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Abstract

Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial
personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or
exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates
of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based
on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21) and one
reporting low (n=18) trait aggression. Using functional magnetic resonance imaging (fMRI) at 3T, all participants were
put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral
performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration
task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior
cingulate cortex (dAACC) as well as relatively less amygdala activation in response to frustration. Our findings indicate
distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to
a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns
observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and
neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural
dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.
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Introduction

According to the frustration-aggression hypothesis, a feeling
of frustration (thus a sense of tension, which occurs when our
efforts to reach a desired goal are thwarted) evokes negative
affect and anger [1,2] and therefore can lead to aggression
[3-5]. Furthermore, intentionally elicited frustration (by a
research assistant, for instance) has been found to increase
state hostility [6] as well as state anger and affective
aggression [7,8]. Anger and aggression are often closely tied in
questionnaire studies of traits [9], and their underlying
physiology [10] and neurochemistry [11] are merged.
Therefore, in this article we will address anger and aggression
and their neural correlates mostly together.

In previous behavioral and fMRI studies, frustration has been
investigated using various tasks [12—15]. On a neuronal level,
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frustration processing was linked to (1) the dorsal anterior
cingulate cortex (dACC) and the right ventral prefrontal cortex
(rvPFC) during social exclusion [15,16], (2) the amygdala, the
dorsolateral prefrontal cortex (dIPFC) and rostral ACC activity
during defection or loss of social cooperation in a prisoner’s
dilemma game [17,18] and (3) the right anterior insular cortex
as well as the right inferior PFC [12], the medial PFC and ACC
[19] during omission of reward. All these studies only included
healthy individuals and did not provide evidence of frustration-
induced negative affect.

A low tolerance for frustration and aggression are also core
symptoms in several psychiatric disorders including antisocial
personality disorder (ASPD) and psychopathy (PP).
Investigations point to a disturbance in the interplay between
the PFC (more specifically the ventromedial (vm)PFC/
orbitofrontal cortex (OFC)) and the amygdala in these
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disorders. This interplay is important for the processing and
regulation of negative emotions, including anger and
aggression [20-22]. Furthermore, aggressive individuals have
shown PFC deficits (i.e. in OFC, dIPFC and ACC) [20,23-26],
which may lead to reduced inhibition and thus excessive
subcortical activity, predisposing them to aggressive
behavior..Regarding the limbic regions, however, the findings
are mixed. While on the one hand studies involving individuals
with aggressive behavior have revealed hyper-reactive
responses to negative emotions [20,27,28], those with
additional callous-unemotional traits, on the other hand, have
shown hypo-reactive responses in the amygdala and the insula
[21,28,29].

Neuroimaging studies on trait aggression/ anger in healthy
subjects have revealed similar results, compared to those
involving  pathologically —aggressive  groups, including
decreased activation in the frontal brain regions (middle frontal
cortex, dIPFC, OFC) and elevated activation in the amygdala
[20,26,27,30-32]. Bettencourt and colleagues [13] concluded
that ‘persons high on trait aggressiveness direct greater levels
of aggressive behavior toward others even when situations are
relatively neutral [which] may suggest that they have the
capacity to engage in cold-blooded style of aggressive
behavior'. An important advantage of using non-clinical
subjects is the absence of possible confounding factors such
as substance abuse, a history of child abuse or incarceration
as well as comorbid psychiatric diagnoses.

To the best of our knowledge, no study till date has
examined neural processing of frustration in healthy individuals
with high and low trait aggression. To this end, we used a
frustration task involving solvable and unsolvable anagrams
[33], which had previously revealed increased activity in the
frontal and temporal regions during both conditions, with only
the unsolvable anagrams increasing cerebral blood flow in the
amygdala [33].

Based on previous studies, we expected (1) more frustration
and thus higher reports of negative affect and anger after the
task in the group with high (HA) compared to the one with low
trait aggression (LA) [13], (2) increased activation in the frontal,
temporal and limbic regions, including the amygdala and the
insula, during processing of unsolvable anagrams in both
groups [12,18,19,33] and (3) frontal regions (i.e. OFC, dIPFC,
vmPFC, inferior PFC/ vIPFC and ACC) to be activated to a
lesser extent in HA compared to LA [21,26,27,31,32]. (4)
Amygdala activation was hypothesized to be higher in HA, thus
reflecting the group's increased affective reaction to unsolvable
anagrams, as reported in previous studies relating higher
amygdala activation to negative events [34,35] and to more
trait anger [27]. Due to the interconnection between the
amygdala and the insula and their interaction during negative
emotion processing [12,14,34], we also expected higher insula
activation in HA.

Finally, based on the above-mentioned findings of hypo- and
hyper-reactivity in the limbic regions depending on the
presence of PP ftraits, we aimed to further characterize our
sample regarding possible concurrent PP characteristics by
incorporating the Psychopathy Personality Inventory Revised
[36,37]. We assumed that the group high on trait aggression
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Table 1. Demographic, neuropsychology and personality
data of HA and LA participants.

Variable HA(n=21) LA(h=18) t df p-value
Age (years) 222(2) 226(22) -510 37 0.613
MWT-B (IQ)? 106.4 (11.9) 110.8 (11.4) -1.187 37 0.243
TMT-AP 224(7.3)  21.4(58) 462 37 0.647
TMT-BP 38.4(11.4) 383(125) .028 36 0.978
Verbal Fluency® 215(6.5) 248(6.0) -1.649 37 0.108
AQ (total score) ™ 86.6 (9.8) 52.4 (4.4) 14.359 28516 0.000
Physical aggression™™  26.2 (5.8) 13.8 (2.3) 8.990 26.943 0.000
Verbal aggression™ 17.2 (2.8) 13.2 (2.1) 5148 37 0.000
Anger™” 20.3 (3.8) 10.7 (2.9) 8.735 37 0.000
Hostility™ 22.9(5.0) 14.7 (2.9) 6.278  33.056 0.000
(s.

0.01.

Degrees of freedom (df) have decimals when the Levene’s test for the equality of
variances is significant.

*** p<.0.001

a MWT-B [79];  Trail Making Test, form A and B [80]; ¢ RWT [81]

doi: 10.1371/journal.pone.0078503.t001

would rather resemble aggressive individuals without additional
primary PP traits. As a result, we expected to find higher
scores on factor 2, the antisocial impulsivity scale, which
relates to impulsive behavior and reactive anger in HA. No
group difference was hypothesized on factor 1, the fearless
dominance scale, which is more related to primary PP and the
callous-unemotional trait [17,38].

Methods

2.1: Participants

550 male students from different faculties of RWTH Aachen
University completed the Aggression Questionnaire (AQ) [39].
In order to be classified as high (HA) or low (LA) in trait
aggression, participants had to score above the 85" or below
the 15" percentile respectively. Participants had no history of
psychiatric or neurological disorders as assessed via a short
version of the SCID | (Structured Clinical Interview for DSM-1V)
[40]. The final sample consisted of 40 right-handed, native
German speaking males (mean age: 22.4 (2.2)). There were 21
participants in the HA and 19 participants in the LA group. The
ethics committee of the Medical Faculty of RWTH Aachen
University approved the study (code EK 011/09). All individuals
gave written informed consent according to the Declaration of
Helsinki prior to the examination. Parts of these data have
been previously reported in two short book chapters [41,42].

While HA and LA males differed in their reported AQ scores,
for all other variables, such as age, education and various
neuropsychological measures, no significant differences
emerged (Table 1).

2.2: Personality Questionnaires

To assess aggressive tendencies in more detail, participants
filled in the Psychopathic Personality Inventory Revised (PPI-
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R) [36,37], the Life History of Aggression scale (LHA) [23] and
the Freiburger Aggression Inventory (FAI) [43]. Consistent with
our group division based on AQ scores and our hypotheses,
HA had higher scores on the PPI-R total, PPI-R factor 2, the
total scale of the FAI and three of its subscales (Table 2).
Results on the LHA revealed a marginal significant difference
on total LHA score (t(37)=1.97, p=.056) with HA scoring higher
compared to LA (mean LHA total score 11.43 vs. 7.94). Levels
of negative affect and anger were measured with the Positive
and Negative Affect Scale (PANAS) [44] and the Emotional
Self Rating scale (ESR) [45] before and after the frustration
task.

2.3: Functional frustration task

Participants were presented with 48 four-letter anagrams (24
solvable/ 24 unsolvable) of German nouns. The anagrams
(white letters on black background) were shown for seven
seconds. After four seconds, the participants were urged to
answer by the request ‘Please respond’. Both the anagrams
and the request were presented via MR compatible goggles.
People responded by moving a cursor with the right hand’s
index and ring fingers which were positioned on fMRI-
compatible response buttons (LUMIltouch™, Lightwave
Technologies, Richmond, Canada). We instructed them to
mark the first letter of the word they recognized by pressing a
button with the right middle finger. Button press terminated the
current trial. The first half of the task consisted of nineteen
solvable and five unsolvable anagrams; the second half was
constructed by reversing these frequencies. To further
augment feelings of frustration while having to deal with the
unsolvable anagrams, participants were informed that good
performance would be rewarded with extra money. After each
anagram, participants received feedback on their performance
through the display of either a positive symbol (a smiley) and
the sentence ‘You have won thirty Cents’ or a negative symbol
(a frowney) and the sentence ‘You have lost thirty Cents’. The
task was presented in a block design, where each block lasted
36 seconds and contained three anagrams (each anagram 7s
+ interstimulus interval minimum 3s + feedback 2s). After each
block, a baseline (fixation cross) followed for 15s. Total
duration of the task was 13.6min. The paradigm was
programmed using the Presentation software package
(Neurobehavioral Systems Inc., Albany, CA, USA). In order to
assess possible behavioral performance differences between
the groups, the number of anagrams solved and reaction times
of solvable and unsolvable anagrams were measured.

2.4: Behavioral data analysis

Statistical analyses were performed using SPSS 18.0
(SPSS, Inc., IL, USA) and level of significance was set at
p=0.05. Group differences on demographic, personality and
behavioral data (accuracy and reaction times on solvable and
unsolvable anagrams) were analyzed using independent
samples t-tests. In cases of significant Levene’s test for
homogeneity of variance, degrees of freedom were adapted
using Satterthwaite’s correction. Results are corrected for
multiple testing using Bonferroni correction. Repeated
measures ANOVAs were applied with negative affect (PANAS
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Table 2. Personality data of participants with high (HA) and
low (LA) trait aggression.

Questionnaire HA(n=21) LA(n=18) t df p-value

PPI-R total** 3416 (20.8) 316.6 (25.1) 3.414 37 0.002
PPI-R_123 113.6 (12.9) 111.9 (13.0) 415 37 0.680
PPI-R_2 b™ 157.8 (24.7) 131.6 (11.8) 4.326 29.605 0.001
FAI total ** 145(6.6) 7.7 (4.3) 3700 37 0.001
FAIl spontaneous

L 4.8 (2.6) 2.0 (2.1) 3714 36.97 0.001
aggression
FAI reactive aggression 3.8(2.3) 25(1.7) 1911 37 0.064

FAl impulsive aggression* 5.9 (3.1)
FAI self-related

aggression**

FAIl aggression inhibition** 4.1 (2.2) 5.9 (1.6) -2.828 37 0.008
Values are presented as means (s.d.). p-value Bonferroni corrected for 9 tests:
0.006.

Degrees of freedom (df) have decimals when the Levene’s test for the equality of

3.2(1.9) 3.323 33.81 0.002

3.5(3.3) 1.1(0.9) 3.163 23.978 0.004

variances is significant.

** p<0.01,"**p<.0.001

a PPI-R factor 1: fearless dominance, low behavioral inhibition; ® PPI-R factor 2:
antisocial impulsivity, strong behavioral activation

doi: 10.1371/journal.pone.0078503.t002

pre and PANAS post) and anger (ESR pre and ESR post) as
within-subjects factor and trait aggression (HA vs. LA) as
between-subjects factor. For significant differences, estimates
of effect size are given as partial n? and Cohen'’s d.

2.5: Functional MRI acquisition parameters

Functional scanning was performed on a Siemens Trio 3
Tesla magnetic resonance scanner. For the blood oxygen level
dependent (BOLD)-sensitive MRI measurement, we used a
T2*-weighted gradient echo sequence with the following
parameters: TR = 2500, TE = 30ms, FoV = 200 mm, 38 axial
slices (whole brain coverage), slice thickness = 3.1 mm, in-
plane-resolution = 3.125 x 3.125 x 3.1 mm, flip-angle = 77°,
Matrix size 64 x 64, slice gap = 0.31 mm. A total of 350
functional images parallel to the intercommissural line (anterior-
posterior commissure) with an interleaved order of slice
acquisition were acquired on each participant. Four dummy
scans were acquired to allow steady-state magnetization and
were discarded from further analysis After functional
neuroimaging, a 4 min. magnetization-prepared rapid
acquisition gradient echo image (MP-RAGE) T1-weighted
sequence was applied to obtain structural images (TR = 1900
ms, TE = 2.52 ms, Tl = 900 ms, matrix = 256 x 256, 176 slices,
FoV: 250 x 250 mm?, flip angle = 9°, voxel size =1 x 1 x 1
mm3).

2.6: Functional MRI data analysis

Functional data were preprocessed and analyzed using
SPMS5 [46] (http://www fil.ion.ucl.ac.uk/spm/spm5.html). Images
of each subject were realigned to the mean image (after a first-
pass realignment on the first image of the time-series) to
correct for head motion, normalized into the standardized
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stereotactic space (interpolation to a resolution of 2 x 2 x
2mm?) and the functional data sets were spatially smoothed
using an isotropic Gaussian kernel with a full-width-at-half-
maximum of 8 mm3.

At the first level, a separate GLM was specified for each
participant. The model included separate regressors for
solvable (8 blocks) and unsolvable (8 blocks) anagrams, which
were convolved with the canonical hemodynamic response
function. Further, we entered the six realignment parameters
as covariates of no interest in the first-level analysis. Data were
high-pass filtered with a cut-off of 128 s to remove low-
frequency drifts. Serial correlations were accounted for by a
first-order autoregressive model.

In order to assess differences between the two extreme
groups, contrast images of solvable and unsolvable conditions
from all participants were included in a second-level random-
effects analysis. Activation differences in brain regions were
examined by a mixed effects two-way ANOVA with group (HA
vs. LA) as between-subjects factor and condition (solvable vs.
unsolvable anagrams) as within-subjects factor in order to
detect significant main or interaction effects. The resulting
statistical maps for the main effects of group and condition and
the group x condition interaction (all F-contrasts) effect were
thresholded at p<0.001 uncorrected with a voxel extent of 20
contiguous voxels (for illustration purposes) as has been
applied in previous studies [12,47,48]. Stereotaxic coordinates
of local maxima of activation are expressed as x;y;z values in
proper MNI space. Anatomical localizations were identified
using the Anatomy Toolbox [49,50] and the WFU Pick Atlas as
tools implemented in SPM. Concerning the division of the
frontal lobe, we closely correspond to [26].

2.7: Region of Interest (ROI) analysis

We performed an ROl analysis for the left and right
amygdala with to maximize sensitivity to group differences in
this region. We specifically aimed at investigating the
amygdala’s role during frustration because of its function in
emotion processing, trait anger [27] and in similar task [33].
Values for amygdala ROIs were extracted based on
probabilistic cytoarchitectonic maps [51], as available in the
Anatomy Toolbox in SPM5 [49,50]. Mean parameter estimates
were extracted for left and right amygdala in both conditions
(solvable and unsolvable). Levene’s test for homogeneity of
variances indicated homoscedasticity for all parameter
estimates (solvable left: p=0.167; solvable right: p=0.058;
unsolvable left: p=0.322; unsolvable right: p=0.389). Three-way
ANOVAs were applied for the left and right amygdala with
group as between-subjects factor and condition and laterality
as within-subjects factors.

2.8: Corollary analyses

Correlation analyses were performed for personality
measures and amygdala activation scores (mean parameter
estimates taken from the ROI analysis) separately in HA and
LA. Personality measures included scores on the PPI-R, FAI
and the LHA. Results are regarded significant at p<0.05.
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Results

3.1: Behavioral and current mood data

One subject was excluded due to excessive head movement
during scanning, leaving 21 HA individuals and 18 LA
individuals for final analysis.

HA and LA showed no differences on number of anagrams
solved (t(37)=0.046, p=0.963, two-tailed) and reaction times on
solvable (t(37)=0.653, p=0.518, two-tailed) and unsolvable
anagrams (1(25.702)=0.670, p=0.509, two-tailed).

Based on the difference scores on the PANAS (post- minus
pre-scores), 13 participants (62%) were classified as
responders (i.e. they showed an increase in negative affect or
anger levels after the frustration task) in HA, while there were
only 4 such responders (22%) in LA. Analysis of PANAS data
revealed marginal significant pre vs. post main effect
(F(1,37)=3.638, p=0.064) as well as a marginal significant time
x group interaction effect (F(1,37)=3.638, p=0.064) and a
significant main effect of group (F(1,37)=8.093, p=0.007, partial
n?=0.18), demonstrating higher levels of negative affect in HA
compared to LA. Assuming a greater increase in negative
affect (from pre to post) in the HA group, the independent
samples t-test on the PANAS difference scores decomposed
the interaction effect and was significant (1(29.099)=2.007,
p=0.027, d=0.63, one-tailed), thereby revealing a greater
increase of negative affect in the HA compared to the LA
group.

For the ESR data, we observed a significant pre vs. post
effect (F(1,37)=5.374, p=0.026, partial n?=0.13) with higher
values after compared to before the measurement, and group
(F(1,37)=8.197, p=0.007, partial n?=0.18), indicating higher
levels of anger in HA compared to LA. The interaction was not
significant (F(1,37)=2.077, p=0.158).

Post-hoc analyses revealed that HA individuals showed
significantly increased negative affect (PANAS, t(20)=2.24,
p=0.036, two-tailed) and anger ratings (ESR, t(20)=2.12,
p=0.047, two-tailed) after the frustration task (vs. before the
task), while the results from these paired samples t-tests were
not significant in LA (PANAS, t(17)=.000, p=1.00, two-tailed;
ESR, t(17)=1.46, p=.163, two-tailed). Direct comparison
between the two groups via independent samples t-tests
revealed that HA exhibited a significantly higher level of
negative affect (1(25.50)=3.62, p=0.001, d=1.13, two-tailed) and
anger ratings (t(25.07)=2.48, p=0.020, d=0.78, two-tailed)
compared to LA after the task (Figure 1).

Concerning the other emotions on the ESR, no significant
group differences were observed (all p>0.186), except for
sadness where HA revealed a trend effect before the task
(t(20)=2.02, p =0.056) and significantly higher scores after the
anagram task compared to LA (1(20)=2.34, p=0.030, d=0.73).

3.2: Functional MRI data

The main effect of condition (solvable vs. unsolvable
anagrams) revealed activation in the cingulate cortex, the
bilateral superior and left middle frontal cortex, the bilateral
angular gyrus and the superior parietal regions (for more
details see Table S1). The main effect of group depicted
activation in left vIPFC/ dIPFC, right dIPFC, right middle
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Figure 1. Reported level of Negative Affect (PANAS) and Anger (ESR) by individuals with high trait aggression (HA) and
low trait aggression (LA) before (T0) and after (T1) the anagram task; * significant at p<0.05.

doi: 10.1371/journal.pone.0078503.g001

cingulate, right insula and left middle temporal regions (Figure
2 and detailed information in the Table S2). The group X
condition interaction indicated activation differences in the
left amygdala and left dACC, the right vIPFC cortex, the left
parietal cortex and the right parahippocampal gyrus (Figure 3
and Table 3).

Analysis of parameter estimate values from the amygdala
(x=-22, y=-6, z=-12), the dACC (x=-8, y=10, z=26) and the
VIPFC (x=34, y=36, z=10) revealed relatively less activation in
HA compared to LA during the unsolvable condition (amygdala:
(t(37)=3.081, p=0.004, d=-6.13; dACC: t(37)=3.675, p=0.001,
d=-1.18; VvIPFC: t(37)=2.520, p=0.016, d=-0.80) but no
difference between groups during the solvable condition
(amygdala:  (t(37)=1.080, p=0.287; dACC: (37)=0.308,
p=0.759; VvIPFC: t(37)=0.640, p=0.526). Parameter estimate
values for all other regions of the interaction effect can be
found in Figure S1.

3.3: ROI analysis

The repeated-measures ANOVA revealed a significant effect
of condition, F(1,37)=6.513, p=0.015, n?=0.15, indicating
stronger amygdala activation during the solvable condition.
Further, a significant main effect of laterality emerged,
F(1,37)=8.27, p=0.007, n?=0.18, pointing to higher activation
levels in the left compared to the right amygdala. This is in line
with earlier propositions of left-lateralization of amygdala
activity during affect processing [52]. No significant main effect
of group (F(1,37)=0.470, p=0.497) or interaction effect (all
p>0.199) emerged.

3.4: Corollary analyses

Exploratory correlation analyses revealed several moderate
associations: in HA, during unsolvable anagrams, negative
correlations emerged between the left amygdala and levels of
reactive aggression (r=-0.575, p=0.006), FAl summary score
(r=-0.442, p=0.045) as well as LHA scores (r=-0.397, p=0.075).
Furthermore, levels of spontaneous aggression were
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negatively correlated to left amygdala activation during
unsolvable anagrams (r=-0.490, p=0.024), while there was a
trend for the right amygdala (r=-0.424, p=0.056). All other
tested correlations failed to reach significance (all p>0.101).
Specifically in LA, no correlations between amygdala levels
and questionnaire data were observed.

Discussion

Our study was the first to look into the neural correlates of
frustration and associated anger in healthy males with high and
low trait aggression. Consistent with our hypothesis, HA
reported significantly higher levels of negative affect and anger
after the frustration task. The finding of stronger activation in
LA compared to HA in the left vIPFC/ dIPFC and right dIPFC is
in accordance with previous results relating frontal brain
functioning to the regulation of aggression [14] and the left
dIPFC to higher cognitive and self-regulatory processes,
suggesting that dysfunction in this region is related to
impulsivity and poor behavioral control [26]. In addition, more
reactive aggression has been observed in healthy participants
after theta burst magnetic stimulation over the left dIPFC [53].
Hence, a distinct frontal brain dysfunction seems to
characterize both pathologically aggressive individuals and
persons with high trait aggression. We speculate that this
neural abnormality might have the potential to act as an
endophenotype [54], which certainly deserves further study.

Group X condition interaction effect - activation in
VvIPFC and dACC

As hypothesized, the interaction revealed lower activation in
the left dorsal anterior cingulate cortex (dACC) and the right
VIPFC in HA compared to LA while working on the unsolvable
anagrams. This is in line with previous results relating lower
VIPFC activation to impulsivity [55] and aggression [56].
Activation in the dorsal part of the ACC has frequently been
reported in cognitive control and conflict monitoring [57,58] as
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HA

LA

Figure 2. Activation for the main effect of group and parameter estimates for the activation in right dorsolateral
prefrontal cortex (dIPFC, x=44, y=52, z=18) and left ventrolateral/ dorsolateral prefrontal cortex (vIPFC/ dIPFC, x=-52, y=26,

2=32), p<0.001, uncorr., k>20 voxel.
doi: 10.1371/journal.pone.0078503.g002

well as in studies involving a conflict between cognitive and
emotional motivations [14,59]. Sterzer and colleagues (2005)
[48] explained the observed dACC deactivation during negative
affect as interference of emotional states with cognitive
processing, resulting in a failure to cognitively control and
regulate emotional behavior. In line with these findings, the
relatively lower activation of dACC in HA might reflect an
impaired capability to control and regulate their frustration,
thereby leading to a heightened propensity for impulsive
aggression. While this propensity is often manifested openly in
patient groups, HA subjects may have alternative strategies for
counteracting the attenuated activity and the disposition to
aggressive behavior. This speculation appears plausible in light
of higher, albeit marginally significant, scores on total LHA in
HA subjects. Total LHA has been reported to be a reliable and
valid measure of a history of overt aggression in control
subjects [23].

Though our findings are in line with some previous studies
reporting ACC but not OFC activation in response to stress and
frustration [12,16,19,60], the lack of OFC/vmPFC activation in
our study warrants discussion. Notably, OFC/vmPFC activation
was observed in studies directly inducing anger or by passively
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viewing angry faces [61-63] while studies eliciting frustration by
omission of reward [12] or social exclusion [15] reported
pronounced ACC activation. Possibly, our task primarily
induced frustration rather than anger, thus explaining why we
did not observe significant activation in the OFC. Furthermore,
dysfunction or damage in the OFC/vmOFC has been related to
deficits in emotional/ social conduct [64-66] and aggression
[26,67,68] and might thus imply a clear predisposition to
pathological aggressive/ antisocial behavior. In contrast, in HA
subjects we found distinct activation in the regulatory areas
related to impulsivity (i.e. VIPFC and dIPFC). Also, while none
of the adult trait anger/ aggression studies found activation in
OFC/vmPFC [27,31], studies on trait PP revealed reduced
activation in the high PP group [17,47,69]. Therefore, abnormal
activation in this region seems to be associated with PP traits
rather than aggressive traits — at least in a healthy population.
Regarding activation in the frontal lobe, Potegal (2012) [9]
refers to an important paradox. According to lesion studies
characterizing the inhibition of behavior such as aggression as
a general function of the frontal lobe, increased anger should
lead to reduced frontal lobe activity. Nevertheless, for the most
part, activation increases are reported, which might be
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Figure 3. Group X condition interaction and parameter estimates for activation in the amygdala and the dACC of HA and
LA. dACC: F(1,74), x=-8, y=10, z=26; amygdala (laterobasal group): F(1,74), x=-22, y=-6, z=-12; threshold: p<0.001 uncorr., k>20

voxel.
doi: 10.1371/journal.pone.0078503.g003

explained by GABA interneurons inhibiting activation of the
OFC, thereby leading to reduced activity in OFC output
neurons, and mesolimbic dopamine feedback loops
simultaneously modulating the GABA interneurons, which
subsequently balance out the reduced OFC activity leading to
increased activation [9].

Interaction effect - amygdala activation

The observation of lower amygdala activation in HA with
higher levels of anger was unexpected. Together with the lower
frontal (i.e. dACC and VvIPFC) activation in HA, this finding
might reflect distinct processing strategies of the negative
mood state in HA subjects. The prefrontal cortex has
interconnections with the amygdala and thereby can modulate
its activity [21,34,70,71]. This mechanism has been observed
in disorders marked by impulsive aggression [22,72] and
violence [20]. Since the general working model is that of
prefrontal activation inhibiting the amygdala, e.g. [71], the
attenuated activation in both the frontal cortex and the
amygdala might seem surprising. A possible explanation could
be an uncoupling or dysfunctional connectivity between the
amygdala and the frontal cortex, or, alternatively, the
involvement of a modulator region (e.g. the rostral ACC)
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Table 3. Activation cluster for the group X condition
interaction, p<.001 uncorr., k=20.

MNI Coordinates
Brain region y z side k
dorsal anterior cingulate cortex 10 26 L 56 454 0.000

X Z-score p-value
-8

cerebellum 0 -68 -24 41 3.97 0.000
4

thalamus -6 0 R 38 4.07 0.000
amygdala 22 -6 -12 L 36 4.00 0.000
inferior parietal -34 44 28 L 29 4.06 0.000
lateral globus pallidus 24 18 -2 L 29 3.80 0.000
parahippocampal gyrus 10 -6 -18 R 27 355 0.000
VIPFC 34 36 10 R 26 343 0.000
Claustrum 26 12 22 L 24 350 0.000
cingulate gyrus 12 10 32 L 23 3.76 0.000

Abbreviations: k = cluster size
doi: 10.1371/journal.pone.0078503.t003

inhibiting both the amygdala and the frontal cortex in HA.
These possibilities should be explored through connectivity
studies in larger clinical groups or individuals with extreme
personality traits during emotion regulation tasks.
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Further, attenuated amygdala response has been reported in
a range of aggressive populations, especially PP and PP traits
[17,20,67,69,73,74]. Lower amygdala activation in HA has
been found to be associated with higher levels of spontaneous
and reactive aggression. In this regard, Osumi and colleagues
have recently reported higher psychopathic tendencies in
healthy males being related to attenuated amygdala activity
during a task triggering reactive aggression [74]. Still, we need
to be cautious here as our groups differed only on additional
aggression measures (FAI, PPI-R total score and PPI-R factor
2). There was no difference on PPI-R factor 1, which is related
to primary PP and the callous-unemotional trait [17,38].
Aggressive individuals without additional primary PP traits have
shown hyper-reactive responses in negative emotion
processing [15,22,25], which is contrary to our findings.
Alternatively, it could be speculated that the lower amygdala
activation does not only reflect self-reported levels of anger in
response to frustration in HA subjects, but also a reduced
capability of impulse inhibition and lack of affective
controllability. However, the observation involving the
amygdala is hard to interpret and the possibility remains that
there are differential underlying mechanisms in HA and LA.
While the HA subjects felt frustrated during the unsolvable
anagrams, the LA group might have experienced a pleasant
challenge.

In sum, our results resemble previous findings in abnormally
aggressive individuals, emphasizing the role of the frontal
cortex, the dACC, the amygdala and partly the insula in
frustration processing and the resulting feelings of anger. The
insula was found to be less activated in HA, which however
could not be specifically linked to the processing of unsolvable
anagrams. Based on our findings, which suggest distinct frontal
and limbic processing mechanisms of frustration as a function
of trait aggression, further research on aggression as a
dimensional construct can lead to better understanding and
consequently help reduce or prevent aggression and violence
in clinical populations.

Limitations and future investigations

While this study provides new insight into the neural
correlates of frustration and the impact of trait aggression,
several methodological constraints have to be considered: The
use of a non-frustration task that elicits another emotion (e.g.
fear) would have been helpful in further disentangling the brain
responses that are specific to frustration from those that are
generally linked to emotion reactivity and regulation.

Further, a study stated that the groups in an extreme group
approach (EGA) [75] should contain 1/4 to 1/3 of the data [76].
However, we had to consider the cost-time-efficiency in our
study since fMRI studies are both costly and time consuming.
Also, we used EGA to detect hypothesized effects between
groups which were drawn from a healthy population and
therefore the expected effects were quite small. Our results,
therefore, are limited compared to an analysis of full-range,
continuous data [75]. The range for correlation analyses was
also restricted as we performed these analyses within groups,
due to the EGA.
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While the use of non-pathological extreme groups has its
benefits (e.g. the absence of substance abuse, a history of
child abuse), there might be important attributes of a
pathological group regarding behavior, reaction and neural
processing of anger and frustration that could not be explored
or taken advantage of in our study. Overt aggression possibly
constitutes the factor that particularly differentiates between
healthy individuals with high trait aggression and abnormally
aggressive individuals. Therefore, future studies incorporating
a third group showing a pathological level of aggression can
compare the groups on their underlying processing
mechanisms of anger and frustration and related behavioral
and personality characteristics.

Finally, earlier studies [77], for an overview [78] have also
implemented autonomic measures, which afford further insight
into the psychophysiological processes underlying frustration
and anger. Separate and simultaneous measurement of felt
anger, anger control effort, facial expressions, as well as
aggressive impulses and action also warrants future
investigation. All these studies aim at determining the
underlying mechanisms of anger and aggression and gathering
information on the pathophysiology of psychiatric disorders
involving aggression and abnormal frustration processing.
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