded). The equilibria of
these Gaussians are at increasing migration distances, corresponding to decreasing transcript lengths.
doi:10.1371/journal.pone.0078913.g004
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set to the greater migration distance of 96 mm and lesser

transcript length of approximately 1,125675 nt. The equilibrium

of the human ribosome subset is shifted two additional gel slices to

the even greater migration distance of 100 mm and lesser

transcript length of &975675 nt, i.e., v2/3 of the transcript

length that corresponds to the equilibrium of the global set. The

equilibria of the yeast translation and ribosome subsets overlap,

and are shifted three gel slices from that of the global set to the

greater migration distance of 84 mm and lesser transcript length of

&775675 nt, i.e., v4/5 of the length that corresponds to the

equilibrium of the global set. The width of each of these human

and yeast transcript subset distributions is lesser than that of the

corresponding global set, where the magnitude k of the generalized

Hooke’s constant of each translation and ribosome distribution is

twice and three times its magnitude in the corresponding global

distribution, respectively, but the asymmetry is similar with s&2
for the translation and ribosome distributions of both organisms.

For transcripts involved in mitochondrial metabolism, we

consider the respiratory electron transport chain (ETC)

(GO:0022904), mitochondrial respiratory chain complex (MRCC)

I (GO:0004129) and COX activity (GO:0005747) subsets

(Figure S1 in Appendix S1). The equilibrium of the human

respiratory ETC subset is shifted eight gel slices from that of the

human global set to the greater migration distance of 100 mm.

The equilibria of the human MRCC I and COX activity subsets

overlap, and are shifted nine slices to the even greater migration

distance of 102 mm and lesser transcript length of &925675 nt,

i.e., v3/5 of the length that corresponds to the equilibrium of the

global set. The equilibria of the yeast respiratory ETC and COX

activity subsets are shifted two and three gel slices from that of the

global set to the greater migration distances of 82 and 84 mm,

respectively. The width of each of these human and yeast

transcript subset distributions is lesser than that of the corre-

sponding global set.

For transcripts involved in glucose metabolism, we consider the

glucose metabolic process (GO:0006006) and glycolysis

(GO:0006096) subsets (Figure S2 in Appendix S1). The equilibria

of the human glucose metabolic process and glycolysis subsets are

shifted four and three gel slices from that of the human global set

to the lesser migration distances of 76 and 78 mm and greater

transcript lengths of &2,175 and 2,0506125 nt, respectively, i.e.,

w8/5 the length that corresponds to the equilibrium of the human

respiratory ETC subset. The equilibria of the yeast glucose

metabolic process and glycolysis subsets are both shifted four gel

slices from that of the yeast global set to the lesser migration

distance of 70 mm and greater transcript length of &1,4256125,

i.e., w8/5 the length of &875675 nt that corresponds to the

equilibrium of the yeast respiratory ETC subset. The widths of

each of these human and yeast transcript subsets are lesser than

that of the corresponding global set.

To assess the significance of the relation between a gene’s

involvement in protein synthesis or mitochondrial metabolism and

a transcript that is shorter than typical, we consider the statistics of

the transcript lengths of a subset of M genes that is selected from a

set of N genes. The average and variance of the length of a gene in

a set of N genes, of lengths fx1,x2, . . . ,xNg, are

x0~
1

N

XN

i~1

xi, ð6Þ

Dx2
0~

1

N{1

XN

i~1

x2
i {Nx2

0

 !
: ð7Þ

There are
N

M

� �
~

N!

M!(N{M)!
possible subsets of MƒN

genes in the set. Let the difference between the average transcript

length of the mth subset of M genes, i.e., the average of

fx1m
,x2m

, . . . ,xMm
g, and that of the set be the statistic.

ym(M):
1

M

XMm

i~1m

xi{x0: ð8Þ

Table 1. Human and yeast subsets of average transcript lengths significantly lesser than that of the corresponding global set.

Human Yeast

Transcript Subset M y(M)zx0 P-value M y(M)zx0 P-value

Gene Ontology Translation 178 2,096 4:4|10{2 319 1,271 1:5|10{2

Ribosome 78 1,582 1:9|10{2 274 1,135 9:5|10{3

Respiratory ETC 55 1,460 2:1|10{2

MRCC I 25 1,153 2:8|10{2

COX Activity 14 1,108 4:6|10{2

Normal \ Tumor
Overexpression

c 250 200 1,723 1:0|10{2

300 239 1,779 1:0|10{2

350 279 1,823 9:7|10{3

400 326 1,833 8:5|10{3

450 371 1,860 8:0|10{3

500 412 1,917 8:6|10{3

The P-value of Equation (11) is calculated for the average transcript length y(M)zx0 in nucleotides of each human or yeast subset of M genes relative to the average
transcript lengths of x0 = 2,480 and 1,621 nt of the human and yeast global sets of N = 4,109 and 3,620 transcripts, respectively. The subsets of human transcripts that
are most abundant in both the normal brain and GBM tumor are considered at each of the overexpression cutoffs of c~250,300, . . . ,500.
doi:10.1371/journal.pone.0078913.t001
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Since each gene belongs to
N{1

M{1

� �
of these subsets,

averaging the statistic ym(M) over all possible subsets gives

y0(M)~
N

M

� �{1XN

M

� �

m~1

ym(M){x0~0: ð9Þ

Similarly, each pair of genes belongs to
N{2

M{2

� �
of these

subsets, and therefore, the variance of the statistic is

Dy2
0(M)~

N

M

� �
{1

� 	{1 XN

M

� �

m~1

y2
m(M){

N

M

� �
x2

0

2
64

3
75

~ 1{
N

M

� �{1
" #{1

N{M

NM
Dx2

0: ð10Þ

From Cantelli’s inequality, the P-value, i.e., the upper bound to

the probability that a subset is randomly selected from the set of

genes, such that the difference between the average transcript

length of this subset and that of the set is §y(M) of Equation (8) is

P½y(M)�ƒ 1z
y2(M)

Dy2
0(M)

� 	{1

: ð11Þ

Note that the P-value of Equation (11) depends only on the

observed statistic y(M) of Equation (8), its average y0(M)~0 of

Equation (9) and its variance Dy2
0(M) of Equation (10). Therefore,

while this P-value depends on the first and second moments of the

statistic, it is independent of the higher moments of the statistic.

We find that for both human and yeast, the P-value is v0.05 for

the observed difference in the average transcript length of either

the translation or ribosome subsets and that of the corresponding

global set (Table 1). Similarly, the P-value is v0.05 for the

observed difference in the average transcript length of either one of

the human subsets of respiratory ETC, MRCC I or COX activity

and that of the human global set.

To assess the significance of the relation between a gene’s

involvement in glucose metabolism and a transcript that is longer

than typical for a gene that is involved in mitochondrial

metabolism, we consider the statistics of the transcript lengths of

two, possibly overlapping subsets of genes, each independently

selected from the union of the two subsets of N genes. Let the

difference between the average length of the genes in the lth subset

of L genes and the independent mth subset of M genes be the

statistic. From Equation (8), this statistic equals yl(L){ym(M).
From Equation (9), the average of the statistic is

y0(L){y0(M)~0. From the independence of the two subsets,

the variance of the statistic is the sum of the variances

Dy2
0(L)zDy2

0(M), where Dy2
0(L) and Dy2

0(M) are defined in

Equation (10). Therefore, from Cantelli’s inequality, the P-value

that two subsets are randomly and independently selected from the

union of the two subsets, such that the difference between the

average transcript lengths of these subsets is §jy(L){y(M)j is

P½y(L){y(M)�ƒ 1z
jy(L){y(M)j2

Dy2
0(L)zDy2

0(M)

" #{1

: ð12Þ

We find that for both human and yeast, the P-value is v0.05 for

the observed difference in the average transcript length of either

the glucose metabolic process or glycolysis subsets and that of the

corresponding respiratory ETC set (Table 2).

Human GBM tumors maintain normal brain
overexpression of short transcripts, involved in protein
synthesis and mitochondrial metabolism, but suppress
longer, normally overexpressed transcripts, involved in
glucose metabolism and brain activity

To search for evolutionary forces that might act upon transcript

length, we also use the SVD to identify the length distribution

functions of subsets of human transcripts that are overexpressed in

either normal brain or GBM tumor tissue samples from TCGA

[16,17]. Our underlying assumption is that similar gene expression

in response to the normal brain’s transformation to a GBM tumor

may be subject to similar evolutionary forces [18]. We find that as

a normal tissue is transformed to a tumor tissue, overexpression of

significantly short transcripts, enriched in transcripts that are

involved in protein synthesis or mitochondrial metabolism

(including, e.g., the transcript of the human gene COX7A2), is

maintained. However, significantly longer transcripts that are

normally overexpressed, enriched in transcripts that are involved

in glucose metabolism (including, e.g., the transcript of the human

gene PFKP) and brain activity, are suppressed in the tumor.

TCGA used DNA microarrays to assay the abundance levels of

mRNAs from ten normal brain tissue samples and 529 GBM

tumor samples. The normal brain and GBM tumor gene

expression data sets we analyze tabulate the mRNA abundance

levels of the 11,631 human genes with at least one start and one

end coordinate in the National Center for Biotechnology

Information (NCBI) human genome sequence posted at the

University of California at Santa Cruz (UCSC) human genome

browser [30,31]. A gene is annotated as overexpressed in either

the normal brain or the GBM tumor if it is in the group of

c~250,300, . . . ,500 most expressed among the 11,631 genes in at

least 20% of the normal or tumor samples, respectively

(Dataset S3). A transcript is similarly annotated if it is in the

group of c~250,300, . . . ,500 most abundant among the 4,109

transcripts listed in the human transcript length distribution data

set in at least 20% of the normal or tumor samples, respectively.

We find the equilibria of the three mutually exclusive subsets of

transcripts that at c~250 are overexpressed in either the normal

brain only, the GBM tumor only or both, at the increasing

migration distances of 80, 90 and 96 mm, corresponding to the

decreasing transcript lengths of &1,875 and 1,3756100 and

1,125675 nt (Figure 4 and Table S1 in Appendix S1). The

transcript length that corresponds to the equilibrium of the subset

that is overexpressed in both the normal and tumor is &2/3 of the

length that corresponds to the equilibrium of the human global set,

and v2/3 that of the subset that is overexpressed in the normal

only. The lengths that correspond to the equilibria of the subsets

that are overexpressed in the tumor only and the normal only are

w4/3 and 5/3 that of the human respiratory ETC subset,

respectively.

We also find that at each of the overexpression cutoffs of

c~250,300, . . . ,500, the average length of the subset of transcripts
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that are overexpressed in the normal brain only is greater than

that of the transcripts that are overexpressed in the tumor only

(Figure 5). The average length of the transcripts that are

overexpressed in the tumor only (including, e.g., the transcript of

the human gene CDK4), is greater than that of the transcripts that

are overexpressed in both the normal and tumor. Note also that

the average length of the subset of transcripts that are overex-

pressed in the normal brain only but not in the GBM tumor is

consistently greater than that of the global set of transcripts, even

though the average length of the subset of transcripts that are

Table 2. Human and yeast subsets of average transcript lengths significantly greater than that of the corresponding respiratory
electron transport chain (ETC) subset.

Human Yeast

Transcript Subset L y(L)zx0 P-value L y(L)zx0 P-value

Gene Ontology Glucose Metabolic Process 100 2,399 2:0|10{2 66 1,686 3:4|10{2

Glycolysis 29 2,428 3:2|10{2 23 1,695 3:2|10{2

Neuron Projection 259 2,666 1:5|10{2

Synaptic Transmission 238 2,667 1:4|10{2

Tumor\Normal
Overexpression

c 250 135 2,001 4:5|10{2

300 157 2,051 4:1|10{2

350 186 2,194 3:2|10{2

400 217 2,310 2:6|10{2

450 235 2,386 2:3|10{2

500 257 2,401 2:2|10{2

Normal\Tumor
Overexpression

250 102 2,599 1:5|10{2

300 121 2,683 1:5|10{2

350 141 2,586 1:6|10{2

400 145 2,620 1:5|10{2

450 167 2,631 1:5|10{2

500 180 2,603 1:6|10{2

The P-value of Equation (12) is calculated for the average transcript length y(L)zx0 in nucleotides of each human or yeast subset of L genes relative to the average
transcript lengths of y(M)zx0 = 1,460 and 995 nt of the human and yeast respiratory ETC subsets of M = 55 and 22 transcripts, respectively. The subsets of human
transcripts that are most abundant in either the GBM tumor only or the normal brain only are considered at each of the overexpression cutoffs of c~250,300, . . . ,500.
doi:10.1371/journal.pone.0078913.t002

Figure 5. Average transcript and gene lengths of the human subsets overexpressed in the normal brain or the GBM tumor. (a)
Average transcript lengths of the human subsets that are overexpressed in the normal brain only (red), the normal brain overall (violet), the GBM
tumor only (blue), the GBM tumor overall (orange) or both the normal brain and GBM tumor (green), at each of the overexpression cutoffs of
c~250,300, . . . ,500, relative to the average transcript length of the global set of 4,109 transcripts (black). (b) Average maximum gene lengths of the
human subsets that are overexpressed in the normal brain or the GBM tumor at each of the cutoffs, relative to the average maximum gene length of
the global set of 11,631 genes. (c) Average minimum gene lengths of the human subsets relative to that of the global set.
doi:10.1371/journal.pone.0078913.g005
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overexpressed in the normal brain overall, regardless of whether

they are also overexpressed in the GBM tumor, is consistently

lesser than that of the global set of transcripts.

Similarly, at each of the cutoffs, the average maximum and,

separately, minimum lengths of the subset of genes – among the

11,631 genes listed in the human gene length distribution data set

– that are overexpressed in the normal brain only are greater than

those of the genes that are overexpressed in the tumor only. The

average maximum and, separately, minimum lengths of the genes

that are overexpressed in the tumor only are greater than those of

the genes that are overexpressed in both the normal and tumor.

The average maximum and minimum lengths of the genes that are

overexpressed in the normal brain only but not in the GBM tumor

is consistently greater than that of the global set of 11,631 genes,

even though the average length of genes that are overexpressed in

the normal brain overall, regardless of whether they are also

overexpressed in the GBM tumor, is consistently lesser than that of

the global set of genes.

The relation between a gene’s overexpression in both the

normal brain and GBM tumor and a transcript that is shorter than

typical is statistically significant, with the P-value of Equation (11)

,0.05 for the observed difference in the average transcript length

of the normal and tumor subset and that of the human global set,

at each of the overexpression cutoffs of c~250,300, . . . ,500
(Figure 6 and Table 1). The relations between a gene’s

overexpression in the GBM tumor only or the normal brain only

and a transcript that is longer than typical for a gene that is

involved in mitochondrial metabolism are also statistically

significant, with the P-value of Equation (12) ,0.05 for the

observed differences in the average transcript length of either the

tumor only subset or the normal only subset and that of the human

respiratory ETC subset, at each of the cutoffs (Table 2).

To assess the significance of the relation between a gene’s

overexpression in the normal brain only and a transcript that is

longer than typical for a gene that is overexpressed in both the

normal brain and GBM tumor, we consider the statistics of the

transcript lengths of two mutually exclusive subsets of genes.

Consider the lth subset of L genes selected from a subset of M
genes, and its complement, the subset of the M{L remaining

genes. Let the difference between the average transcript length of

the L genes and that of the M{L genes, i.e.,

zl(L):
M

M{L
yl(L), ð13Þ

be the statistic. From Equation (9), the average of the statistic is

z0(L)~0. From Equation (10), the variance is

Dz2
0(L)~ 1{

M

L

� �{1
" #{1

M

(M{L)L
Dx2

0: ð14Þ

Therefore, from Cantelli’s inequality, the P-value that a subset is

randomly divided into two subsets, such that the difference

between the average transcript lengths of these two mutually

exclusive subsets is §z(L) is

P½z(L)�ƒ 1z
z2(L)

Dz2
0(L)

� 	{1

: ð15Þ

We find that the P-value of Equation (15) is ,0.05 for the

observed difference in the average transcript length of the normal

only subset and that of the normal and tumor subset, at each of the

cutoffs.

To examine the relation between a gene’s ontology and its

overexpression in either the normal brain only, the GBM tumor

only or both, we assess the enrichment of these subsets in

transcripts of genes that are associated with any one of the multiple

GO annotations [32]. The P-value of a given enrichment is

calculated assuming hypergeometric probability distribution of the

B annotations among the A genes in the global set, and of the

subset of b(B annotations among the subset of a(A genes,

P(A,a,B,b)~
A

a

� �{1Xa

i~b

B

i

� �
A{B

a{i

� �
[33].

We find that the subset of transcripts that are overexpressed in

both the normal and tumor, which is of the least average transcript

length among the three mutually exclusive subsets, is significantly

Figure 6. Overall transcript profiles and Venn diagrams of the subsets of human transcripts overexpressed in the normal brain or
the GBM tumor. (a) The overall transcript profiles of the subsets of human transcripts that are most abundant in the normal brain only (red), the
normal brain overall (violet), the GBM tumor only (blue), the GBM tumor overall (orange) or both the normal brain and GBM tumor (green). The
equilibria of the profiles of the normal only subset, the human global set, the tumor only subset and the subset of transcripts that are overexpressed
in both the normal and tumor are at the increasing migration distances of 80 (red), 84 (black), 90 (blue) and 96 (green) mm, spanning a difference of
16 mm of gel migration distance (shaded), and corresponding to decreasing transcript lengths. (b) The average transcript lengths y(M)zx0 of
Equation (8) of the subsets of M transcripts each that are most abundant in the normal only (red), the normal overall (violet), the tumor only (blue),
the tumor overall (orange) or both the normal and tumor (green), relative to the average transcript length x0 of Equation (6) of the human global set
of N transcripts, at the overexpression cutoff of c~250. The relation between a gene’s overexpression in either the normal overall, the tumor only, the
tumor overall or both the normal and tumor and a transcript that is shorter than typical is statistically significant, with the P-value of Equation (11)
,0.05 for the observed differences in the average transcript lengths of these subsets and that of the human global set (Table 1). (c) The overall
transcript profiles of the subsets of human transcripts that are most abundant in the normal brain only (red), the normal brain overall (violet), the
GBM tumor overall (orange) or both the normal brain and GBM tumor (green). (d) The average transcript length differences y(L){y(M) of the
subsets of L transcripts each that are most abundant in the normal only (red), the tumor overall (orange) or both the normal and tumor (green),
relative to the average transcript length y(M)zx0 of the normal overall subset of M transcripts, at the overexpression cutoff of c~250. The relations
between a gene’s overexpression in the tumor overall or in both the normal and tumor and a transcript that is shorter than typical for a gene that is
overexpressed in the normal overall are statistically significant, with the P-value of Equation (12) ,0.05 (Table 2). Similarly, the relation between a
gene’s overexpression in the normal only and a transcript that is longer than typical for a gene that is overexpressed in the normal overall is
statistically significant. (e) The overall transcript profiles of the subsets of human transcripts that are most abundant in the normal brain but not the
GBM tumor (red) or in both the normal brain and GBM tumor (green). (f) The average transcript length differences z(L) of Equation (13) of the subsets
of L transcripts that are most abundant in the normal only (red) or in both the normal and tumor (green), relative to the average transcript length
y(M{L)zx0 of the subsets of transcripts that are most abundant in both the normal and tumor (green) or in the normal only (red), respectively, at
the overexpression cutoff of c~250. The relation between a gene’s overexpression in the normal brain but not the GBM tumor and a transcript that is
longer than typical for a gene that is overexpressed in both the normal brain and GBM tumor is statistically significant, with the P-value of Equation
(15) ,0.05.
doi:10.1371/journal.pone.0078913.g006
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enriched in transcripts that are involved in protein synthesis and

mitochondrial metabolism, at each of the cutoffs of

c~250,300, . . . ,500 (Table 3 and Table S2 in Appendix S1).

The subset that is overexpressed in the normal brain overall, i.e.,

the union of the mutually exclusive normal only subset and normal

and tumor subset, is enriched in transcripts that are involved in

glucose metabolism. The normal only subset, which is of the

greatest average transcript length among the three mutually

exclusive subsets, is enriched in brain activity transcripts, e.g.,

transcripts involved in neuron projection (GO:0043005) or

synaptic transmission (GO:0007268). The SVD identifies the

equilibria of the neuron projection and synaptic transmission

subsets of human transcripts at the migration distances of 78 and

80 mm and the transcript lengths of &2,050 and 1,8756100 nt,

respectively, i.e., .9/5 the length that corresponds to the

equilibrium of the human respiratory ETC subset (Figure S3 in

Appendix S1). This relation between a gene’s involvement in brain

activity and a transcript that is longer than typical for a gene that is

involved in mitochondrial metabolism is statistically significant,

with the P-value of Equation (13) ,0.05 for the observed

differences in the average transcript length of either the neuron

projection or the synaptic transmission subset and that of the

human respiratory ETC subset, at each of the cutoffs.

Notably, we do not observe any significant enrichments in GO

annotations among the subsets of transcripts that are overex-

pressed in the GBM tumor only that are consistent across the

cutoffs. In addition, any significant enrichments in GO annota-

tions among the subsets of transcripts that are overexpressed in the

GBM tumor overall that are consistent across the cutoffs, are also

observed for the subsets of transcripts that are overexpressed in

both the normal brain and GBM tumor.

We similarly find that the subset of genes – among the 11,631

genes that are listed in the human gene length distribution data set

– that are overexpressed in both the normal and tumor, is

significantly enriched in genes that are involved in protein

synthesis and mitochondrial metabolism, at each of the cutoffs of

c~250,300, . . . ,500 (Table 3 and Table S2 in Appendix S1). The

subset of genes that are overexpressed in the normal brain overall

is enriched in genes that are involved in glucose metabolism. The

normal only subset is enriched in brain activity genes. Examining

the relations between a gene’s maximum and minimum lengths

and its metabolic ontology, we also find that genes, in addition to

transcripts, that are involved in protein synthesis and mitochon-

drial metabolism are significantly shorter than those involved in

glucose metabolism and brain activity (Tables S3, S4 and S5 in

Appendix S1).

Discussion

GBM tumor-exclusive suppression of longer-than-typical
transcripts might be due to shorter-than-normal brain
cell cycle periods

Our search for evolutionary forces that might act upon

transcript length revealed previously unrecognized global relations

among transcript length, cellular metabolism and tumor develop-

ment.

First, we found that human genes that are overexpressed in the

GBM tumor but not in the normal brain are of significantly lesser

transcript length as well as gene length – as measured in the

normal human brain and genome, respectively – than genes that

are overexpressed in the normal brain only. No significant

enrichments in GO annotations among those genes that are

overexpressed in the GBM tumor only are observed. This suggests

that genes are globally selected for GBM tumor-exclusive

overexpression based upon their normal transcript and gene

lengths, beyond the biological processes, molecular functions or

cellular components that are associated with the genes. This global

relation is complementary to, but different from the observation

that overexpression of shorter-than-normal splice variants of

several essential genes may play a role in the pathogenesis of

cancers. For example, the ribosomal protein S6 kinase 1 is

essential to the progression of the G1 phase of the cell cycle. It

was recently shown that overexpression of short mRNA isoforms

of the gene that encodes this serine/threonine kinase induces

Table 3. Typical gene ontology (GO) annotations significantly enriching the human subsets of transcripts and genes
overexpressed in both the GBM tumor and normal brain, the normal brain overall or the normal brain only.

Overexpression Global Transcript Set Global Gene Set

Subset Gene Ontology a B b P-value a B b P-value

Normal \ Tumor Translation 200 178 36 4:4|10{14 204 380 64 6:0|10{46

Ribosome 78 28 4:0|10{18 155 52 7:1|10{54

Respiratory ETC 55 21 1:9|10{14 89 22 1:1|10{19

MRCC I 25 9 1:3|10{6 34 6 2:4|10{5

COX Activity 14 9 2:1|10{9 20 8 8:3|10{10

Normal Glucose Metabolic Process 302 100 17 8:2|10{4 309 187 14 4:7|10{4

Glycolysis 29 9 1:5|10{4 59 6 4:6|10{3

Normal\Tumor Neuron Projection 102 259 22 2:0|10{7 105 534 24 4:3|10{11

Synaptic Transmission 238 19 4:0|10{6 535 26 9:5|10{13

The P-value of a given enrichment is calculated assuming hypergeometric probability distribution of the B annotations among the A transcripts or genes in the global

set, and of the subset of b(B annotations among the subset of a(A transcripts or genes, P(A,a,B,b)~
A

a

� �{1Xa

i~b

B

i

� �
A{B

a{i

� �
. These enrichments of the

subsets at the overexpression cutoff of c~250 are consistent with the enrichments of the corresponding subsets at the overexpression cutoffs of c~300, . . . ,500

(Table S2 in Appendix S1). None of the multiple GO annotations consistently enrich the human subsets of transcripts and genes that are overexpressed in the GBM
tumor only. None of the multiple GO annotations consistently enrich the human subsets of transcripts and genes that are overexpressed in the GBM tumor overall
beyond those that enrich the subsets that are overexpressed in both the GBM tumor and normal brain.
doi:10.1371/journal.pone.0078913.t003
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transformation of human breast epithelial cells, whereas the full-

length transcript, which is expressed in normal cells, has a tumor-

suppressor activity [34]. Similarly, the global relation is comple-

mentary to, but different from the observation that mechanisms

for alternative splicing in the absence of genomic mutations exist,

which lead to cancer-specific overexpression of shorter-than-

normal splice variants of several genes at a time. For example,

alternative cleavage and polyadenylation can activate oncogenes

in cancer cells by shortening the untranslated regions (UTRs) at

the 39 ends of their mRNA transcripts [35]. It was recently shown

that the gene poly(A)-binding protein nuclear 1 is involved in

suppressing such alternative cleavage and polyadenylation [36].

Such observations suggest that by taking a gene’s transcript length

to be its measured length in the normal brain, we may be

overestimating the lengths of the transcripts that are overexpressed

in the GBM tumor, and underestimating the significance of the

global relation between a gene’s GBM tumor-exclusive overex-

pression and a transcript that is shorter than typical in the normal

brain.

That genes are globally selected for GBM tumor-exclusive

overexpression based upon their shorter-than-typical normal brain

transcript and gene lengths, might be explained by tumor-

exclusive abortion of nascent transcripts of longer-than-typical

genes. While a lack of energy might limit a cell’s completion of

long transcripts, it is not likely that the proliferating GBM tumor

cells lack energy for transcription [18].

DNA damage, when it is accompanied by p53-dependent

apoptosis, might also limit a cell’s production of longer-than-

typical genes. In cells exposed to DNA damaging agents, DNA

lesions are more likely to affect longer rather than shorter genes

[37]. Such lesions block transcription and, via persistent blockage

of transcription, trigger p53-dependent apoptosis [38]. It was

shown that in response to increasing levels of ultraviolet light, and

therefore also increasing levels of DNA damage, human colon

carcinoma cells express decreasing numbers of p53-induced genes

of decreasing gene lengths [39]. However, when in response to

DNA damage a cell cycle checkpoint is activated, arresting a cell’s

progression through the cell cycle to provide time for DNA repair,

the transcripts that are overexpressed might be significantly longer

than those that are underexpressed. For example, using the SVD

to identify the length distribution functions of the two mutually

exclusive subsets of yeast transcripts that were detected as either

overexpressed or underexpressed in response to the DNA

damaging agent methyl methanesulfonate (MMS) [40], we find

the equilibria of these subsets at the migration distances of 74 and

80 mm and the transcript lengths of &1,250 and 9506100 nt, i.e.,

longer and shorter, respectively, than the length of &1,0256100

nt that corresponds to the equilibrium of the yeast global set

(Figure S4 in Appendix S1). This relation between a gene’s

overexpression and a transcript that is longer than typical for a

gene that is underexpressed in response to MMS is statistically

significant, with the P-value of Equation (15) ,0.05. Nonetheless,

GBM tumor cells do not necessarily exhibit either apoptosis or cell

cycle arrest [18]. Note that we did not observe any significant

enrichments in GO annotations among the transcripts that are

overexpressed in the GBM tumor only, and specifically we did not

observe any enrichments in GO annotations that relate to either

apoptosis or cell cycle arrest. This is not surprising, since the

tumor’s development and progression require the tumor cells to

suppress programmed cell death and deregulate proliferation.

A proliferating GBM tumor’s cell cycle period, however, is

necessarily shorter than that of the mostly non-proliferating

normal brain. The developing fruit fly is known to regulate the

expression of several essential genes in a manner that depends, at

least in part, upon the time that is required for the transcription of

these genes and, therefore, also upon the transcript lengths of these

genes. For example, the fruit fly was shown to abort nascent

transcripts at each mitosis, and therefore suppress, during early

embryonic development, the expression of transcripts that are too

long to be completed in a single, rapid embryonic nuclear division

cycle, including transcripts that are needed for later developmental

stages [9]. In the postembryonic fly, the timing of a gene’s

activation in response to the steroid hormone ecdysone was shown

to be largely determined by the lengths of the gene’s mRNA

isoforms, where the shorter isoforms are active before the longer

ones [10].

We, therefore, propose that it is the GBM tumor’s shorter-than-

normal brain cell cycle period that limits the production of longer-

than-typical transcripts in the GBM tumor cell but not the normal

brain cell.

A previously unrecognized mode for the GBM tumor and
normal brain to differentially regulate metabolism in a
transcript length-dependent manner

Second, we found that the GBM tumor maintains normal brain

overexpression of transcripts that are significantly shorter than

typical, enriched in transcripts that are involved in protein

synthesis and mitochondrial metabolism, but suppresses normal

overexpression of significantly longer transcripts, enriched in

transcripts that are involved in glucose metabolism and brain

activity. That both the GBM tumor and normal brain overexpress

transcripts that are involved in protein synthesis is not surprising.

Protein synthesis and, therefore, also ribosomal gene expression

are required for the tumor’s growth and proliferation [41]. For

example, it was shown that among the National Cancer Institute’s

60 (NCI60) cancer cell lines, levels of ribosomal gene expression

correlate with a cell’s doubling time, linking the rates of protein

synthesis in the NCI60 cells with their rates of growth and

proliferation [42]. Although mostly non-proliferating, the normal

brain also requires protein synthesis for its functions, from a

neuronal cell’s signaling [43] to the amygdala’s memory process-

ing [44], and multiple brain disorders have been linked with

ribosome dysfunction. It is also not surprising that the GBM tumor

suppresses normal expression of genes involved in brain activities,

such as neuron projection or synaptic transmission. This suggests

that normal brain cells undergo dedifferentiation as they are

transformed to GBM tumor cells. It was recently shown, for

example that oncogene-induced dedifferentiation of mature brain

cells can lead to the development of gliomas in mice [45].

That the most abundant mRNAs in a GBM tumor cell include

the shorter, mitochondrial enzymes-encoding transcripts but not

the longer, glycolytic enzymes-encoding transcripts, whereas both

these subsets of transcripts are among the most abundant in a

normal brain cell, suggests a previously unrecognized mode for the

GBM tumor and normal brain to differentially regulate metab-

olism. While supported by several recent observations, these

metabolic differences between normal and tumor cells are

unexpected considering the traditional understanding of the

Warburg effect. Warburg observed that while most normal cells

produce energy primarily by mitochondrial metabolism fueled by

low rates of glycolysis, many types of cancer cells rely instead on

aerobic glycolysis, a form of glucose metabolism that involves

higher rates of glucose consumption [46]. Positron emission

tomography (PET) imaging of many organs, for example, can

distinguish between a tumor and its surrounding tissue by

mapping the glucose uptake levels across the organ [47]. The

tumor cell’s increased rates of glycolysis and production of

glycolytic intermediates are not necessarily linked to a higher flux
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of the intermediates into the mitochondrial metabolic pathways,

but rather into non-oxidative metabolic pathways, even when

oxygen is abundant [48,49].

Recent observations suggest, however, that the aerobic

glycolytic and mitochondrial oxidative metabolic pathways are

coupled, and that it is a change in this coupling that differentiates

the GBM tumor’s metabolism from that of the normal brain. It is

known that both the glucose and mitochondrial metabolic

pathways are required for normal brain function. The glucose

uptake of a normal brain cell, for example, is higher than that of

most normal cells. A brain tumor’s PET image that is obtained

with labeled glucose or glucose analog molecules, while useful in

mapping the tumor’s metabolism when correlated with a

magnetic resonance image or an x-ray computer tomography

scan, is limited in discriminating the tumor from its surroundings

[50]. Advancing the understanding of the Warburg effect, it was

recently shown that GBM cell lines that exhibit aerobic glycolysis

in vitro use the glycolytic intermediates not just for energy

production but also for biosynthesis that is coupled with an

uptake of mitochondrial metabolic intermediates [51]. Moreover,

it was shown in vivo that human GBM tumors in mice brains

oxidize glucose in the mitochondria [52], and derive a substantial

fraction of the energetic intermediates from substrates other than

glucose [53]. A similar coupling was recently hinted at when it

was shown that during its juvenile growth phase, the fruit fly uses

mitochondrial oxidative metabolism [54] in addition to aerobic

glycolysis [55].

Our observation that both the GBM tumor and normal brain

overexpress transcripts that are associated with the MRCC I is also

in agreement with the recent observation that depletion of the

insulin-like growth factor 2 mRNA-binding protein 2, which is

known to interact with the transcripts that encode the MRCC I,

reduces oxygen consumption by and impairs proliferation of GBM

cell lines [56]. That transcripts that are involved in COX activity

are among the most abundant not only in the normal brain but

also in the GBM tumor, is also in agreement with the recent

observation that a GBM tumor’s greater COX activity correlates

with a patient’s shorter survival time [57].

Our observation that transcripts associated with glucose

metabolism are among the most abundant in the normal brain

but not the GBM tumor does not imply a decrease in the tumor

cell’s rates of glycolysis and production of glycolytic intermediates

relative to those of the normal cells. This is because key glycolytic

enzymes, such as PFK, are regulated by posttranslational

processes, such as phosphorylation and the binding of allosteric

effectors. This observation, however, cannot be explained by

DNA copy-number alterations (CNAs) in the tumor relative to

the normal genome alone [58]. For example, loss of chromosome

10 is observed in about 40% of GBM tumors. We found the key

glycolytic enzyme-encoding gene PFKP that is located at the

short arm of chromosome 10, overexpressed in ,20% of the

GBM tumor tissue samples but .20% of the normal brain

samples. Overexpression of this significantly longer-than-typical

gene in the normal brain but not the GBM tumor, therefore,

cannot be explained by the tumor’s frequent loss of chromosome

10 alone.

Note that similarly, amplification of the CDK4 locus on

chromosome 12 is observed in about 15% of GBM tumors. We

found this cyclin-dependent kinase-encoding gene overexpressed

in .20% of the GBM tumor tissue samples but ,20% of the

normal brain samples. Overexpression of this gene in the GBM

tumor but not the normal brain, therefore, cannot be explained

by the tumor’s frequent amplification of the CDK4 locus alone.

Taken together, we propose a previously unrecognized mode

for the GBM tumor and normal brain to differentially regulate

metabolism in a transcript length-dependent manner: The

physical balancing of the length of a transcript with the time

period of the cell cycle contributes to, and possibly regulates the

biological balancing of cellular metabolism with proliferation,

differently so in the GBM tumor than in the normal brain.

Hypothesis from mathematical modeling of evolutionary
forces that act upon transcript length in the manner of
the restoring force of the harmonic oscillator is
supported

Third, we found that the SVD identifies the length distribution

functions of the human and yeast global sets and metabolic

ontology subsets of transcripts, as well as human subsets of

transcripts of similar expression in response to a normal brain’s

transformation to a GBM tumor, as asymmetric generalized

coherent states. Note that, in general, it is not necessarily possible

to identify a distribution function from data that sample the

function [19]. This is because identifying a distribution function is

mathematically equivalent to estimating the infinite number of

moments that are associated with the function. The SVD,

however, identified the transcript length distribution functions

from the DNA microarray data and with no a-priori assumptions.

This is because the finite and few most significant eigenvectors and

corresponding eigenvalues that were uncovered by the SVD of the

length distribution data of each of the sets and subsets of

transcripts fit a series of orthogonal asymmetric Hermite functions

and a corresponding geometric series, which are known to be

among the eigenfunctions and corresponding eigenvalues, respec-

tively, of an asymmetric generalized coherent state [25].

By identifying the transcript length distribution functions, the

SVD also identifies the underlying phenomenological forces that

act upon the lengths (or gel migration distances) of the transcripts.

From the fit of the distribution, or profile of a single transcript to

the asymmetric Gaussian g(p,x) of Equation (4) it follows that the

force acting upon the transcript’s length (or gel migration distance)

is linearly proportional to

d

dp
½log g(p,x)�~{kp(p{x)

1zl

1{l

� �
, ð16Þ

i.e., the force is linearly proportional to and oppositely directed to

the displacement p{x from the peak of the transcript’s profile at

p~x, acting upon the transcript’s length (or gel migration

distance) in the manner of the restoring force of the harmonic

oscillator [59]. From the asymmetry s of the generalized Hooke’s

constant kp of Equation (5), the magnitude of the force when

acting upon lengths that are lesser (or migration distances that are

greater) than the peak, i.e., pvx, is s times its magnitude when

acting upon lengths that are greater (or migration distances that

are lesser) than the peak, i.e., pwx.

In the limit where the multiple transcripts of a single gene are

identical in length, the profile of a single transcript represents the

distribution of the gel migration distances of the transcript, and the

phenomenological force that underlies this distribution acts upon

the transcript’s gel migration distance alone. Previously, we

suggested that the asymmetry of the profile of a single transcript

might be due to an asymmetry in the gel electrophoresis thermal

broadening of a moving, rather than a stationary, band of identical

mRNA molecules [25]. In the absence of an electric field, the

thermal broadening or Brownian motion of the band of identical

mRNA molecules is such that the distribution of the molecules fits
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a Gaussian. In the presence of an electric field, the band’s

displacement along the axis of the electric field is linearly

proportional to the time interval [60], whereas the width of the

band’s thermal broadening is linearly proportional to the square

root of the time interval [20]. As a result, the peak of the band

appears to be moving toward the front of the band and away from

its back, and the distribution of the mRNA molecules fits an

asymmetric Gaussian. Note that prior theory, simulation and

measurement of DNA band broadening in gel electrophoresis

have shown that the broadening of a moving band can be different

from that of a stationary band, but have not suggested an

asymmetry [61-63]. We concluded that mathematical modeling of

DNA microarray data can be used to predict physical, not just

biological modes of regulation that govern the activities of DNA

and RNA [64].

In the limit where the distribution of the transcript length of a

single gene spans the lengths of the UTR and the poly(A) tail of the

transcript, however, the profile of a single transcript represents the

distribution of the lengths and not just the gel migration distances

of the transcript. Hurowitz et al estimated the precision of the gel

electrophoresis measurement to be approximately 5% of a

transcript’s length, for both the human and yeast [12,13]. The

average UTR and poly(A) tail lengths were estimated to be

approximately 1,250 and 200 nt for the human genes, and 250

and 60 nt for the yeast genes, respectively, and independent of the

transcript’s length. Therefore, a distribution of the length of a

transcript that spans the average UTR and poly(A) tail lengths can

be expected to affect the profiles of most human and yeast

transcripts in the data sets we analyze. In this case, the

phenomenological force that underlies the profile of a single

transcript does act upon the single transcript’s length (and not just

its gel migration distance).

Similarly, from the fit of the distribution of the peaks of the

transcript profiles to the asymmetric Gaussian f (x) of Equation (4)

it follows that the force acting upon the peak of a transcript’s

profile is linearly proportional to

d

dx
log f (x)~{kxx

1{l2

4l

 !
, ð17Þ

i.e., the force is linearly proportional to and oppositely directed to

the displacement of the peak from the equilibrium x~0, in the

manner of the restoring force of the harmonic oscillator. From the

asymmetry s of the generalized Hooke’s constant kx of Equation

(3), the magnitude of the force when acting upon lengths that are

lesser than the equilibrium, i.e., xv0, is s times its magnitude

when acting upon lengths that are greater than the equilibrium,

i.e., xw0.

For each set or subset of transcripts, the asymmetry s in the

generalized Hooke’s constant kx that acts upon the displacement

of the peak of the transcript’s profile from the equilibrium x~0 is

the same as the asymmetry in the generalized Hooke’s constant kp

that acts upon the displacement of a transcript’s length from the

peak p~x. Note that the gel migration distance of a transcript is

proportional to the logarithm of the inverse of the transcript’s

length in nucleotides [60]. Therefore, the asymmetry in kx and kp

where the transcript lengths are measured in gel slices underes-

timates the asymmetry where the lengths are in nucleotides.

Previously, we hypothesized that the asymmetry is the result of two

competing evolutionary forces. One force acts to minimize the

costs associated with transcriptional as well as posttranscriptional

processes, such as translation, and therefore also the lengths of

gene transcripts. The other force acts to maximize the information

content of the genes and their functional specificity, and therefore

also their mRNA lengths. For example, there is evidence that the

eukaryotic PFK enzymes evolved from the prokaryotic enzymes

via gene duplication, and that this doubling of the molecular

weight of PFK is linked to the creation of sites, beyond the sites

that are found in prokaryotic PFKs, for allosteric effectors to

regulate the eukaryotic PFK activity [29]. Acting upon the

displacement of a transcript’s length from the peak of the

transcript’s profile at p~x, the two forces balance at the peak of

the distribution g(p,x), i.e., at p~x. Acting upon the displacement

of the peak of the transcript’s profile from the equilibrium x~0,

the forces balance at the equilibrium of the distribution f (x), i.e.,

at x~0. That the SVD identifies the length distribution functions

of the human and yeast sets and subsets of transcripts as

asymmetric generalized coherent states, therefore, supports our

previous hypothesis from mathematical modeling of evolutionary

forces that determine transcript lengths, which act in the manner

of the restoring force of the harmonic oscillator [25].

Previously we used the SVD to uncover a global correlation,

and predict causal coordination between eukaryotic DNA

replication origin activity and mRNA expression [65,66]. We

experimentally showed that origin licensing, i.e., the assembly of

pre-replicative complexes at DNA replication origins, decreases

the expression of genes with origins near their 39 ends, revealing

that downstream origins can regulate the expression of upstream

genes. This confirmed our prediction, and demonstrated that

mathematical modeling of DNA microarray data can be used to

correctly predict previously unknown biological modes of regula-

tion [67].

Here we used the SVD to identify the length distribution

functions of sets and subsets of eukaryotic mRNA transcripts from

DNA microarray data and with no a-priori assumptions, and reveal

global relations among transcript length, cellular metabolism and

tumor development. The global relations suggest a previously

unrecognized physical mode for tumor and normal cells to

differentially regulate metabolism in a transcript length-dependent

manner. The identified distribution functions support a previous

hypothesis from mathematical modeling of evolutionary forces

that act upon transcript length in the manner of the restoring force

of the harmonic oscillator.

Additional possible applications of SVD analyses of mRNA

transcript length distribution data, measured by using DNA

sequencing or microarray hybridization technologies, include

comparisons among (i) different types of normal cells, e.g.,

neurons; (ii) different types of tumor cells of different, e.g., tissues

of origin, pathological diagnoses and prognoses, or responses to

treatments; or (iii) normal or tumor cells at different stages of, e.g.,

development or response to chemical perturbations by, e.g.,

carcinogens or anti-cancer drugs. Identifying and comparing the

length distribution functions of the sets and subsets of transcripts

that these cells express may reveal previously unrecognized

relations between, and possibly even modes of co-regulation of

cellular diversity and transcript length.

Supporting Information

Appendix S1 Supporting Figures S1, S2, S3 and S4 and
Tables S1, S2, S3, S4 and S5. A PDF format file, readable by

Adobe Acrobat Reader.

(PDF)

Notebook S1 SVD Identification of Transcript Length
Distribution Functions from DNA Microarray Data. A

PDF format file, readable by Adobe Acrobat Reader. The

corresponding Mathematica 8.0.1 code file, executable by
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Mathematica and readable by Mathematica Player, is available at

http://www.alterlab.org/GBM_metabolism/.

(PDF)

Dataset S1 Human Transcript Lengths. A tab-delimited

text format file, readable by both Mathematica and Microsoft

Excel, reproducing the profiles of mRNA abundance levels [12] as

well as the GO annotations [14] of the 4,109 human genes with no

missing data across 50 agarose gel slices, spanning an electropho-

retic migration range of 26–124 mm and the corresponding

transcript length range of &6,400–500 nt. A transcript is

additionally annotated as overexpressed in either the normal

brain or the GBM tumor if it is in the group of

c~250,300, . . . ,500 most expressed among the 4,109 transcripts

in at least 20% of the normal brain or GBM tumor samples from

TCGA [16,17], respectively.

(TXT)

Dataset S2 Yeast Transcript Lengths. A tab-delimited text

format file, readable by both Mathematica and Microsoft Excel,

reproducing the profiles of mRNA abundance levels [13], GO

annotations [14] and DNA damage response annotations [40] of

the 3,620 Saccharomyces cerevisiae ORFs with no missing data across

30 agarose gel slices, spanning electrophoretic migration of 42–

100 mm and transcript lengths of &4,500–300 nt.

(TXT)

Dataset S3 Human Gene Lengths. A tab-delimited text

format file, readable by both Mathematica and Microsoft Excel,

reproducing the UCSC human genome browser maximum and

minimum gene lengths [30,31] and GO annotations [14] of the

11,631 human genes. A gene is additionally annotated as

overexpressed in either the normal brain or the GBM tumor if it

is in the group of c~250,300, . . . ,500 most expressed among the

11,631 genes in at least 20% of the normal brain or GBM tumor

samples from TCGA [16,17], respectively. The normal brain and

the GBM tumor gene expression data sets, reproducing the

abundance levels of mRNA transcripts of the 11,631 human genes

from ten TCGA normal brain tissue samples and 529 TCGA

GBM tumor samples, respectively, are available at http://www.

alterlab.org/GBM_metabolism/.

(TXT)
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