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The systematic comparison of transcriptional responses of organisms is a powerful tool in functional genomics. For example,
mutants may be characterized by comparing their transcript profiles to those obtained in other experiments querying the
effects on gene expression of many experimental factors including treatments, mutations and pathogen infections. Similarly,
drugs may be discovered by the relationship between the transcript profiles effectuated or impacted by a candidate drug and
by the target disease. The integration of such data enables systems biology to predict the interplay between experimental
factors affecting a biological system. Unfortunately, direct comparisons of gene expression profiles obtained in independent,
publicly available microarray experiments are typically compromised by substantial, experiment-specific biases. Here we
suggest a novel yet conceptually simple approach for deriving ‘Functional Association(s) by Response Overlap’ (FARO)
between microarray gene expression studies. The transcriptional response is defined by the set of differentially expressed
genes independent from the magnitude or direction of the change. This approach overcomes the limited comparability
between studies that is typical for methods that rely on correlation in gene expression. We apply FARO to a compendium of
242 diverse Arabidopsis microarray experimental factors, including phyto-hormones, stresses and pathogens, growth
conditions/stages, tissue types and mutants. We also use FARO to confirm and further delineate the functions of Arabidopsis
MAP kinase 4 in disease and stress responses. Furthermore, we find that a large, well-defined set of genes responds in
opposing directions to different stress conditions and predict the effects of different stress combinations. This demonstrates
the usefulness of our approach for exploiting public microarray data to derive biologically meaningful associations between
experimental factors. Finally, our results indicate that FARO is more powerful in associating mutants in common pathways than
existing methods such as co-expression analysis.
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INTRODUCTION
Whole-genome expression profiling provides global molecular

phenotypes that enable functional analyses of genes and genomes.

The amount of public gene expression data is rapidly accumulat-

ing due to advances and cost reductions in high-throughput

technologies such as DNA microarrays. While reproducibility

between identical RNA samples on different microarray platforms

between dedicated laboratories is good [1], comparability between

studies with independent samples is less satisfactory [2,3].

Exploitation of the expanding data set has largely been limited

to co-expression analysis of genes and comparisons between

experimental factors (growth conditions, treatments, specific

mutations, etc.) within single studies [4–9]. Comparisons between

experimental factors have been based on similarities in global

expression profiles derived from the signals from all genes on the

microarrays. This has enabled clustering of factors to estimate

their relatedness. For such analyses, some advanced clustering

approaches have been suggested, for example the utility of

transcriptional consensus clusters derived from multiple cluster

algorithms [8], or incorporation of prior knowledge of gene

function [9]. While controllable factors, except the specific factor(s)

addressed, typically are kept constant for all experiments within

a study, this is rarely true between different studies. Therefore,

comparisons of global expression profiles across studies often fail to

separate relevant from confounding factors. Fortunately, micro-

array studies typically include control samples that facilitate the

isolation of the effects of factors addressed in the individual studies.

Thus, a recent study by Lamb et al. [10] presents a method that

utilizes fold-change comparisons versus control samples to extract

a ‘gene expression signature’ representing an experiment. In this

way, experiments were associated based on the significant bias in

the ranking of these ‘gene expression signature’ genes.

Sample replicates permit the statistical extraction of differen-

tially expressed genes that are representative of the factor(s)

addressed in a study. In this way, the impact of uncontrolled or

random differences between samples is reduced. Consequently, we

reasoned that relevant associations between experimental factors

in different studies can be estimated by first identifying genes

responding to a given factor by statistical comparison to control

samples within a single study. In contrast to Lamb et al. [10], we
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simply use the overlap in differentially expressed genes in

subsequent comparisons between factors of different studies.

Using this approach, we show that response overlaps in genes

that are differentially expressed between microarray studies can be

used to derive functional associations between experimental

factors. We designate this approach ‘Functional Association(s) by

Response Overlap’ (FARO). Importantly, FARO is designed to

include the possibility that the amplitudes of responses may vary or

be reversed, even when closely associated functions are affected.

For example, if the proteins encoded by two genes function in

a complex, common pathway or network, then overlapping sets of

genes may be expected to respond when either gene function is

compromised. However, if one protein is a repressor and the other

an activator, the resulting responses are likely to affect overlapping

gene sets in opposite directions. We further reasoned that while

differences in the response direction of the overlapping genes of

closely related factors may be expected, consistency in the relative

direction, as either congruent or dissimilar, may be descriptive and

support their association.

As an example of the approach, we show that FARO between

a compendium of 241 Arabidopsis gene expression responses from

many laboratories and the response of the MAP kinase 4 loss-of-

function mutant, mpk4 [11–13], confirms and extends previous

studies on the regulatory functions of MAP kinase 4 in pathogen

and stress responses [14,15]. This analysis also demonstrates

that FARO enables the prediction of more general biological

phenomena including the effects and severities of multiple

stresses. In addition, we demonstrate that FARO is superior

to co-expression analysis in associating genes according to

KEGG [16] and MIPS [17] annotations in the Rosetta Yeast

compendium [4]

RESULTS

The FARO approach
Transcript profiling experiments are generally designed to assess

the effect on gene expression of an experimental factor such as

growth condition/stage, treatments, specific mutations, etc. To

assign Functional Associations by Response Overlap (FARO)

between an experimental factor and the factors assessed in

a compendium of gene expression responses, a query response of

differentially expressed genes from one study was compared to the

responses of the compendium (Figure 1). The associations were

ranked by the overlap size and statistical significance was

estimated using Fishers exact test [18]. The compendium of gene

expression responses was constructed by analyzing the individual

studies in a collection of microarray studies to rank genes by their

significance of differential expression within each study. The

individual experiment was analyzed separately such that individual

measurements were only compared directly within a study.

Consequently, variations in experimental procedures between

experiments have no direct influence on the estimated responses.

Assuming that the individual experimental designs were executed

carefully, differentially expressed genes represent the response to

the factor(s) studied and thus provide an expression phenotype.

FARO of the Arabidopsis MAP kinase 4 mutant
As a test of the approach, we determined FARO of the Arabidopsis

MAP kinase 4 loss of function mutant (mpk4) against a compendium

of 241 Arabidopsis gene expression profiles representing responses to

experimental factors. mpk4 was chosen because molecular and

biochemical studies indicate that MPK4 kinase activity has two

opposing functions which require further study [11–13]. On the

one hand, loss of MPK4 activity leads to the development of

systemic acquired resistance to biotrophic pathogens that is

dependent upon the phytohormone salicylate. On the other hand,

MPK4 activity is required for certain responses to the plant

hormones jasmonate and ethylene which induce defences against

necrotrophic pathogens and herbivores. A biochemical explana-

tion for these mpk4 phenotypes is that MPK4 kinase activity,

directly or indirectly, is normally required to repress systemic

acquired resistance but is also required to induce some responses

to jasmonate and ethylene.

The gene expression responses of 241 experimental factors

derived from the compendium are represented as colored nodes

(spheres) in the FARO map (Figure 2). Edges from the central

mpk4 mutant factor to compendium factors represent the most

significant response overlaps. In general, associations above the

Figure 1. Overview of the FARO method. A large number of gene
expression studies from a microarray data repository are analyzed
individually, resulting in a compendium of gene expression responses.
Each of these responses corresponds to a list of top ranking,
differentially expressed genes. A query response, for example a response
measured in a new microarray experiment, may then be compared to
the compendium responses (cr) and the response overlap in terms of
common, differentially expressed genes determined. The strength of an
association is determined by the size of the overlap and the result
illustrated in a FARO map (bottom right and Figure 2). In the example,
the query response demonstrates significant associations to compen-
dium factors 1, 3, 4, and 5. Moreover, it is possible to test if the direction
of a response is predominantly dissimilar (factor 4) or congruent (factor
5). This is indicated in the FARO map by a hammerhead or an arrow,
respectively.
doi:10.1371/journal.pone.0000676.g001
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threshold used (FARO score 60, see Methods) were almost all in

agreement with previous molecular and biochemical studies, and

only few of the factors below the threshold were previously

suggested to be related to the effects of mpk4 loss-of-function

(Supporting Information Table S1).

More specifically, FARO indicated a series of very strong

associations between mpk4 and plants inoculated with virulent and

avirulent pathogens. Thus, 16 of the 20 infection studies in the

compendium were among the significant associations, while the 4

others were the only 3 insect infestations included and a Pseudomo-

nas syringae hrpA/fliC double mutant. The latter is blocked in

virulence factor secretion via the type III secretion system due to

the hrpA mutation, and also cannot produce FliC, a flagellar,

pathogen-associated molecular marker [19]. These 4 factors are

therefore not expected to associate significantly with mpk4 or

salicylate-dependent systemic acquired resistance. FARO also

showed strong associations between mpk4 and the well-studied

mutants npr1 (non-expressor of pathogenesis-related genes 1, [20],

and cpr5 (constitutive expressor of pathogenesis-related genes 5,

[21], both related to systemic acquired disease resistance. These

findings are consistent with previous observations that the loss-of-

function mpk4 mutant exhibits constitutive systemic acquired

resistance dependent upon salicylate [11–13].

MPK4, like other MAP kinases, performs its regulatory

function(s) primarily via the phosphorylation of substrate proteins.

We have recently shown that the nuclear protein MKS1 is an in

Figure 2. FARO map of the Arabidopsis mpk4 mutant. The 241 experimental factors (spheres/nodes) in the compendium of responses are divided
into 8 categories indicated by different colors. Only edges (lines connecting factors) and names for experimental factors with strong associations to
the mpk4 mutant are shown. Thicker edges and bold factor fonts indicate increasing association strength. Edge arrows or hammerheads, respectively,
indicate highly significant congruent or dissimilar (opposite) response direction of the overlapping genes. Significant factors are positioned inside the
circle of non-significant factors solely for typographical reasons. NASCArray accession numbers are in parentheses.
doi:10.1371/journal.pone.0000676.g002
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vivo substrate of MPK4, and that there is significant similarity

between the gene expression profiles of the mpk4 mutant and

MKS1 over-expressing plants [12]. In agreement with this, FARO

showed that one of the strongest associations to mpk4 was to the

transgenic MKS1 over-expressor. This may be explained bio-

chemically if the lack of properly phosphorylated MKS1 in mpk4

mutants, or the excessive accumulation of non-phosphorylated

MKS1 in transgenic plants where MPK4 kinase activity is limiting,

leads to the development of systemic acquired resistance. In-

terestingly, FARO also found strong association between mpk4 and

the jasmonate- and coronatine-insensitive 1 (coi1) and ethylene

constitutive triple response 1 (ctr1) mutants, as well as to the

ethylene response inhibitor AgNO3. The associations between

mpk4 and coi1, ctr1 and AgNO3 are in agreement with our findings

that MPK4 is required for certain responses to jasmonate and

ethylene as well as to salicylate [11,13]. The significance and

possible mechanistic links underlying this may be probed by

examining the epistatic relationship between mpk4 and ctr1. This

can be determined [22] from the global expression data we

recently described both for the mpk4 and ctr1 single and for the

mpk4/ctr1 double mutants [13]. This analysis (Supporting In-

formation Text S1) indicated that mpk4 is, at least in part, epistatic

to ctr1 and again points out the value of comparing differential

gene expression responses.

The Arabidopsis compendium we used contains 33 studies of

responses to 24 phytohormone treatments [23]. Of these, only the

response to salicylate associated to mpk4, despite the fact that this

single study, with only four samples, is among the hormone studies

with the least statistical power. While this association is expected

due to the elevated levels of salicylate measured in the mpk4

mutant [11], it illustrates that FARO can overcome limitations in

the experimental designs of the underlying studies.

The edge arrow- and hammer-heads on the mpk4 FARO map

indicate the predominant congruence or dissimilarity in the

direction of the observed responses, some of which are exemplified

in Figure 3. For example, the congruence was close to 100%

between mpk4, cpr5, the MKS1 over-expressor, and pathogen or

elicitor-treated plants. In contrast, transgenic plants over-expres-

sing the NahG salicylate hydroxylase, which degrades salicylate to

catechol [24,25], had an inverted response (98% dissimilarity).

This very strong association between mpk4 and NahG transgenics

confirms the set of genes that are required for mpk4- and salicylate-

dependent systemic acquired resistance [11–13].

In addition to the experimental factors described above, the

Arabidopsis compendium included 58 organ- or tissue-specific

factors. As might be expected, tissues as diverse as pollen, roots

or leaves exhibit very large differences in gene expression, and it is

therefore an analytical challenge to understand the gene

expression profiles which account for their developmental

differences and similarities. However, FARO found that, of the

58 tissue-specific factors, the 16 that addressed leaf sections, types

or stages all associated to mpk4 with rank 22 or higher in respect to

other tissues (Supporting Information Table S1). This is in keeping

with the leaf-specific expression of MPK4 primarily in guard and

vascular cells [11]. FARO also found that mpk4 associated to

seedlings at the post-transition and prior-to-bolting stages, both

developmental periods in which salicylate levels increase [26]. In

addition, the only other tissue with significant associations to mpk4

was sepals which are photosynthetic and resemble leaves.

Novel associations to mpk4
The FARO described above confirms what we and others have

documented about MPK4. However, FARO also identified two

other associations to mpk4. The first, largely congruent association

Figure 3. Bar plot of gene expression congruence and dissimilarity. The response overlap between mpk4 and selected experimental factors are
shown. The dark and light areas of the bars indicate congruent and dissimilar gene expression between mpk4 and an experimental factor,
respectively.
doi:10.1371/journal.pone.0000676.g003
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was to treatment with the protein synthesis inhibitor cyclohexi-

mide (CHX). The significance of this association may be consistent

with general effects of CHX and the phenotype of mpk4. mRNA

accumulation in response to CHX often indicates that normal

mRNA levels are negatively regulated at the transcriptional and/

or post-transcriptional (mRNA stability) levels. Thus, loss of a labile

repressor leads to accumulation of its target mRNA(s). Similarly,

we previously showed that loss of MPK4 activity leads to

derepression of a set of pathogenesis-related genes whose basal

expression levels may normally be repressed via plant-specific

WRKY transcriptions factors [12]. Thus, it is likely that CHX

treatment would induce the accumulation of certain mRNAs that

accumulate ectopically in mpk4. We note also that while mpk4

mRNA levels do not change in response to CHX [27], the mRNA

of MKS1, which encodes an MPK4 substrate [12] whose over-

expression is closely associated with mpk4 by FARO (Figure 2),

accumulates strongly (30-fold) as a result of CHX treatment

(NASCArray 183). This suggests that steady state levels of MKS1

mRNA are negatively regulated, possibly by feedback from the

signaling pathway including MPK4 and MKS1.

The second novel association identified by FARO was between

mpk4 and plants over-expressing the C-terminal, DNA-binding

domain of the Arabidopsis response regulator 21 (ARR21) driven by

the cauliflower mosaic virus 35S promoter (ARR21C [28];

NASCArray 183). ARR21 is a type B ARR with an N-terminal

receiver domain thought to regulate the activity of its C-terminal

GARP DNA-binding domain. This suggests that ARR21 is or may

become nuclear localized, as are both MPK4 and its substrate

MKS1 [29]. In contrast to the arr21 knockout mutant, for which

no phenotype was detected [30], over-expression of the constitu-

tively active ARR21C protein results in abnormal development

with tissues resembling in vitro callus [31]. FARO of ARR21C

against the compendium indicated strong associations between

ARR21C and zeatin treatments, circadian rhythm, over-expres-

sion of the close homolog ARR22 [28,29], tissue-specific stress

responses, as well as inoculation with the oomycete pathogen

Phytophthora infestans. While this is revealing, a 2nd order FARO, in

the form of an analysis for overlap between the mpk4-arr21 overlap

and the compendium, characterized the mpk4-arr21 association as

predominantly related to tissue-specific stress and/or response to

P. infestans infection.

Multi-factor FARO
FARO further indicated that MPK4 may be involved in abiotic

stress response(s). This was evident from strong associations to

a series of stress responses in which organ- or tissue- specificity was

a factor (root vs. shoot, NASCArray 137-146). Thus, the

overlapping genes demonstrated a strong tendency to respond to

stress predominantly in shoots (Figure 4).

This ‘single factor against all’ FARO analysis failed to clearly

distinguish between different tissue-specific stress-responses. How-

ever, FARO between all 241 factors, creating a 2416241 matrix of

associations, revealed a group of tissue-specific stress factors with

an extraordinarily large overlap, similar to what has been

described as a core environmental stress response in yeast [32].

More specifically, collecting the 1209 most significantly differen-

tially expressed genes (for details, see Methods and Supporting

Information Text S2) from each of the nine stress treatments (cold,

drought, genotoxic, heat, osmotic, oxidative, salt, UV-B radiation

and wounding) resulted in only 1858 different genes. Of these, 657

responded to all nine stress conditions. Interestingly, the response

direction of the 657 genes was not conserved between the stress

types, which only exhibited an average of 61% congruence

(Figure 5A). Interestingly, this observation predicts that plants are

unable to provide an adequate response to some combinations of

stress. More specifically, clustering of the nine stress conditions,

based on congruence of the responding genes, suggests which

stress responses are compatible with each other, and which are

not. Hence, stress responses that are related may interact

positively, while distantly related responses may interact negative-

ly. Figure 5B shows known interactions between agronomically

important abiotic stresses. Of these interactions, only the positive

interaction between ozone (oxidative stress) and UV radiation may

not be explained by the clustering of the stress responses. Such

interactions may provide a molecular basis to explain what farmers

and breeders have long recognized: combinations of stresses in the

field cause the greatest losses to crop productivity worldwide [33].

The extensive overlap between the tissue-specific stress

responses further explains why mpk4 associated to all tissue-specific

stress treatments rather than simply to a subset of them. However,

the overlap between mpk4 and all nine stress responses (222 genes),

was not a random subset of the stress genes as these 222 genes

displayed very similar profiles across the nine stress treatments. To

establish this, we randomly sampled 222 genes from the stress

response set of genes and calculated the average inter-gene

expression profile correlation. This was repeated 10,000 times, and

resulted in average correlations ranging from 0.18 to 0.34. In

contrast, the subset overlapping with the mpk4 response had an

average correlation of 0.49 (P value % 0.0001). The expression

responses of these 222 genes across the nine stress conditions and

in the mpk4 knockout are shown in Figure 5C. These profiles

suggest that the mpk4 knockout may be hyposensitive to osmotic

[14], cold, salt [15] and UV-B stress yet either be hypersensitive to

heat stress or partly recover from the mutant phenotype under

heat stress. The latter will depend on the epistatic relationship

between heat response and mpk4.

FARO has cross-platform potential
Exploiting the vast gene expression data in public repositories is

often complicated by low cross-platform comparability. To

Figure 4. Pie charts showing the fractions of mpk4 responding genes
that are differentially expressed in shoot, root or both in response to
osmotic, salt, cold or UV-B stress.
doi:10.1371/journal.pone.0000676.g004
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investigate whether the FARO approach could include data

generated on different platforms, gene expression responses were

extracted from AFGC cDNA studies and compared to our

compendium of Arabidopsis gene expression responses based on

Affymetrix ATH1 GeneChip data. Genes were linked between the

ATH1 GeneChip and the cDNA arrays using locus tags (www.

Affymetrix.com), and only genes present on both platforms were

compared. Most of these response-overlaps demonstrated good

compatibility. More specifically, the cDNA expression profiles of

‘white light treated’ Colombia and Landsberg wild type Arabi-

dopsis plants (NASCArray 250) were highly associated (rank 4 and

3, respectively) with the ‘4 hours white light’ compendium

response (NASCArray 124). Moreover, among the top 10 ranking

associations to the response compendium, half of the associations

were to responses from light treatments, including blue and red

light. In addition, the sulfur deficiency cDNA study (NASCArray

271) was highly associated with the corresponding sulfate

limitation compendium response (rank 4; NASCArray 171), and

the Phytophthora Infestans inoculation study (NASCArray 266)

was highly associated with the corresponding compendium

response phenotype (rank 6; NASCArray 123). Moreover,

cytokinin and gibberellin cDNA studies (NASCArray 288 and

267) were moderately associated (rank 11) with corresponding

compendium responses - zeatin and gibberellin (NASCArray 181

and 184). Finally, a cDNA study of ethylene response (NASCArray

227) was highly associated with the compendium response derived

Figure 5. Tissue-specific abiotic stress. A) Expression profiles of the 657 tissue-specific stress response genes for nine different stress conditions.
Color bar values correspond to log2-fold changes of gene expression values for stress versus controls. The clustering shown is based on congruence
between the stress responses. Vertical lines indicate main groups borders. B) Agriculturally important stress combinations (adapted from [33].
Different combinations of abiotic stresses are presented in a matrix to demonstrate potential interactions with agronomic implications. Different
interactions are color-coded to indicate potential negative (green, enhanced damage or lethality due to the stress combination) or potential positive
(blue, cross-protection due to stress combination) effects. Black borders surround stress types with congruent response (main groups from 5A). Red
border surrounds the only inconsistency between the grouping and known interaction (UV vs. Oxidative stress). C) Box plot of the expression profile
of the 222 genes that are differentially expressed under all nine tissue-specific stress conditions and in the mpk4 mutant. Notches indicate 95%
confidence interval for the median and whiskers two standard deviations.
doi:10.1371/journal.pone.0000676.g005
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from mutants in the EIN2 gene in the ethylene pathway (rank 7

among compendium profile; NASCArray 52). Note that, this last

significant overlap was obtained despite the fact that the cDNA

array platform only contained ,2000 genes.

Of nine cDNA experimental factors investigated (IAA in-

duction, NASCArray 197 and NahG vs. WT, NASCArray 312,

not shown), the average association rank to a similar compendium

experimental factor was 8.2 out of 243 possible factors. In spite of

difficulties in linking gene expression information across platforms,

quantitative differences in the data from different platforms and

the fact that the experiments do not always address identical

experimental factors, the above results demonstrate the potential

of the FARO approach in bridging between the platforms.

Benchmarking on the Rosetta Yeast compendium
To validate the performance of FARO in a more quantitative

fashion, two benchmarking datasets were created from the Rosetta

compendium of yeast gene expression profiles [4]. The Rosetta

dataset consists of microarray gene expression data for many yeast

deletion mutants and some chemical treatments. Mutants within

the Rosetta compendium may be associated by common KEGG

category (71 mutant experiments) or by protein-protein interac-

tions annotated in MIPS PPI (30 mutant experiments).

Within each set, the strength of all associations was estimated by

response overlaps. For the KEGG set, 39 correct associations were

found that were stronger than any false association. Associations

evaluated by use of the manually curated MIPS protein interaction

annotations illustrated that the performance on this dataset was

even better than for the KEGG dataset (Figure 6a and b). Thus, an

extremely high initial true positive to false positive rate was

observed in spite of the relatively low number of true associations

in the MIPS set (MIPS: 35 true associations out of 436 possible vs.

619 true associations out of 2485 possible in the KEGG dataset).

Moreover, the eight chemical treatment experiments included in

the Rosetta compendium consistently associated most strongly to

mutants in the pathway(s) that the treatments would be expected

to affect (Supporting Information Text S3). FARO therefore

enriched for true associations. Furthermore, a comparative

analysis showed that FARO was superior to a conventional co-

expression analysis or a ranking based on the OrderedList

Bioconductor package [34] evaluated against corresponding

associations in KEGG (Figure 6b).

DISCUSSION
Functional Association by Response Overlap (FARO) is a robust

and conceptually straightforward approach for extracting in-

formation on the relatedness of experimental factors (mutants,

treatment, experimental condition, etc.) in microarray gene

expression experiments made in different laboratories. This

enables novel uses of microarray data repositories and offers an

advantage over existing analytical methods. We used several

methods to appraise the robustness, simplicity and interpretability

of FARO.

First, we used FARO to characterize the well-studied plant

regulatory mutant mpk4. By comparing the result of mpk4 versus

wild type gene expression to a compendium of Arabidopsis gene

expression responses, we identified associations to a meaningful

subset of experimental factors within the compendium. This set of

mpk4 associated factors indicates that the mutant is involved in

responses to both virulent and avirulent pathogens, and that the

mutant has an expression profile like that of wild type plants

treated with the hormone salicylic acid. FARO also indicated that

the mpk4 mutant exhibits a gene expression profile that resembles

a shoot-specific stress response. This is in keeping with the finding

that mutation or over-expression of putative upstream kinases,

which can activate MPK4, are affected in responses to abiotic

stresses [15]. The subset of strong mpk4 associations also contained

a series of mutants or treatments affecting responses to the plant

hormones ethylene and jasmonic acid that are important for

defense regulation. Moreover, a multi-factor FARO analysis

indicates that tissue specific responses to various abiotic stress

conditions have a very large overlap in terms of differentially

expressed genes, but that the response direction varies between the

stresses. Clustering the stress conditions based on gene expression

Figure 6. FARO benchmarking. (a) True positive (TPR) and false positive rate (FPR) as a function of the relative FARO score for response overlap
(2log10 to the P-value; Fishers exact test). (b) ROC [44] curves of FARO performance.
doi:10.1371/journal.pone.0000676.g006
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congruence predicts the effect and severity of stress combinations,

in line with agricultural observations [33]. Hence, FARO can be

extended to overview multiple factors. In addition, FARO

identified two novel associations between mpk4 and cycloheximide

(CHX) treatment and to over-expression of the C-terminal domain

of the response regulator ARR21. In short, this characterization of

the mpk4 regulatory mutant was consistent with its previously

reported characteristics and with broader knowledge in plant

biology. Importantly, the ability of FARO to confirm and extend

much of what is known about mpk4 indicates that FARO will be

a powerful tool for elucidating functional associations to more

poorly characterized mutants.

Second, we extended this analysis to include the comparison of

a series of cDNA microarray studies to our Affymetrix ATH1

GeneChip based Arabidopsis Compendium. This indicated that

FARO is also applicable for cross-platform analyses, even

including smaller arrayed gene sets.

Third, we used the Rosetta Yeast compendium [4] to produce

a more quantitative benchmarking of FARO. These analyses

demonstrated that FARO had a remarkable ability to re-extract

the groupings and protein interactions specified in both the

KEGG and MIPS annotations. In this respect, FARO was clearly

superior to the commonly applied method of co-expression

analysis for identifying genes co-regulated in response to different

experimental factors. Moreover, as an alternative to using the

overlap size, several statistical approaches have been proposed for

comparing lists of genes from microarray experiments [34,35].

These methods use the rank of the genes in the respective lists to

identify a common gene set and estimate the significance of this by

permutations. However, we show that the much simpler FARO

method performed significantly better than the OrderedList

method (Lottaz et al., 2006) in identifying functional associations

(Figure 6).

For all of the analyses described, FARO demonstrated very high

robustness toward experimental noise. Much of this robustness is

due to the indirect comparison of individual experimental results.

That is, the FARO approach restricts direct comparisons between

microarrays to within single experiments or studies, and only the

outcomes of the statistical analyses in the form of differentially

expressed genes are compared between experiments. Hence,

FARO benefits from the care taken by experimentalists to ensure

comparability within their individual experimental designs. In

addition, the extraction of differentially expressed genes serves as

a feature selection step, enriching for genes that are characteristic

for the given experimental factor. This reduces the amount of

noise in comparisons between factors and consequently contri-

butes significant robustness of the analysis.

Weakly designed or poorly conducted experiments may result in

poorly defined lists of responding genes and tend to result in

a smaller overlap than otherwise expected for truly associated

factors. Thus, a poor quality experiment may result in false

negatives, but is unlikely to result in false positive associations.

Only experiments with undescribed and/or uncontrolled con-

founding experimental factors may result in highly significant,

misleading associations. Similarly, the FARO approach may not

be able to show strong associations to an experimental factor that

only results in expression changes of a few genes. The probable

cut-off in terms of top ranking genes used may need to be adjusted

for such factors.

While clustering schemes based on whole-genome profile

comparisons may also provide functional predictions for individual

genes [8,36], none of these schemes are as easily interpretable as

FARO. Although the interpretation of a FARO requires an

understanding of the biological system analyzed, FARO offers an

advantage over more abstract methods since FARO results may be

further dissected into the individual genes that constitute the

overlap. Thus, interpretations of FARO results can be investigated

by any systematic analysis that may be applied to the list of

overlapping response genes. Examples are GO-term over-

representation, chromosomal location bias, or even 2nd order

FARO analyses. Consequently, the annotation of the overlapping

genes may directly facilitate an interpretation of the functional

association. Moreover, the congruence or dissimilarity in response

directions of the overlapping genes may clarify relationships

indicated by the association.

The results obtained here for two model organisms, Arabidopsis

and yeast, indicate the usefulness of our method for exploiting

available microarray data for deriving functional associations.

Given the amount of public microarray data, the applications for

this method may be extended to the characterization of other

species, including pathogens and humans. For example, the same

approach might be useful for associating cancer gene expression

response phenotypes to a compendium of cancer responses and

cancer treatment responses for diagnostic purposes. Consequently,

this study, together with that of Lamb et al. [10], points out the

multitude of issues that can be addressed by associations between

transcriptional responses. Furthermore, we have benchmarked the

inherent sensitivity and robustness of deriving associations from

such responses. We further note that while FARO is conceptually

simpler than the method of Lamb et al. [10], FARO is able to

associate factors not related by a congruent or dissimilar response,

but only by the mere overlap in responding genes. The important

relations found between abiotic stress responses in Arabidopsis

exemplify this.

Apart from being more powerful, an advantage of FARO over

approaches utilizing co-expression measurements is the ability of

FARO to associate not only genes or proteins, but any type of

factors that may be experimentally addressed, including drug

treatments and disease stages. Moreover, associations between

analyzed experimental factors may be used to reveal clusters of

factors in a functional association network that may be integrated

with other data sources. Consequently, FARO enables exogenous

factors to be associated directly to genotypes and as such unites

bottom-up and top-down analytical approaches in a single

association scheme.

METHODS

Arabidopsis Compendium of Gene Expression

Responses
The Nottingham Arabidopsis Stock Center (NASC) compendium of

global expression data (http://affymetrix.arabidopsis.info/) is

a repository of microarray gene expression data from numerous

studies [37]. From this repository, we selected the AffyWatch II

and III collection, including data from the AtGenExpress

consortium and 29 focused studies from various laboratories as

well as three of our own studies: the MAP kinase 4 (mpk4) knockout

mutant [13], the MAP kinase 4 substrate 1 (MKS1) over-expressor

[12], and the ethylene constitutive triple response 1 mutant (ctr1)

[13,38]. From the Arabidopsis Functional Genomics Consortium

(AFGC) microarray project data collection, we also selected six

cDNA studies for cross-platform compatibility benchmarking. A

comprehensive list of the studies and their experimental factors is

provided in Supporting Information Table S1. The compendium

can be downloaded from: www.cbs.dtu.dk/databases/PlantExpr/

Experimental factors were manually extracted from the de-

scription files, and each study was analyzed separately with regard

to the experimental factors in its design. Microarray data was pre-

FARO
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processed by RMA [39,40]. Appropriate statistical tests (T-test,

ANOVA or Fourier analysis) were used to extract lists of genes

ranked by their significance of differential expression for the 241

compendium factors as well as for the mpk4 factor. In total, more

than 1700 microarray experiments were analysed.

KEGG and MIPS
Two benchmarking sets were created by extracting mutants

experiments that can be associated to other mutant experiments,

within the Rosetta Yeast Expression Profile Compendium [4], by

common annotation in the Kyoto Encyclopedia of Genes and

Genomes (KEGG: http://www.genome.jp/kegg/), or by protein-

protein interactions annotated in MIPS PPI (from the manually

curated, comprehensive Saccharomyces cerevisiae protein-protein

interaction database http://mips.gsf.de/). These sets respectively

comprised 71 and 30 mutant experiments. The KEGG category

cell cycle was assigned to six additional genes recently found to be

involved in yeast cell cycle [41]. For the KEGG dataset, 619

proteins were associated by common KEGG category, among

2485 possible associations between mutants. For the MIPS dataset,

35 associations by MIPS interactions were present among 435

possible associations between mutants.

Statistical Significance
The statistical significance of the response overlap, in terms of

overlap in differentially expressed genes, was estimated using

Fisher’s exact test [18]. The statistical significance of congruence

in the up or down regulation of overlapping genes was determined

using an exact test in the binomial distribution [42,43], where the

hypothesized probability of success was fixed at 0.5.

With regard to the optimal number of top ranking genes to

include in a comparison between experimental factors, we found it

optimal to include genes that ranked higher than the median

number of significant genes in the compendium studies at

a significance level lower than 0.05. While the inclusion of an

increasing number of response-specific genes will strengthen a true

response overlap signature, including too many genes may disturb

the expression associations. Thus, the 1209 most significantly

differentially expressed genes were used for the Arabidopsis

compendium, and the 57 and 170 most significantly differentially

expressed genes were used for the KEGG and MIPS benchmark-

ing datasets, respectively. Additional considerations regarding the

number of genes to include in a FARO are discussed in

Supporting Information Text S2.
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