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Abstract

Objectives: Accurate methods of estimating HIV-1 incidence are critical for monitoring the status of the epidemic and the
impact of prevention strategies. Although several laboratory-based tests have been developed strictly for this purpose,
several limitations exist and improved methods or technologies are needed. We sought to further optimize a previously
described bead-based, HIV-1-specific multiplex assay with the capability of measuring multiple immune responses for
determining recent infection.

Methods: We refined the customized HIV-1 Bio-Plex assay by determining cutoffs and mean durations of recency (MDR),
based on the reactivity to longitudinal seroconversion specimens (n = 1347) from 311 ART-naı̈ve, HIV-1-infected subjects.
False-recent rates (FRRs) were calculated for various long-term cohorts, including AIDS patients, individuals on ART, and
subtype C specimens. Incidence was estimated for each individual assay analyte from a simulated population with a known
incidence of 1%. For improved incidence estimates, multi-analyte algorithms based on combinations of 3 to 6 analytes were
evaluated and compared to the performance of each individual analyte.

Results: The MDR for the six analytes varied from 164.2 to 279.4 days, while the multi-analyte algorithm MDRs were less
variable with a minimum and maximum value of 228.4 and 277.9 days, respectively. The FRRs for the 7 multi-analyte
algorithms evaluated in this study varied from 0.3% to 3.1%, in a population of ART-naı̈ve, long-term individuals. All
algorithms yielded improved incidence estimates as compared to the individual analytes, predicting an incidence of 0.95%
to 1.02%.

Conclusions: The HIV-specific multiplex assay described here measures several distinct immune responses in a single assay,
allowing for the consideration of multi-analyte algorithms for improved HIV incidence estimates.
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Introduction

Controlling or eradicating the HIV epidemic remains a public

health priority, as well as a major challenge. The estimation of new

HIV infections in the population, or incidence, is crucial for

understanding the status of the epidemic and providing informa-

tion regarding the impact of prevention measures. In the last 15

years, several laboratory assays or tests for recent infection (TRIs)

have been developed for distinguishing recent from long-term

HIV infection, based on the reactivity to a specific biomarker [1–

11]. These TRIs rely on the principle that reactivity to a particular

biomarker, typically HIV-specific antibody levels or avidity, will

increase predictably over time post-infection. An individual is

classified as recently infected (i.e., infected within a defined mean

duration of recency (MDR)) if the biomarker value is below the

predetermined assay threshold. The BED-CEIA, which measures

the proportion of IgG antibody directed towards an immunodo-

minant gp41 oligopeptide, is the most well-known TRI and the

first commercial assay designed specifically for the purpose of

determining recent HIV infection [4,12]. The BED assay has been

employed worldwide for HIV incidence surveillance. To date, the

HIV-1 Limiting Antigen (LAg)-Avidity EIA (Sedia Biosciences

Corp., Portland, OR) is the only other TRI that has been

commercialized for HIV-1 surveillance purposes. Like the BED

assay, the LAg-Avidity EIA measures the reactivity to an antigen

representing a subtype-conserved, immunodominant region of

gp41; however, the antigen is ‘‘limited’’ on the assay plate to

exclusively allow binding of high avidity antibodies [9,10].

Recent concerns have been raised regarding the accuracy of

current TRIs based on several reports describing the overestima-

tion of HIV incidence in certain populations by the BED assay

[13–15]. HIV-1 subtype diversity in the target population likely

plays a role in the misclassification of long-term infections as recent

or false-recent rate (FRR) associated with the BED assay, given

that the MDR can vary from subtype to subtype [16].

Additionally, all serology-based TRIs are subject to some degree
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of error, as factors that disrupt the immune response to HIV, such

as progression to AIDS and antiretroviral therapy (ART), will alter

test performance; a phenomenon that has been well-documented

[1,3,4,11,17–19]. All of these cofounding variables may contribute

to inaccurate incidence estimates, which can have profound

consequences for evaluating the impact of HIV prevention or

surveillance program measures. Since these variables are present

to some degree in most populations, along with innate immune

variation, it is unlikely that an assay relying on a single biomarker

value will reliably predict recent HIV infection in all settings.

Despite the challenges associated with current TRIs, laboratory-

based assays remain attractive for incidence estimation because

they are relatively easy to perform on cross-sectional samples and

are less costly than cohort studies, which involve regular

monitoring of high-risk HIV-negative individuals in order to

identify new infections. Given these advantages, there is a pressing

need to improve the performance of current TRIs or to identify

novel biomarkers and/or technologies that compensate for

immune diversity, thereby yielding low FRRs (#2%) and

acceptable MDRs (between 4 and 12 months) [20]. In August of

2011, the WHO Working Group on HIV Incidence Assays was

convened to discuss the relevance of new and existing TRIs and to

develop guidelines for those seeking to design new assays [21].

One approach gaining consideration is the use of an algorithm

based on multiple tests and/or clinical data to improve the

accuracy of incidence estimates. Recent studies examining the

utility of an algorithm based on multiple TRIs in conjunction with

clinical data, such as CD4 counts, have shown improved specificity

as compared to each individual test [22,23]. The algorithm

approach, however, is not without its potential logistical problems,

since the requirement for multiple tests would be prohibitively

expensive and difficult to implement in certain testing settings.

Recently, we described the development of a bead-based

multiplex assay for determining recent HIV-1 infection, using

the Bio-Plex platform [24]. While most TRIs measure HIV-

specific antibody levels or avidity, the customized Bio-Plex assay

incorporates both measures against multiple analytes in a single

assay format. Preliminary analyses indicated a measurable

difference in reactivity between specimens of known recent and

long-term infection for seven different analytes. Here, we describe

the further refinement of the assay, including estimation of cutoff

values, corresponding MDRs, and FRRs for each individual

analyte in the assay. We also evaluate the utility of multi-analyte

algorithms based on different combinations of analytes for

minimizing FRRs and improving incidence estimation.

Materials and Methods

Longitudinal Seroconversion Panels and Cohorts
For estimation of cutoff values, MDR, and incidence, 1347

specimens collected from 311 ART-naı̈ve, HIV-1-infected subjects

were evaluated. Longitudinal seroconversion specimens from

subtype B HIV-infected individuals were obtained commercially

or from several prospective studies and described as follows:

12 HIV-1 seroconversion panels (n = 62) were purchased from

Zeptometrix Corp. (Buffalo, NY) and 14 panels (n = 42) were

obtained from SeraCare Life Sciences (formerly Boston Biomedica

Inc.; Milford, MA). Longitudinal specimens from 95 recent

seroconverters (n = 397) were collected as part of the Vaccine

Preparedness Study for the HIV Network for Prevention Trials

(HIVNET; ClinicalTrials.gov identifier NCT00000915), as de-

scribed in detail [24–26]. For this particular cohort, the interval of

time between the last negative and first positive antibody test

varied greatly, from 30–364 days. Specimens from 62 subjects

(n = 274) were obtained from the AIDSVAX B/B Phase III

Vaccine Trial (VAX004; ClinicalTrials.gov identifier

NCT00002441) [27]. The double-blind, randomized trial involved

the evaluation of a candidate vaccine composed of recombinant

gp120 antigens (AIDSVAX B/B; VaxGen Inc, South San

Francisco, CA). Study participants were enrolled at various sites

in North America and The Netherlands and included men who

have sex with men (MSM) and high-risk heterosexual women. To

avoid confounding variables elicited from the vaccine, only

specimens from placebo recipients that became HIV infected

during the vaccine trial were evaluated in the present study. Once

an individual became infected, samples were collected at ,1

month and 1, 2, 4, 8, 12, 16, 20, and 24 months post-diagnosis.

Longitudinal seroconversion specimens from non-B subtype

infections were obtained from two separate studies. Specimens

from 105 subjects (n = 349) with HIV-1 subtype B and E infections

were collected as part of the AIDSVAX B/E Phase III Vaccine

Trial (VAX003; ClinicalTrials.gov identifier NCT00006327),

evaluating a bivalent recombinant gp120 protein among injection

drug users (IDUs) in Bangkok, Thailand [28,29]. As described for

VAX004, only specimens from study subjects that became infected

while receiving the placebo were included in our evaluations.

Additionally, 14 seroconverters (n = 131) of subtypes G and A/G

were identified through the Recruiting Acute Cases of HIV

(REACH) study. Acute cases of HIV-1 were obtained from

screening high-risk individuals in Abuja and Jos, Nigeria. Study

designs and sample collection have been described in detail

previously [24,30].

Specimens from Long-term Infections
For estimation of false-recent rate (FRR), samples from known

long-term infected individuals (collected .365 days post-serocon-

version) were evaluated. Longitudinal specimens (n = 708) from

103 subjects were obtained from a prospective study involving

HIV-1 infected MSM diagnosed with unexplained, generalized

lymphadenopathy syndrome [31–33]. Study participants were

enrolled between 1982 and 1983 in Atlanta, Georgia and

monitored at 3- to 6-month intervals for clinical and immunolog-

ical evaluation of progression to AIDS, including CD4+ T cell

count determination. Since last negative and first positive antibody

test dates are unavailable for this cohort, samples were excluded if

the sample collection date was ,365 days from study entry or

initial sample collection. Of the 103 subjects evaluated in the

present study, 47 eventually progressed to AIDS, as determined by

CD4+ T cell count.

The impact of ART treatment and subtype diversity on FRR

was evaluated using the following cohorts: 67 subjects (n = 393

specimens) from the HIVNET cohort received ART at the time of

one or more sample collections. An estimated time from

seroconversion to ART initiation was determined based upon

the ART status of the study subject at the time of each sample

collection. A collection of subtype C specimens (n = 67) from

ART-naı̈ve long-term individuals (CHAVI001) was obtained

through the Center for HIV/AIDS Vaccine Immunology [34].

HIV-1 Multiplex Assay
The HIV-1-specific Bio-Plex assay was performed as previously

described [24] for the detection of IgG reactivity and avidity

directed against COOH microspheres (Bio-Rad Laboratories,

Hercules, CA) coupled with the following recombinant HIV-1

proteins: p66 (Protein Sciences Corp., Meriden, CT), gp120,

gp160, and gp41 (Immunodiagnostics, Inc., Woburn, MA). All

plasma/serum samples were tested in duplicate under both

treatment conditions, with and without diethylamine (DEA). A

A Multiplex Assay for HIV-1 Incidence
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normalized mean fluorescent intensity (MFI) value and avidity

index were calculated as previously described [24].

Determination of Cutoff Values
Cutoff values for recent/long-term classification were deter-

mined as described previously [24] for the following analytes:

gp120-normalized MFI value (n), gp160-n, p66-avidity index (a),

gp120-a, gp160-a, and gp41-a. Based on the large degree of

overlap in reactivity to p66-n between known recent and long-

term specimens [24], this analyte was not included in the current

study. Normalized values for gp120 and gp160 were fit to 2-

parameter nonlinear regression models [35] with random effects.

The model formula is Y = (x*A)/(B+x), where Y is analyte

response at x days since seroconversion, A is the maximum value

of the analyte response, and B is the time since seroconversion at

half maximal response. In addition to visualizing how well the

model curve approximates the true curve, goodness of fit was

assessed using residual plots and residual variance. For the

purposes of curve-fitting, time since seroconversion was defined

as the midpoint between the last negative and first positive

Western Blot result. The intervals of time between the last negative

and first positive test date did not exceed 365 days, with a

minimum of 1 day and a maximum of 364 days.

Subject-specific avidity measurements were fit to a 4-parameter

logistic (4 PL) nonlinear regression model [36], with a random

effect to account for the within-subject correlation of measure-

ments [37,38]. The 4 PL model equation is Y = D+(A2D)/(1+(x/

C) B), where Y is analyte response (avidity index) at time (x days)

since seroconversion, A is the background level (lower limit)

analyte response, D is the maximum level (upper limit) analyte

response, C is the mid-range inflection point on the curve, and B is

a slope factor or steepness of the curve. This function provides an

accurate representation of the sigmoidal relationship between the

measured response and time since seroconversion.

Selection of a cutoff value for defining recent infection was

characterized by analyte values that are as high as possible but no

greater than the model-predicted half maximal response, i.e.

analyte values at which the slope begins to decrease and analyte

values are leveling. The half maximal response or inflection point

is a well-characterized parameter of fitted regression curves, which

is reached within the initial year post-seroconversion for the Bio-

Plex analytes. Therefore, we defined a plausible cutoff value that

was between the estimated half maximal response and the lower

99% confidence limit of this estimate.

Selection of Analyte Combinations and Cutoff Criteria
To evaluate the performance of multi-analyte algorithms,

various combinations of 3–6 analytes were selected. Since

antibody avidity appears to be a robust predictor of recent

infection, 3–4 avidity measures were included in each algorithm,

with or without the least predictive analyte, p66-a. In addition to

the avidity measures, one or both of the normalized values, gp120-

n and gp160-n, were included in all but one of the algorithms. The

cutoff criteria for each algorithm, as listed in Table 1, indicate the

number of analytes, out of the total included in the algorithm, that

must cross the threshold established for each analyte (recent/long-

term cutoff for each analyte) in order to classify the individual as

having progressed from recent to long-term infection. For

example, a cutoff criterion of 3/5 indicates that a particular

individual is considered recent until 3 out of the 5 analytes in the

combination yields values above their respective cutoffs. Multiple

cutoff criteria were evaluated for each algorithm, however, only

those that provided the best incidence estimates are shown in

Table 1.

Estimation of Mean Duration of Recency (MDR)
The MDR was estimated for each individual analyte and for

each analyte combination or algorithm. Survival methods used to

estimate the MDR between time of seroconversion and time when

a selected biomarker cutoff value is reached have been described

previously [16]. Briefly, time since seroconversion was multiply

imputed 10 times using a predictive mean matching regression

method for data with monotone missing patterns [39], conditional

on its occurrence between the last negative and first positive HIV

test dates. Before application of the imputation model, linear

mixed effects regression of days since the midpoint between last

negative and first positive HIV tests was performed on analyte

measurements to estimate the increase per day (slope) and model

intercept. In addition to slope and intercept, the imputation model

included covariates for HIV subtype, time since seroconversion,

and analyte measurement value for the observation with the

closest fit to the estimated linear regression slope. We assumed the

seroconversion dates were non-missing and equal to the midpoint

of the interval for those seroconverters with intervals of #90 days

between last negative and first positive tests. For seroconverters

with at least one measurement greater than the selected cutoff

value, the estimated time when the cutoff was reached was linearly

interpolated from times at which values first reached the selected

cutoff value and the preceding longitudinal observation. Obser-

vations were right-censored at the time of the highest value for

those seroconverters who did not have a value greater than the

selected cutoff. The MDR for a predefined combination of 3–6

analytes is the estimated time between seroconversion and when

the selected cutoff value for the 2nd or 3rd, depending on the

criterion, analyte is reached.

A recently published, improved estimator for HIV incidence

introduces a timescale, T, describing the dynamic range of recency

[40]. The MDR, or average time spent alive and recently infected

at T = 1 year, is calculated using the trapezoidal rule for estimation

of area under the curve [41,42].

Estimation of False-recent Rate (FRR)
The second important parameter for estimation of HIV

incidence, the FRR, is the probability that a person infected for

longer than T will be misclassified as recently infected by having a

measurement value below the selected cutoff value for a given

analyte. FRR was calculated from specimens collected from

persons with known long-term infection (.365 days post-

seroconversion). Exact binomial confidence limits (95%) were

calculated.

Estimation of Incidence
For an overall evaluation of the analytes, singly or in

combination, the two calculated incidence parameters, MDR &

FRR, were used to calculate incidence (I) in a simulated

population using the following formula: I = (R – FRR*P)/

(N*(MDR-FRR*T)), where R is the number of recent infections,

P is the total number of prevalent infections, N is the total number

of HIV-negatives, and FRR, MDR, and T are as previously

defined. For modeling incidence estimation, data were randomly

split into two datasets. Although the collective data were obtained

from the same cohorts, one set of data was used to calculate the

MDR and FRR parameters; the other set was used for estimation

of incidence. To better reflect cross-sectional data, a bootstrap

resampling (100 replicates) of the incidence dataset was performed

such that the data were uniformly distributed with respect to time

since seroconversion within two time frames,,and $ T = 1 year.

In addition, data ,T were sampled to represent 40% of the data

set. The total number of HIV-negative (N) entered into the

A Multiplex Assay for HIV-1 Incidence
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incidence formula was fixed at a number such that the true

incidence was 1%. For example, 1825 prevalent HIV infections

were randomly selected within uniform distribution in both time

periods. Of these, 730 were recent and 1095 were long-term (40%

of all HIV infections are recent). For 1% incidence, given 730

recent infections per 73000 negative or recent, the total number of

HIV negative is 72270. In this example, R = 730, P = 1825,

N = 72270, where R and P reflect bootstrap resampling from the

actual data with constraints for their uniform distribution over

time. Relative percent difference from 1% incidence was

calculated based upon our results from the Bio-Plex analytes or

combinations of analytes.

Results

Cutoff Values and Mean Duration of Recency
Antibody binding and avidity to the analytes, gp120-n, gp160-n,

p66-a, gp120-a, gp160-a, and gp41-a, were measured on the Bio-

Plex assay for a total of 1347 specimens. For all analytes, a similar

increase in reactivity post-seroconversion was observed; however,

the range of reactivity and maximum attainable values varied from

analyte to analyte (Figure 1). Selected cutoff values for each

analyte are displayed in the graphs as solid black lines and were

chosen based on the inflection point in the curve fit. The cutoff

values for each individual analyte and combination of analytes that

were selected for further evaluation are listed in Table 1.

The MDR for the six analytes varied from 164.2 to 279.4 days

(Table 1), reflecting the differing kinetics of antibody reactivity

shown in Figure 1. The mean interval for a seroconverter to reach

the analyte-specific cutoff was shorter for the normalized values, as

compared to the avidity measures (Table 1). The median MDR for

the individual analytes was 229.4 days. Algorithm MDRs ranged

from 228.4 to 277.9 days, with a median MDR of 256.6 days.

Estimation of HIV Incidence
To evaluate the performance of the Bio-Plex assay in estimating

incidence, the FRRs of representative long-term populations were

calculated for each analyte and algorithm (Table 1). The FRR

varied considerably between the analytes, ranging from 0.3–

27.8%. The gp160 protein was associated with the lowest

misclassification rate, yielding FRRs of 0.3% and 1.1% for the

normalized values and avidity index, respectively. In contrast, p66-

a was the least specific analyte, with a FRR of 27.8%. The FRRs

for the 7 algorithms were considerably less variable, with a

minimum and maximum value of 0.3% and 3.1%, respectively.

HIV-1 incidence was calculated based on a resampled data set

with a known incidence of 1% (Table 1). All of the individual

analytes overestimated incidence, with estimates ranging from

1.07% to 1.19%. The relative difference, as compared to actual

incidence, ranged from 7.2% to 19.5%. The multi-analyte

algorithms improved incidence estimates in all cases. The

algorithm estimates ranged from 0.95% to 1.02%, with relative

differences from actual incidence ranging from -4.8% to 2.4%.

The 95% confidence intervals included the expected incidence of

1% for all but one algorithm.

False-recent Rate in Challenging Cohorts
The value of a multi-analyte algorithm compared to a single

assay measure was evaluated by comparing the FRR in cohorts

typically associated with higher misclassification rates (Table 2).

To determine the potential impact of AIDS progression on the

FRR, values were compared for a long-term MSM cohort with

specimens collected prior to and after progression to AIDS. The

FRRs were similar regardless of whether the AIDS specimens were

included in the estimates, exhibiting a minimum and maximum

value for the individual analytes of 0.7% and 28.2% with AIDS

cases and 0.6% and 27.8% for non-AIDS cases (Table 2). In both

groups, the gp160 antigen elicited the lowest FRRs (#1%). As

compared to the values for the individual analytes, the lowest FRR

of the multi-analyte algorithms dropped to 0.1% and 0.2% for the

MSM cohort with and without AIDS, respectively.

Since ART can confound serologic-based TRIs [17–19], we

evaluated long-term specimens from a longitudinal cohort with

known dates of ART initiation. For baseline comparison, we first

evaluated samples that were collected from ART-naı̈ve individuals

or at time points prior to ART initiation. In general, the HIVNET

cohort was associated with a high FRR, as all analytes and

algorithms exhibited FRRs greater than 2%. To determine the

Table 1. Characterization of the HIV-1-specific Bio-Plex.

Analyte/Algorithm Cutoff MDR FRR Incidence (95% CI) % Differenceb

gp160-a 25 235.1 1.1 1.07 (1.04, 1.10) 7.2

gp120-a 20 265.0 4.5 1.07 (1.04, 1.10) 6.6

gp41-a 35 223.6 3.4 1.11 (1.08, 1.15) 11.5

p66-a 10 279.4 27.8 1.14 (1.08, 1.20) 14.2

gp160-n 5 164.2 0.3 1.18 (1.14, 1.22) 18.1

gp120-n 7 175.9 8.4 1.19 (1.13, 1.26) 19.5

160 n, 120 n, 66a, 120a, 160a, 41a 3/6a 228.4 0.3 1.02 (1.00, 1.05) 2.4

160 n, 66a, 120a, 160a, 41a 3/5 256.6 1.1 .98 (0.95, 1.00) 22.5

120 n, 66a, 120a, 160a, 41a 3/5 264.2 2.3 .95 (0.93, 0.98) 24.8

160 n, 120n, 120a, 160a, 41a 3/5 238.6 0.3 1.02 (1.00, 1.04) 2.0

120 n, 120a, 160a, 41a 3/4 277.9 3.1 0.99 (0.96, 1.01) 21.4

160 n, 120a, 160a, 41a 3/4 265.6 1.4 1.00 (0.98, 1.03) 0.4

120a, 160a, 41a 2/3 250.3 1.4 1.02 (0.99, 1.05) 2.0

aAlgorithm cutoffs are listed as the number of analytes that must measure above each analyte-specific cutoff to be considered long-term over the total number of
analytes in the algorithm.
bRelative % difference from actual population incidence.
doi:10.1371/journal.pone.0064201.t001
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Figure 1. Longitudinal HIV-1-specific antibody responses. The normalized values (A) and avidity index (B), as measured by the Bio-Plex assay,
for longitudinal seroconverters were plotted over days since seroconversion. Gray diamonds indicate individual data points and solid black circles
represent the curve fit for each graph. Dashed red lines represent the half maximal response of the curve and lower 99.9% confidence limits of the
estimate, while the solid black line represents the selected cutoff.
doi:10.1371/journal.pone.0064201.g001
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impact of ART treatment on the performance of the multi-analyte

assay, the ART-treated specimens were designated as ‘‘early’’ or

‘‘late’’, based on whether ART was initiated within 365 days post-

seroconversion or after. Early ART initiation was associated with a

higher FRR, as compared to the ART-negative population

(Table 2). However, when ART was initiated greater than a year

post-seroconversion, the FRRs for most of the individual analytes

and algorithms were similar to the ART-negative group. In the

absence of ART, four of the algorithms exhibited lower FRRs as

compared to the best performing individual analyte, gp160-n. In

general, the FRRs were lower for the algorithms as compared to

the individual analytes; however, the added advantage of multiple

analytes was less powerful when ART was initiated within the first

year post-seroconversion. With the exception of the early ART

treatment group, the six-analyte algorithm provided the lowest

FRR of all algorithms evaluated in this study (Table 2).

Lastly, the performance of the Bio-Plex assay on one non-B

subtype specimen set was assessed using a cohort of subtype C

specimens from ART-naı̈ve long-term individuals. Gp160-a,

gp120-a, and all seven of the algorithms exhibited a FRR of 0%

(Table 3).

Discussion

In this study, we evaluated the utility of multi-analyte algorithms

for improved HIV incidence estimates using the Bio-Plex assay.

Although the HIV-specific antibody responses displayed similar

patterns of reactivity, each analyte exhibited a unique rate of

increase and scale of reactivity. It was, therefore, necessary to

consider each analyte as a separate test, with a distinct cutoff and

MDR estimate. Our preliminary analyses indicated that selecting

analyte cutoffs based on the natural inflection point in the curve of

longitudinal reactivity allowed for the greatest distinction in

reactivity between recent and long-term specimens with the Bio-

Plex assay, as opposed to selecting the cutoff based on a set MDR

(e.g., 180 or 365 days; data not shown). When relying on a single-

assay measure, a certain percentage of the population may never

reach the threshold for a particular biomarker due to innate

differences in the immune response from individual to individual.

Therefore, cutoff criteria for the analyte combinations or

algorithms were selected to allow for some degree of immune

variation. Instead of basing the classification of recent infection on

the full agreement of each test or analyte result, a pre-determined

number of analytes less than the total included in the algorithm

needed to meet the criteria or score above the threshold to

consider an individual long-term. Based on the algorithm cutoff

criteria described here, one or more analytes can ‘‘fail’’ or never

Table 2. Impact of disease progression and antiretroviral use on false-recent rates.

FRR (95% CI)

MSM no AIDS MSM+AIDSa HIVNET no ART
HIVNET ART-
early initiation

HIVNET ART-
late initiation

Analyte/Algorithm (n = 540) (n = 708) (n = 138) (n = 299) (n = 94)

gp160-a 0.7 (0.2, 1.9) 0.7 (0.2, 1.6) 10.9 (6.2, 17.3) 16.4 (12.4, 21.1) 3.2 (0.7, 9.0)

gp120-a 2.6 (1.4, 4.3) 3.2 (2.1, 4.8) 11.6 (6.8, 18.1) 7.0 (4.4, 10.5) 13.8 (7.6, 22.5)

gp41-a 2.8 (1.6, 4.5) 2.4 (1.4, 3.8) 9.4 (5.1, 15.6) 24.7 (20.0, 30.0) 11.7 (6.0, 20.0)

p66-a 27.8 (24.0, 31.8) 28.2 (25.0, 31.7) 27.5 (20.3, 35.8) 39.8 (34.2, 45.6) 44.7 (34.4, 55.3)

gp160-n 0.6 (0.1, 1.6) 1.0 (0.4, 2.0) 7.2 (3.5, 12.9) 26.1 (21.2, 31.5) 6.4 (2.4, 13.4)

gp120-n 3.5 (2.1, 5.4) 7.5 (5.7, 9.7) 8.7 (4.6, 14.7) 36.1 (30.7, 41.9) 28.7 (19.9, 39.0)

160n, 120n, 66a, 120a, 160a, 41a 0.2 (0.0, 1.0) 0.1 (0.0, 0.8) 4.3 (1.6, 9.2) 17.7 (13.6, 22.5) 4.3 (1.2, 10.5)

160n, 66a, 120a, 160a, 41a 0.9 (0.3, 2.2) 0.7 (0.2, 1.6) 5.1 (2.1, 10.2) 18.1 (13.9, 22.9) 4.3 (1.2, 10.5)

120n, 66a, 120a, 160a, 41a 1.1 (0.4, 2.4) 1.3 (0.6, 2.4) 5.1 (2.1, 10.2) 18.4 (14.2, 23.3) 9.6 (4.5, 17.4)

160n, 120n, 120a, 160a, 41a 0.4 (0.0, 1.3) 0.6 (0.2, 1.4) 7.2 (3.5, 12.9) 19.7 (15.4, 24.7) 4.3 (1.2, 10.5)

120n, 120a, 160a, 41a 1.3 (0.5, 2.7) 2.0 (1.1, 3.3) 9.4 (5.1, 15.6) 21.4 (16.9, 26.5) 12.8 (6.8, 21.2)

160n, 120a, 160a, 41a 0.9 (0.3, 2.2) 1.1 (0.5, 2.2) 9.4 (5.1, 15.6) 20.1 (15.7, 25.1) 5.3 (1.8, 12.0)

120a, 160a, 41a 0.9 (0.3, 2.2) 0.8 (0.3, 1.8) 6.5 (3.0, 12.0) 14.0 (10.3, 18.5) 4.3 (1.2, 10.5)

aIncludes entire MSM cohort.
doi:10.1371/journal.pone.0064201.t002

Table 3. Bio-Plex assay performance on subtype C
specimens.

FRR (95% CI)

Analyte/Algorithm CHAVI (n = 67)

gp160-a 0.0 (0.0, 5.4)

gp120-a 0.0 (0.0, 5.4)

gp41-a 1.5 (0.0, 8.0)

p66-a 4.5 (0.9, 12.5)

gp160-n 1.5 (0.0, 8.0)

gp120-n 1.5 (0.0, 8.0)

160n, 120n, 66a, 120a, 160a, 41a 0.0 (0.0, 5.4)

160n, 66a, 120a, 160a, 41a 0.0 (0.0, 5.4)

120n, 66a, 120a, 160a, 41a 0.0 (0.0, 5.4)

160n, 120n, 120a, 160a, 41a 0.0 (0.0, 5.4)

120n, 120a, 160a, 41a 0.0 (0.0, 5.4)

160n, 120a, 160a, 41a 0.0 (0.0, 5.4)

120a, 160a, 41a 0.0 (0.0, 5.4)

doi:10.1371/journal.pone.0064201.t003
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reach the analyte cutoff, without affecting the final assay

determination for an individual infected for a time period longer

than the MDR. A minimum of three analytes were included in

each algorithm to maintain the described cutoff criteria.

Since it was unknown whether an algorithm based on TRIs or

assay measures would improve HIV incidence estimates, we

evaluated the performance of each individual analyte in compar-

ison to various multi-analyte algorithms. One of the biggest

challenges in validating candidate TRIs is the difficulty in

obtaining well-characterized cohorts with known incidence rates.

For proof-of-concept purposes, we used resampled data to

generate a simulated ART-naı̈ve cohort with a known incidence

of 1%. A limitation of the current study is that the simulated

population for incidence evaluation was derived from the same

cohorts used to calculate the MDRs and FRRs for the individual

analytes and algorithms. Even though all of the algorithms,

regardless of whether 3, 4, 5, or 6 analytes were included, yielded

improved incidence estimates as compared to the individual

analytes, it is essential to validate algorithm performance in diverse

populations, especially those associated with high FRRs. Reasons

for high FRRs in specific populations may be numerous, so we

assessed two confounding factors that are typically associated with

a reduction in the antibody response to HIV, progression to AIDS

and ART. Individuals that progress to AIDS often exhibit a

decline in HIV-specific antibody levels, leading to a higher

likelihood of misclassification by some TRIs [1,3,4,11]. In

contrast, we observed minimal to no impact on antibody reactivity

when specimens from AIDS cases were included in the analyses,

which is likely due to the high sensitivity of the Bio-Plex assay

format. ART use is also a well-documented challenge for most

antibody-based assays, given that reduction in viral loads leads to

reduced antigenic stimulation necessary for antibody production

and maturation. In this study, we observed a notable difference in

assay performance depending on the timing of ART initiation

post-seroconversion, which indicated that a sustainable HIV-

specific antibody response is dependent upon adequate virus

replication within the first year post-infection.

In general, one or more of the analyte algorithms exhibited

lower FRRs as compared to the individual analytes; however, the

added advantage of multiple analytes was less convincing for the

early ART initiation group which had unusually high FRRs. For

the early ART specimens, one individual analyte (gp120-a)

exhibited a FRR lower than all of the algorithms, including non-

overlapping 95% confidence limits. It is not known whether this

finding is meaningful or the result of small sample sizes or other

cohort-specific variables. Although the impact of early ART on

assay performance is clear, the cohort used in this study was

associated with a high FRR in general, as also demonstrated by the

BED assay (FRR = 10%; data not shown). It is likely that the high

FRR associated with this particular cohort is due to relatively large

intervals of time between the last negative and first positive

antibody test dates for the majority of the study participants,

leading to uncertainty around the estimated seroconversion dates.

Duration of time on ART may also correlate with an increase in

misclassification; however, this variable was not addressed in the

present study. Additionally, viral load data were not available for

this cohort, so the direct effect of ART-induced virus suppression

on assay performance could not be measured. Further investiga-

tion, using well-characterized longitudinal specimens with rela-

tively short sample collection intervals, is needed to fully assess the

potential benefit of a multi-analyte algorithm in populations with

high ART use. Furthermore, ongoing research involves the

evaluation of additional biomarkers that may not be affected by

declining virus levels. One such candidate is anti-p24 IgG3, which

has been shown to peak during early infection, but unlike IgG1

levels, declines to low or undetectable levels shortly thereafter [43].

Preliminary studies in our laboratory have indicated that peak

IgG3 levels occur prior to the initiation of ART in most individuals

(data not shown). Moreover, the Bio-Plex format is not limited to

the detection of antibody biomarkers, such that alternative

immune activation biomarkers can be assessed.

The assay performance described here is highly encouraging;

however, all new incidence assays or technologies must be

carefully validated prior to field implementation. The current

assay format will be further assessed to determine inter-lab

variation and performance on diverse HIV-1 subtypes. Since the

Bio-Plex assay was designed with subtype B antigens, care must be

taken to avoid generalizing about assay performance with diverse

subtypes based on the reactivity of subtype B samples. We

observed a low or zero FRR with subtype C samples from long-

term individuals, however, the cohort size was relatively small and

additional subtypes were not evaluated due to lack of availability.

To address potential discrepancies in the reaction kinetics of non-B

subtype specimens, we plan to evaluate subtype conserved peptides

and recombinant proteins, in addition to the current analytes.

One challenge that we expect to face in validating the multiplex

assay is identifying criteria for selecting the best algorithm or

algorithms for use in diverse populations. Although FRR is a

valuable measurement for test evaluation, it does not necessarily

predict the analytes or algorithms that provide the most accurate

incidence estimates. However, since FRR is a key component of

the formula used to calculate HIV incidence, it is desirable to

identify a combination of analytes that produces the lowest or

negligible FRR, while maintaining a sufficient MDR for feasible

incidence calculations. Further testing is also needed to determine

the necessity of each recombinant protein included in the current

format of the assay. Another potential challenge of the current

assay format is the need for dedicated equipment that may be

difficult to acquire in certain testing settings. Future plans include

the identification and evaluation of portable versions of the Bio-

Plex format and/or alternative, low-tech platforms with multi-

plexing capability.

The results described here demonstrate the advantage of a

multiplex system that enables measurement of multiple analytes

for improved cross-sectional HIV-1 incidence estimates. We

demonstrate that a multi-analyte algorithm based on three or

more assay measures provides lower FRRs and improved

incidence estimates. We emphasize that all cutoffs and MDRs

were estimated for proof-of-concept evaluation only and may

change after further refinement of the assay.
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