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Abstract

Background: Single nucleotide polymorphisms (SNPs) have been used extensively in genetics and epidemiology studies.
Traditionally, SNPs that did not pass the Hardy-Weinberg equilibrium (HWE) test were excluded from these analyses. Many
investigators have addressed possible causes for departure from HWE, including genotyping errors, population admixture
and segmental duplication. Recent large-scale surveys have revealed abundant structural variations in the human genome,
including copy number variations (CNVs). This suggests that a significant number of SNPs must be within these regions,
which may cause deviation from HWE.

Results: We performed a Bayesian analysis on the potential effect of copy number variation, segmental duplication and
genotyping errors on the behavior of SNPs. Our results suggest that copy number variation is a major factor of HWE
violation for SNPs with a small minor allele frequency, when the sample size is large and the genotyping error rate is 0,1%.

Conclusions: Our study provides the posterior probability that a SNP falls in a CNV or a segmental duplication, given the
observed allele frequency of the SNP, sample size and the significance level of HWE testing.
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Introduction

1. Single nucleotide polymorphism (SNP) and Hardy-

Weinberg equilibrium (HWE). Single nucleotide

polymorphisms (SNPs) are common biallelic variations that are

widely used as genetic markers in linkage analyses and association

studies[1]. Most human SNPs satisfy the Hardy-Weinberg

equilibrium (HWE), the condition of allelic independence, in

which allele frequencies and genotype frequencies do not change

over generations[2,3]. Hunter et al.[4] reported that 5.0% and

1.3% of SNPs in their analysis deviated from HWE, at significance

level a= 0.05 and a= 0.01, respectively, which indicates that most

of the human SNPs are under the null hypothesis of HWE. A

departure from HWE can be explained by natural selection,

population admixture, inbreeding, experimental errors and

duplication[5]. Conventionally SNPs that are significantly

deviated from HWE are discarded before further analysis.

2. Copy number variation (CNV) and segmental

duplication (SD). A copy number variation (CNV) is a

genomic segment larger than 1 kb that occurs in variable

numbers in the genome. When the variant frequency is larger

than 1% in a population, it is called a copy number polymorphism

(CNP). In some contexts, CNV stands for copy number

variants[6], which refers to individuals whose copy number is

different from the majority in a population. Here, by CNV we

refer to a specific locus, or a genetic marker in a population that

shows variations among individuals.

A segmental duplication (SD) refers to a large duplicated

sequence in the genome, conventionally longer than 1 kb with at

least 90% sequence identity between duplicate copies (reviewed by

Bailey and Eichler[7]). SDs occupy about 5% of the human

genome[8]. SDs are closely related to CNVs, except that an SD

does not have a varying copy number within a population. Based

on a single Caucasian individual’s diploid genome sequence that

came out recently, about 55% of CNVs seem to overlap with an

annotated SD[9]. A similar rate of overlap had been reported in

another study based on comparison between the human genome

reference sequence and a fosmid-paired-end library[10]. Redon et

al.[11] suggested that the significant overlap between SD and

CNV is partly because of incorrect annotation of CNVs as SDs;

i.e. the number of individuals sequences was not large enough to

detect rare variants. Moreover, CNVs and SDs can be viewed as a

special case of one another. Sebat et al.[12] viewed copy number

gains as recent segmental duplications. We adopt a view that SD is

an extreme case of CNV in which duplication frequency is 100%.

3. SNPs in a CNV. Recent studies show that at least 12%–

15% of the human genome is covered by copy number

variations[11,12]. Moreover, 56% of the CNVs identified were

in known genes, according to Iafrate et al.[13] and Zogopoulos et

al.[14]. The large proportion of CNVs in the genome indicates
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that a significant number of SNPs may fall in these regions.

Nguyen et al. showed that SNPs are significantly enriched in

known human CNVs[15].

We are interested to know how a SNP would behave when it is

in a copy number variation. We begin with an ‘observed SNP’ site,

that shows two different bases in sequencing or genotyping

experiments. The measured genotype and allele frequencies of an

observed SNP may not reflect the true frequencies when

additional copies exist. An observed SNP may not even be a true

SNP, but instead a variation between two duplicate copies.

It is difficult to separate duplicate copies experimentally. The

sequences flanking the two loci are nearly identical and PCR

(polymerase chain reaction) and extension reactions cannot

differentiate them. Finding out the exact genotypes for CNVs is

also a challenging problem and only relative quantification is

available to date[16]. Thus, computational inference can be useful

at this point, for understanding the HWD of SNPs in a CNV.

Our study focused on relatively small scale SNP studies with

limited information. Detection and validation of CNVs through

experimental and computational methods have been an ongoing

problem. However such information is often limited due to

difference in population (e.g. ethnicity), lack of confirmed

boundaries, and quantification relative to the population average

than the absolute number of copies.

Methods have been developed specifically for detecting CNVs

using a large number of SNPs. SNP arrays (BeadArrayTM by

Illumina and GeneChipH by Affymetrix) became available recently

that allow simultaneous genotyping of CNVs and SNPs. Software

that detects CNVs from the SNP arrays has been developed (eg.

BeadStudio LOH+ by Illumina and QuantiSNP by Colella et

al.[17]). QuantiSNP uses the information that many consecutive

SNPs within a CNV region must share the effect of a CNV and

has an estimated false positive rate of 1 CNV in 100,000 SNPs.

McCaroll et al.[18] identified 541 deletion variants by using the

neighboring-marker effect as well as HWD and non-Mendelian

inheritance. Most of these approaches use the logic that closely

located neighboring SNPs share the same CNV.

However, not every investigator genotypes such a dense set of

SNPs, depending on the goal of the genetics or epidemiology

study. Closely positioned SNPs are often in linkage disequilibrium

and many investigators prefer typing distant SNPs for cost

effectiveness. Our goal is to compute the theoretical degree of

contribution of CNVs and SDs to HWD of individual SNPs

provided limited knowledge of CNVs in the particular population

under study, rather than developing a method of detecting CNVs

using a dense set of genotyped SNPs.

The power to detect deviation from HWE in SNPs in a

segmentally duplicated region was recently examined by theoret-

ical analysis and simulation[19]. Here we provide a more general

model that considers CNVs and their relative contribution to

HWD. We construct a quantitative SNP-CNV mixture model and

present Bayesian estimates of probability of a SNP being in a

CNV, given that it is significantly deviated from HWE. To our

knowledge this is the first study to provide the posterior

probabilities P(CNV|HWD).

Results

I. Model and assumptions
According to Redon et al., only about 1,2% of CNVs are multi-

allelic and 5,10% are complex[11]. Thus, the majority of the CNVs

detected may be biallelic, which involves either a single duplication or

a single deletion. It is relatively easier to identify deletion

polymorphisms, by null allele individuals. Assuming that there is no

null-allele individual, we propose that a biallelic CNV assumption is a

good start for quantitative modeling. An extension may be applied to

multiallelic or more complex cases. In order to deal with multiallelic

CNVs, more parametric assumptions are required such as how

sequence variations are distributed across different copies. We believe

that a multiallelic extension may be more informative after we gain

more knowledge about these parameters.

Under a biallelic CNV assumption, we can imagine a situation

as depicted in Figure 1. Suppose that we have two sites L1 and L2,

where L1 is always a diploid and L2 is a variable ectopic site. In

some individuals, L2 may not exist or exist in only one of the two

homologous chromosomes. Suppose the observed SNP has alleles

A and C, with A as the minor allele, as an example. Each of the

two sites can be either heterozygotic or monomorphic. We denote

by p1 the true frequency of allele A at L1, and by p2 the true

frequency of allele A at L2. Though we assume that A is the

observed minor allele, it does not have to be a minor allele at each

site and p1 and p2 may range from 0 to 1. Additionally, we

introduce a new parameter r, the frequency of having both sites L1

and L2, as apposed to having only L1. Thus, r refers to the true

allele frequency of the underlying CNV. For a CNV, r can vary

between 0 and 1. When there is no duplication (i.e. regular

genomic regions), r = 0. When duplication is fixed in all individuals

in the population (segmental duplication), r = 1. For convenience,

here rM(0,1) (i.e. 0,r,1) is treated equivalent to a CNV, r = 0 to a

regular genomic region, and r = 1 to a SD.

If both sites are polymorphic with different pairs of bases, the

observed SNP will be triallelic (or even quadrallelic), which are not

considered in the current study. Here, we assume the observed

SNP is biallelic, as well as the true sites and the CNV itself.

Theoretical derivation of observed genotype

frequencies. Given true SNP allele frequencies p1 and p2 and

CNV allele frequency r, observed SNP genotype frequencies

p̂pAA, p̂pCC and p̂pAC were derived, under the assumption that each

of the three markers (two SNP sites and a CNV) is independent

and under Hardy-Weinberg equilibrium (details in Method S1):

P̂PAA~p2
1 1{rzrp2ð Þ2 ð1Þ

P̂PCC~ 1{p1ð Þ2 1{rp2ð Þ2 ð2Þ

P̂PAC~1{P̂PAA{P̂PCC ð3Þ

Observed allele frequencies can be directly calculated from

observed genotype frequencies.

P̂PA~P̂PAAzP̂PAC

�
2

P̂PC~1{P̂PA

ð4Þ

SNP genotyping errors. In theory, SNP genotyping errors

can be in both ways and its rate depends on which nucleotides are

involved. However, it is more common to misread a heterozygote

as a homozygote. In our mixture model, we take a conservative

approach and assume that all genotyping errors mistake a

heterozygote as a homozygote, and not the other way around. If

we consider both directions, the two effects counterbalance each

other and contribute less to HWD. Thus, our assumption of one-

way genotyping error means that the genotyping error fully

contributes to HWD and does not cancel out within itself.

Analysis of SNPs within CNVs
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II. Effect of allele frequency parameters on HWD
1. Measure of HWD. Our first goal is to understand the

relationship between HWD, r, p1, p2 and p̂pA. For this purpose, we

used a quantitative measure of HWD. A measure of Hardy-

Weinberg disequilibrium, h, has been suggested by Olson and

Foley[20].

h~ pAC
2

4pAApCC
, where pAA, pCC and pAC are frequencies of geno-

types AA, CC and AC.

Under HWE, h= 1. When there are excessive heterozygotes,

h.1. When there are more homozygotes than expected under

HWE, h,1. Unlike other HWD measures such as the disequilib-

rium parameter D[21] and the inbreeding coefficient f[22], h does

not assume symmetric deviations from the two homozygote

frequencies, which is useful for our analysis because the effect of a

CNV on the two homozygote frequencies is not always symmetric.

2. Behavior of h with respect to r, p1 and p2. As seen in

Figure 2, h monotonically increases with r, regardless of p1 and p2.

This indicates that the ectopic site contributes to increasing the

number of observed heterozygotes relative to homozygotes. Based

on the assumption of no other causes of HWD such as SNP

genotyping errors, h never goes below 1 (log(h) is always $0).

Thus, duplication always results in excessive heterozygotes.

3. Estimation of r, given h and an observed minor allele

frequency. Given the observed minor allele frequency, the

possible values of r vary widely depending on the assumption of p2.

The plots in Figure 3 were drawn based on the simulation

described above. A larger h always indicates a larger r, given p̂pA. A

higher p̂pA may indicate a larger or a smaller r, depending on p2.

4. Range of p1, given an observed allele frequency and

r. Figure 4 shows the relationship between the true and the

observed allele frequencies given r. When r is large and the minor

allele frequency is large, the deviation of observed allele frequency

from true allele frequency p1 can be very large. Thus, in this case

the observed allele frequency cannot serve as a substitute for the

true allele frequency. In the majority of the cases, the minor allele

frequency is overestimated. Figure S1 shows the range of true

allele frequency given pooled sample allele frequencies.

III. Probability that an HWE-violating SNP is in a CNV
P(CNV|HWD), or the probability that a SNP is in a CNV (i.e.

rM(0,1)), given that the SNP is in HWD, was computed at different

observed allele frequency(p̂pA), significance level for HWD testing

(a), sample size (n) and SNP genotyping error (eg). Several

hypothesis tests for HWE have been proposed, including the most

commonly used chi-square goodness-of-fit test[23]. Here we used a

chi-square test. We used two different prior distributions for true

CNV allele frequency r; uniform and beta distributions. The

uniform prior assumes equal probability density for all allele

frequency, whereas the beta distribution assumes higher proba-

bility towards a smaller r (more detail can be found in the

discussion section and Method S1).

As seen in Figure 5, at a= 0.05 and n = 100, under the

assumption of no genotyping error and a beta prior, segmental

duplication (r = 1) was the most responsible cause of HWD.

Interestingly, when the observed minor allele frequency is small

(,0.2), duplicons happen to generate allele frequencies that mimic

apparent HWE, and random variation is the most important cause

of HWD at these small minor allele frequencies. Under the beta

prior with 5% genotyping error, the contribution from SD or

CNV becomes minor, except at p̂pAw0:4. Under a very large

genotyping error, the probability of the SNP not being in a CNV

or SD is 60,80%. In general, a 1% Genotyping error made little

difference compared to the case of no genotyping error. For

n = 1000 and a= 0.01, with 0,1% genotyping errors, the most

likely cause of HWD was CNV or SD, depending on the observed

allele frequency. CNV and SD tend to counterbalance one-way

genotyping errors, as seen clearly in the case of a 25% error rate.

Figure 1. Possible cases of a SNP in a biallelic CNV. All possible cases of observed SNPs on a biallelic, duplication-type CNV. Each gray box
represents an individual. Two parallel lines are homologous chromosomes. The left homologous pair represents the original site (L1) and the right
pair represents the ectopic site (L2). The ectopic site may not exist or exist in only one of the homologous chromosomes in some individuals.
doi:10.1371/journal.pone.0003906.g001

Analysis of SNPs within CNVs

PLoS ONE | www.plosone.org 3 December 2008 | Volume 3 | Issue 12 | e3906



The relative contribution by duplication is quite different

depending on the stringency of HWD testing (Figure 5, No

genotyping error). At a= 0.05, theoretically about 5% of SNPs in

the regular regions must be determined to be in HWD, whereas at

a= 0.01, only 1% contributes to HWD. Also at a= 0.05 and

n = 100, SNPs in duplicons (CNV/SD) often do not generate a

sufficient deviation from HWE to be detected by the testing,

whereas at a= 0.01 and n = 1000, the likelihood of HWD given

CNV or SD become much larger (Figure 6, No genotyping error)

that the posterior probabilities point to CNVs and SDs as a major

contributor to HWD.

The uniform model (Figure S2, S3) tends to conclude a higher

contribution of CNV to HWD compared to the beta model, which

is intuitive because the uniform model assumes more CNVs whose

allele frequencies are close to SD than to regular regions.

The computation by sampling directly from priors converged,

as suggested by one of the cases shown here (Figure 6). The

computation was done by summing the probabilities of different

Figure 2. r vs log(h), given true allele frequency. A. p2 = 0, B. p2 = 1. Log base 2.
doi:10.1371/journal.pone.0003906.g002

Figure 3. log(h) vs r, given observed allele frequency. A. p2 = 0, B. p2 = 1. Log base 2. Observed allele frequencies are derived from computed
observed genotype frequencies.
doi:10.1371/journal.pone.0003906.g003

Analysis of SNPs within CNVs
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cases of r, p1 and p2. Some individual cases failed to converge but

did not affect the overall summation, because the values were

ignorably small (Figure S4).

Discussion

Effect of allele frequency parameters on HWD
Our simulation shows that the HWD measure h only increases

with respect to r under no experimental errors, supporting that

duplication acts in the direction of increasing observed heterozygotes.

Probability that an HWE-violating SNP is in a CNV
Our results suggest that copy number variation can be a major

contributor to HWD, even assuming the tendency towards small

variant frequencies of CNV, especially at a low observed SNP

minor allele frequency and large sample size. Segmental

duplication is a major effect at a higher observed SNP minor

allele frequency. About 1% genotyping errors did not make much

difference to P(CNV|HWD). At a 5% or higher genotyping error,

CNV or SD is less likely to be the cause of HWD.

Out results show that the probability of a SNP being in a

duplicated region given HWD depends on the observed allele

frequency. In case of a high observed minor allele frequency,

HWD tends to be due to duplication, whereas in case of a small

p̂pA, HWD is mainly due to SNP genotyping error and random

variation. This is mainly because the effect of duplication can be

buffered for low observed minor allele frequencies.

Hosking et al.[24] analyzed 36 HWE-violating SNPs and

concluded that 58% of these cases were due to genotyping errors.

This is an average that does not depend on observed minor allele

Figure 4. Range of p1, given r and p̂pA. The black diagonal line is the case where the true frequency p1 is identical to the observed frequency. Red
and blue curves represent p2 = 0 and p2 = 1, respectively.
doi:10.1371/journal.pone.0003906.g004

Analysis of SNPs within CNVs
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frequency, but it is consistent with our result with a 5%

genotyping-error model. The authors found 14% ‘non-specific’

cases where a primer/probe set can bind to multiple regions in the

genome. These 14% may be included either in annotated

segmental duplication or copy number variation. The other 28%

showed no reason for HWD. Some of these cases may belong to a

previously unannotated SD or CNV.

Prior knowledge of r
For the prior distribution of r, we incorporated estimates from

previous studies about CNVs. Fredman et al.[25] estimated

through an in silico analysis that 3.7% of validated SNPs and

13.1% of nonvalidated SNPs were found in segmental duplicons.

We interpret this as 7% on average, considering 65.2% of the

SNPs used were valid in their analysis. It is similar to but slightly

higher than the estimated proportion of SD in the genome. We

simply used the reported genomic proportions of CNV or of SD as

the prior probabilities of a SNP being in a CNV or an SD.

Considering the previous reports[15] that SNPs are enriched in

CNVs, using the genomic proportions as a prior probability is

conservative in estimating the posterior probability of CNVs and

SDs.

Our beta prior assumes about 50% of the CNVs have a minor

allele frequency (MAF) more than 3.5% and about 13% and 1.5%

Figure 5. Posterior probabilities given HWD. The posterior probabilities given HWD computed using the beta prior, at n = 100, a= 0.05 (left),
and n = 1000, a= 0.01 (right), with respect to observed allele frequency p̂pA. Each row respresents error rate of 0%, 1%, 5% and 25%, from top to
bottom, respectively. Estimates are the sample mean of two replicates and the standard deviations are depicted with error bars.
doi:10.1371/journal.pone.0003906.g005
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have .10% and .20% MAFs, respectively, which are approx-

imately consistent with Iafrate et al.’s estimate[13]. 12% of the

CNVs identified by Iafrate et al. had .10% MAF and 3% had

frequency of .20%. More conservative estimates have been

reported as well. A recent study using about 1200 North American

individuals estimated that more than 93% of CNV regions

(CNVRs) have less than 1% MAF. Only 1% of the CNVRs

analyzed had MAF .5%. The authors suggested that CNVs are

not likely to affect SNP association studies seriously because of the

low MAF. According to these recent estimates, a more realistic

prior distribution of r would be even more skewed than the beta

distribution that we have used. Another recent study by Wong et

al.[16] detected 3,654 CNVs and 800 of them had at least 3%

frequency, indicating a higher estimate for CNV minor allele

frequencies.

SNP genotyping errors
Genotyping error rates for Sequenom (San Diego, California,

USA), Illumina (San Diego, California, USA) and other new

methods were reported as less than 1% (personal communication,

Cantor). Sources and types of genotyping errors may vary and

such heterogeneous effects were not considered in our model.

Cox and Kraft[5] showed that HWE tests have low power in

detecting genotyping errors. This means that most of the

Figure 6. Likelihoods of HWD. The likelihoods of HWD computed using the beta prior, at n = 100, a= 0.05 (left), and n = 1000, a= 0.01 (right), with
respect to observed allele frequency p̂pA. Each row respresents error rate of 0%, 1%, 5% and 25%, from top to bottom, respectively. Estimates are the
sample mean of two replicates and the standard deviations are depicted with error bars.
doi:10.1371/journal.pone.0003906.g006
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genotyping errors do not cause departure from HWE. Our study

indicates that once a SNP violates HWE, there is a good chance to

have genotyping errors as well as segmental duplication or copy

number variation, when the genotyping error is above 5%. These

two results are not contradictory but provide different angles. As

seen in the likelihood of HWD given no CNV or SD (Figure 6), the

sensitivity of detecting genotyping errors using HWD is very low.

However, the relative contribution of genotyping error can

become large when other factors are even less likely to cause

HWD.

HWE violation and association studies
Hunter et al.[4] proposed to include HWE-deviated SNPs in

case-control association studies because association tests do not

assume HWE. Trikalinos et al.[26], however, showed through a

meta-analysis of 591 previous association studies that HWE-

violating samples gave in significantly different results in the

association testing. Taken together, we’d like to adopt a view that

the association tests do not assume HWE, but can be affected by

HWD, partly because these tests do assume that the SNPs are not

in duplicated regions. Thus, it seems useful to know the effect of

duplication on the HWE of a SNP.

Independence and HWE assumptions
Although at least some CNVs are generated in tandem[13,15],

the extent to which tandem and interspersed duplications

contribute to the entire CNV space is unknown. As for segmental

duplication, 45% and 47% are tandem and interchromosomal,

respectively, in humans[7], indicating the possibility of abundant

interspersed CNVs. Our assumption of independence between

duplicate sites may not hold if they are tandem and in linkage

disequilibrium.

In addition, we assumed that an underlying CNV itself is under

HWE. Sebat et al.[12] suggests that CNVs might be under

negative selection. A recent survey on experimentally identified

CNVs by Nguyen et al.[15] revealed that human CNVs are

significantly enriched in telomeric and centromeric regions and

protein coding genes, indicating nonneutral evolution of CNVs.

However, the extent to which such selective pressures can affect

the HWE of a CNV has yet to be studied.

Nguyen et al.[15] also revealed that CNVs are associated with

high synonymous and nonsynonymous substitution rates, indicat-

ing that the assumption of a constant SNP rate on duplicated and

nonduplicated regions may not hold. Other factors may also affect

the priors for SNP allele frequencies, including nonuniform allele

frequency distribution and gene conversion[27,28].

Our model assumes duplication, genotyping error and random

variation as the only sources of HWD. In reality, there are other

sources of HWD. One of them is the noise in the actual

population. Shoemaker et al.[29] noted that a population is not

under a perfect Hardy-Weinberg equilibrium. In their analysis, the

authors used inbreeding coefficient fA,|0.03| as the limit of

HWD in human population, as suggested by a National Research

Council report (National Research Council 1996)[30]. The

inbreeding coefficient is one of the proposed measures of HWD

and fA = 0 indicates HWE[22]. Our study assumes that the

population is under the perfect HWE in each locus. Sampling of

individuals in real experiments is not perfectly random and can be

another source of bias.

Population admixture
Our model does not consider population admixture effect.

Population admixture is an important confounding factor in case-

control studies and it is known that the admixture effect causes

deviation from HWE, as we mentioned in the background section

of our manuscript. Nevertheless, with sample size ,1000,

population admixture can be detected by HWE testing only when

f.0.4 and k.0.2, where f is the allele frequency difference

between the mixed populations and k the proportion of the minor

population[31]. A recent study indicates that most populations do

not satisfy this criterion[32]. Thus, we assume that population

admixture has minor effect on HWE in most populations. It would

be helpful to incorporate admixture effect to our model, once we

obtain sufficient knowledge about the degree of population-

difference of CNVs. Our study focuses on the relative contribution

of genotyping errors and duplication effect.

Conclusions
Our study shows that the degree of HWD increases with respect

to r, the frequency of two-copy alleles. Duplication acts in the

direction of increasing observed heterozygotes. The results of our

Bayesian analysis suggest that copy number variation can be a

major contributor to HWD, when sample size is large and

genotyping error is small. The relative contribution of CNV and

SD to HWD varies with observed SNP allele frequency.

Materials and Methods

I. Effect of allele frequency parameters on HWD
1. Relationship between r and h. We varied r, p1 and p2

and observed genotype frequencies and allele frequencies were

computed. Values for log2(h) were also obtained from the

computed genotype frequencies. The simulation was done using

a Perl script that we wrote, and the plots were drawn using the R

language.

2. Range of p1, given observed allele frequency and

r. Given a value of r, either estimated or derived from

genotyping experiments, we asked whether the true allele

frequency for the SNP could be derived. For varying values of

p2, we have plotted the range of possible values of the true allele

frequency p1, given observed allele frequency p̂pA.

Here, the range of p1 is not less informative than a posterior

distribution of p1, because in this case the posterior probability

depends only on p2, for which we assumed a uniform prior except

in marginal cases.

p̂pA can be expressed in a closed form in terms of r, p1 and p2.

When r is fixed, p1 and p2 have complementary effect on p̂pA.

Thus, the maximum and minimum possible values of p1 can be

obtained by assuming the minimum and maximum values of p2,

given r and p̂pA. Figure 4 illustrates the range of p1 for different

values of r and p̂pA. The plots were generated by computing p̂pA

from discretized p1, p2 values ranging from 0 to 1, for a given r.

Additionally, we have looked at the range of p1, given the

observed allele frequency measured using a pooled-sample

technique. The pooled-sample SNP allele frequency, which is

different from the allele frequency derived from genotype

frequencies (equations (4)), can also be expressed in terms of r,

p1 and p2:

Pp Að Þ~ p1zrp2ð Þ= 1zrð Þ ð5Þ

Experimentally, a pooled sample allele frequency can be

obtained by pooling DNA samples and measuring the relative

quantities of each allele in the pooled sample[33]. Ideally this

measure is identical to the allele frequency calculated from the

genotype frequencies. However, when a SNP is in a CNV or a SD,

the two allele frequency measurements are not identical. This is
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because the usage of genotype-based allele frequencies assumes

that every heterozygote has one of each SNP allele, which is not

true in case of duplication (eg. 3 C’s and 1 A’s). The pooled

sample-based measurement captures the unequal allelic abun-

dance in heterozygotes.

II. Computation of conditional probabilities
The second goal is to compute P(CNV|HWD) and

P(HWD|CNV), given sample size (number of individuals

genotyped) n, frequency of allele A of the observed SNP, p̂pA,

and the significance level for HWD testing, a. HWD is determined

by the conventional x2 goodness-of-fit test without continuity

correction at a= 0.05 or 0.01. Though it has been proposed that

other tests are superior under certain conditions[23], we used the

most widely used x2 test, to provide a practical perspective. Four

different genotyping error models were tried including 0%, 1%,

5% and 25%. x% genotyping error is defined as follows: x% of

heterozygote are read as one of the homozygotes and another x%

is read as the other homozygote. This results in excessive

homozygotes. Our genotyping error model only misreads

heterozygotes as homozygotes, but not vise versa. It is trivial to

include the opposite trend, but we do not for the following reasons:

an additional genotyping error in the opposite direction would

only decrease the overall deviation from HWE by counterbalanc-

ing the increased number of observed homozygotes. Experimental

techniques often miss one of the two existing alleles, but less often

identify an allele that does not exist, unless there is contamination

or a high noise level. The 25% genotyping error is not realistic but

it provides a comparative perspective.

A procedure for computing the conditional probabilities

P(CNV|HWD) and P(HWD|CNV) is described below (See

Method S1 for details). Their computation requires knowledge

of prior distributions of r, p1 and p2 and likelihood of p̂pA and

HWD given r, p1, p2, n and a.

P CNV jHWD,p̂pA,n,að Þ~

P r[ 0,1ð Þ&HWD&p̂pAjn,að Þ
P r[ 0,1ð Þ&HWD&p̂pAjn,að ÞzP r~0&HWD&p̂pAjn,að ÞzP r~1&HWD&p̂pAjn,að Þ

P HWDjCNV ,p̂pA,n,að Þ~ P r[ 0,1ð Þ&HWD&p̂pAjn,að Þ
P r[ 0,1ð Þ&p̂pAjn,að Þ

Prior distributions of allele frequency parameters
The prior distribution of r was set in a hierarchical way. The

probabilities of rM(0,1), r = 0, r = 1 were first set to 14%, 81% and

5%, and within rM(0,1), the density of r was set to either a beta or a

uniform distribution. The beta function parameters were deter-

mined so that the mean of r within rM(0,1) is 0.05.

The joint prior of p1 and p2 was also set to a hierarchical

distribution, so that the probability of being biallelic is reasonably

smaller than that of being monomorphic, for each site. Within

p1M(0,1) or p2M(0,1), p1 and p2 are uniformly distributed (details in

Method S1).

Likelihood of p̂pA and HWD given r, p1 and p2

The likelihood was computed based on the likelihood of every

possible observed genotype frequency case that corresponds to the

observed allele frequency p̂pA. Individual likelihoods were comput-

ed based on multinomial function that depends on r, p1 and p2.

HWD was determined for each genotype frequency case using the

chi-square test (detail in Method S1).

Integration of joint probabilities over r, p1 and p2

In order to approximate the integrals, M independent random

samples of triplets (r, p1, p2) or pairs or singlets were drawn from

the prior distribution within (0,1)3, (0,1)2 or (0,1), respectively.

P HWD&p̂pAjr, p1, p2, nð Þ was averaged over these M cases, to

compute each of the 15 integrations listed in Method S1. M was

larger than 3000 in all cases, but chosen differently for each case,

because some of them took longer to converge. The convergences

of an example case are shown in Figure S4.

Parameter space
P CNV jHWD, p̂pA, nð Þ and P HWDjCNV , p̂pA, nð Þ is comput-

ed as described above for a discretized set of p̂pA[ 0,0:5ð �, for

n = 100 and 1000, at a= 0.05 and 0.01, eg = 0, 0.01, 0.05 and 0.5.

Beta and uniform priors for r were tried for comparison. Two

independent replicates were generated in order to provide

confidence estimates about the probabilities.

Implementation
All the codes were written in the R language (http://www.

r-project.org/).

Supporting Information

Method S1 PDF file describing method detail.

Found at: doi:10.1371/journal.pone.0003906.s001 (0.06 MB

PDF)

Figure S1 Range of p1, given r and pooled sample allele

frequency. The black diagonal line is the case where the true

frequency p1 is identical to the observed frequency. Red and blue

lines represent p2 = 0 and p2 = 1, respectively.

Found at: doi:10.1371/journal.pone.0003906.s002 (3.64 MB EPS)

Figure S2 The posterior probabilities given HWD computed

using the uniform prior, at n = 100, a = 0.05 (left), and n = 1000,

a = 0.01 (right), with respect to observed allele frequency. Each

row respresents error rate of 0%, 1%, 5% and 25%, from top to

bottom, respectively. Estimates are the sample mean of two

replicates and the standard deviations are depicted with error bars.

Found at: doi:10.1371/journal.pone.0003906.s003 (4.98 MB EPS)

Figure S3 The likelihoods computed using the uniform prior, at

n = 100, a = 0.05 (left), and n = 1000, a = 0.01 (right), with respect

to observed allele frequency. Each row respresents error rate of

0%, 1%, 5% and 25%, from top to bottom, respectively. Estimates

are the sample mean of two replicates and the standard deviations

are depicted with error bars.

Found at: doi:10.1371/journal.pone.0003906.s004 (4.99 MB EPS)

Figure S4 Convergence of the 15 integrals. The Y values represent

joint probabilities (integral multiplied by prior probabilities).

Found at: doi:10.1371/journal.pone.0003906.s005 (1.30 MB EPS)
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