
Decision-Making in Research Tasks with Sequential
Testing
Thomas Pfeiffer1*, David G. Rand1,2, Anna Dreber1,3

1 Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, United States of America, 2 Department of Systems Biology, Harvard University,

Cambridge, Massachusetts, United States of America, 3 Department of Economics, Stockholm School of Economics, Stockholm, Sweden

Abstract

Background: In a recent controversial essay, published by JPA Ioannidis in PLoS Medicine, it has been argued that in some
research fields, most of the published findings are false. Based on theoretical reasoning it can be shown that small effect
sizes, error-prone tests, low priors of the tested hypotheses and biases in the evaluation and publication of research findings
increase the fraction of false positives. These findings raise concerns about the reliability of research. However, they are
based on a very simple scenario of scientific research, where single tests are used to evaluate independent hypotheses.

Methodology/Principal Findings: In this study, we present computer simulations and experimental approaches for
analyzing more realistic scenarios. In these scenarios, research tasks are solved sequentially, i.e. subsequent tests can be
chosen depending on previous results. We investigate simple sequential testing and scenarios where only a selected subset
of results can be published and used for future rounds of test choice. Results from computer simulations indicate that for
the tasks analyzed in this study, the fraction of false among the positive findings declines over several rounds of testing if
the most informative tests are performed. Our experiments show that human subjects frequently perform the most
informative tests, leading to a decline of false positives as expected from the simulations.

Conclusions/Significance: For the research tasks studied here, findings tend to become more reliable over time. We also
find that the performance in those experimental settings where not all performed tests could be published turned out to be
surprisingly inefficient. Our results may help optimize existing procedures used in the practice of scientific research and
provide guidance for the development of novel forms of scholarly communication.
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Introduction

The testing of scientific hypotheses is typically associated with two

types of statistical errors. A test may give confirmation for a

hypothesis that is actually false. This type of error is commonly

referred to as type I error or ‘false positive’. The probability a of

obtaining a positive result although the hypothesis is false relates to

the significance level of a test. Conversely, a test may fail to confirm a

true hypothesis. This type of error is referred to as type II error or

‘false negative’. The probability b of missing a true relation

corresponds to the power of a test, 1-b. The probability that a

hypothesis is true after a test result has been obtained, i.e. the

posterior probability, does not only depend on the test statistics, but

also on the probability of the hypothesis before the test, i.e. the prior

probability. For example, a positive result on a very improbable

hypothesis is likely a false positive, while a positive result on a more

probable hypothesis is more likely to be true. For a given prior

probability, test result and test statistics, the posterior probability of a

hypothesis can be calculated using Bayes’ Theorem [1,2].

In a recent controversial essay by J.P.A. Ioannidis [3], it has

been argued that at least in some research fields, most of the

published findings are false. This is because findings tend to be

evaluated by p-value rather then posterior probability, and

because positive results are more likely to be published than

negative results. Small effect sizes, error-prone tests, low priors of

the tested hypothesis, and biases in the interpretation of research

findings can lead to a large fraction of published false positives [3–5].

Moreover, competition has been argued to have a negative effect on

the reliability of research, because the same hypotheses are tested

independently by competing research groups. The more often a

hypothesis is tested independently, the more likely a positive result is

obtained and published even if the hypothesis is false [3]. These

findings raise concerns about the reliability of published research in

those fields of the life sciences that are characterized by low priors,

error-prone tests, and considerable competition.

Scientific research is, however, typically more complex than

accounted for by the approach outlined in Ioannidis’ essay, where

single tests are used to evaluate single hypotheses. Research

programs involve larger sets of hypotheses that are evaluated by

different tests and complementary technical approaches. In many

research fields, evidence from several tests and experiments has to

be combined in order to reach a conclusion about a hypothesis. In
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such situations, it is often advantageous to evaluate hypotheses in a

step-by-step manner, choosing each test based on previous

findings. Such sequential testing is typically more cost-efficient

than parallel testing, because previous knowledge often allows one

to design experiments in a more informative way.

Sequential testing gives rise to temporal dynamics in the

reliability of research. These dynamics are additionally affected by

the fact that in scientific research, not all results are published or

receive equal attention. Competition for limited space in scientific

journals implies that some findings are not published at all, or are

published in journals with low visibility. Especially those studies

that do not achieve formal statistical significance are less likely to

be published because they are perceived as less valuable [6,7]. For

studying the reliability of published findings in such scenarios, the

methods outlined in Ioannidis’ essay must be extended. In this

study we use computer simulations and experimental approaches

to analyze the impact of statistical errors on research programs

that include sequential testing. We investigate simple scenarios of

sequential testing as well as scenarios where not all results can be

published and used for subsequent rounds of testing. To study

reliability of research in these scenarios, we use simple research

tasks that can be investigated with computer simulations as well as

experimental settings.

For our experiments, these research tasks are framed within the

context of molecular biology. Our framing gives participants a

concrete picture of what they are investigating, and avoids

situations where they have prior expectations or preferences for

the hypotheses under investigation. However, our findings are not

specific to molecular biology and may be generalized across fields

that engage in hypothesis testing. Suppose that three genes (A, B,

and C) are known to interact in a linear biochemical pathway: The

first gene activates the second, which in turn activates the third.

However, the order of the sequence is unknown. The task is to

identify the correct sequence. There are six possible pathways

(ABC, ACB, BAC, BCA, CAB, and CBA) that form the set of

possible hypotheses. Knowledge of the pathway can be charac-

terized by six probabilities p(h1), … , p(h6) that are associated with

these hypotheses. In order to increase their knowledge about the

hypotheses, researchers can test whether a specific gene activates

another, i.e. they can test whether A activates B, A activates C, etc.

Thus there are six different tests (AB, AC, BA, BC, CA, and CB).

Note that each test supports two of the hypothesis and each

hypothesis is supported by two tests. A positive result on test AB,

for example, supports the sequences ABC and CAB, while

sequence ABC is supported by positive results on test AB and BC.

All of the tests are equally prone to type I and type II errors. We

use a= 0.12 and b= 0.3 in all our computer simulations and

experiments. These values are higher than the values of a,0.05

and b,0.2 that researchers traditionally aim to achieve in the life

sciences. We use these error probabilities to ensure that in the

experiments, participants are exposed to errors at a considerable

frequency. After a test has been performed, the probabilities

associated with the hypotheses can be updated according to Bayes’

Theorem. The research task is to identify the correct sequence

after a limited number of tests. We use seven rounds of testing in

all our simulations and experiments.

In these scenarios, individuals can choose tests depending on

results that have been obtained earlier. If, for example, the

interaction AB is tested in the first round, and the result is positive,

it is an efficient strategy to test in the next round either BC or CA.

These tests are the most informative ones, because they distinguish

between the two hypothesis supported by the first result (CAB and

ABC). In scenarios where several tests can be performed but not

all results can be used for subsequent test rounds, some of the

results have to be selected for publication. This implies that

different results have to be compared and evaluated. Thus in

contrast to quantifying the informativity of a test, here the

informativity of a result has to be determined. If, for example, an

individual receives a positive result on test AB and a negative result

on test BA, and can only publish one of these results, it might be

best to choose the positive result on AB because this result is more

informative. The informativity of tests and results can be formally

quantified using methods from information theory; see [8] for a

review. Details about the informativity measures used in this study

are given in the Methods section.

We perform computer simulations for three scenarios of

sequential testing. First, we analyze a scenario of random test

choice (SIM-R). Here, results from previous rounds are not used

for the choice of a test. Second, we study a simple scenario with

informative test choice (SIM-1). Third, we study a scenario of

informative test choice where only a subset of results can be used

for further test choice (SIM-2). To test predictions from the

simulated scenarios with informative test choice, we use four

different experimental settings. Two of these settings (EXP-1S and

EXP-1G) are analogous to the simple scenario (SIM-1). The two

other settings (EXP-2G and EXP-2E) are analogous to the

complex scenario (SIM-2).

Results

Computer simulations
For the scenario with random test choice (SIM-R), in each

round one of the 6 tests is chosen randomly. The result is sampled

based on the error probabilities given above and is used to update

the priors. In the first round, priors are 1/6 for all hypotheses. This

is repeated for seven rounds. For random test choice, the reliability

of published research follows the predictions from Ioannidis’

approach for testing hypotheses with a single test. Given that two

out of six tests support the true hypothesis, the frequency of false

positives among the positive findings is given by: 2/3 a / (1/3

(12b)+2/3 a)<0.26, and stays constant over the rounds. The

fraction of false negatives among the negative findings is 1/3 b /

(1/3 b+2/3 (12a))<0.15.

In the simple scenario with informative test choice (SIM-1),

previous test results are used for choosing a test: In each round, the

priors associated with the hypotheses are calculated from previous

results. Based on the priors, the informativity of each test is

calculated (see Methods Section). The most informative test is

selected. If there are several tests that have the highest expected

informativity, one of them is chosen randomly. An example

simulation for informative test choice is shown in Fig. 1A.

For the more complex scenario of informative test choice (SIM-

2), we assume that in each round two tests can be performed, but

only one result can published, i.e. used in subsequent rounds. The

two tests are selected independently of each other. First, for each

test the expected informativity is calculated. Among the tests with

the highest expected informativity, two are sampled randomly with

replacement. This implies that if there is a single test that has the

highest expected informativity, this test is performed twice. After

the test results are obtained, the result with the highest

informativity is published, while the other one is discarded. If

both results are equally informative, one is chosen randomly.

Details on the informativity of a result are given in the Methods

section. An example simulation for this scenario is shown in

Fig. 1B. For each of the three scenarios (SIM-R, SIM-1, SIM-2)

we performed 10,000 simulations. Results are shown in Fig. 2.

As expected, performance is better in the scenarios with

informative test choice than in the scenario with random test

Decision-Making in Research
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choice (Fig. 2A). The probability associated with the true

hypothesis increases faster for informative test choice. Further-

more, performance is best for scenario SIM-2, where in each

round two tests can be performed but only one can be published.

Thus, although only one test is published per round, there is a

clear advantage in having the opportunity to perform two tests and

then choose the more informative result for publication.

Interestingly, for the scenarios with informative test choice

(SIM-1 and SIM-2) the frequency of true positives shows a

distinctive pattern. The fraction of false positives among the

published positives declines over the rounds (Fig. 2B). For random

test choice, the fraction remains constant at the level predicted by

Ioannidis’ approach. Thus, for the scenarios with informative test

choice the estimate derived from Ioannidis’ approach applies to

the first round. In the long run, however, the fraction of false

positives among the published findings tends to decrease. The

fraction of false negatives among the published results increases in

setting SIM-1, and remains approximately constant in setting

SIM-2 (Fig. 2C).

What are the mechanisms behind these reliability patterns?

Since in SIM-1 every result is published, a decrease in false

positives can only result from an increased frequency of tests that

support the correct sequence (such as AB and BC for sequence

ABC). These tests are chosen because they tend to become more

informative (Fig. 2D). This implies, however, that in SIM-1 the

fraction of false negatives increases over the rounds (Fig. 2C). For

the more complex scenario (SIM-2), there are two mechanisms

that can contribute to a decrease in the fraction of false positives.

The first mechanism is analogous to the mechanism driving the

decrease of false positives in SIM-1. More tests tend to be

performed that support the true hypotheses, because these tests are

more informative (Fig. 2D). The second mechanism results from

selecting one of the two tests for publication. Once knowledge

about the hypotheses accumulates, it can be used to evaluate the

reliability of the test results. Thus, as shown in Fig. 2D, publication

of false findings can be avoided.

Experimental design
To test the predictions from the computer simulations, we use

four different experimental settings to study human performance.

Research tasks in the experiments are analogous to the ones

studied in the simulations. We focus specifically on the

performance of the participants in comparison to the computer

simulations, and whether their behavior leads to the predicted

reliability patterns. Details about recruitment and participants are

given in the Methods section.

In the first setting, participants solve single tasks. In each round,

each participant chooses one test and obtains a test result. After 7

rounds of test choice, each participant is asked to determine the

correct sequence. Participants earn $6 for each correct sequence

and $2 for each incorrect sequence. We refer to this setting as

EXP-1S, because single participants solve each task by choosing

one test in each round.

In the second setting, participants interact in groups of 8

members to solve 8 tasks simultaneously. Each participant is

involved exactly once in each of the 8 tasks. In each round, each

participant receives the results of all previous tests on a specific task

he/she has not contributed to yet. In the first round, this list is

empty. The participants then choose a single test and obtain the

result. The result is added to the list of previous results. When the

Figure 1. Sample Simulations. (A) Example simulation for the simple scenario with informative test choice (SIM-1). The correct sequence is ABC. In
the first round, all hypotheses have the same prior probability of 1/6, and all tests have the same informativity. One test, BA, is chosen randomly and
yields a positive. Since BA is not part of sequence ABC, this is a false positive. The probabilities for ABC and three other sequences decline, while the
probabilities for the two sequences that contain BA (BAC and CBA) increase. In the next round, the tests AC and CB are the most informative ones.
They distinguish between the two most likely hypotheses, BAC and CBA. AC is chosen and yields a negative result (true negative). This weakens
hypothesis BAC and supports CBA. In the third round, CB is the most informative test. A negative result is obtained, and CBA and BAC are on par
again. Further tests are performed, and yield correct answers, which establishes the correct sequence ABC as the most likely one. However, in the last
round AB is tested and yields a false negative. The probability for ABC declines and finishes on par with BCA. (B) Example simulation for the complex
scenario where in each round, two tests are performed but only one test results can be published. Again, ABC is the correct sequence. In first round,
where all tests have the same informativity, two tests are chosen randomly. Both tests BA and AC yield a negative result and turn out to be equally
valuable. The negative result on AC is randomly chosen to be published. This decreases the probabilities for ACB and BAC, and increases the
probability for the four other sequences. In the second round, AB and BC are tested. Both tests yield false negatives, one of which (BC) is published.
This leads to a decline for the probabilities of ABC and BCA. After a few rounds of testing, CAB is leading while the correct hypothesis ABC is second
best. However, a true negative on CA bring CAB and ABC on par, and further tests establish ABC as the most likely sequence. In both panels, italic
type codes for false positives and negatives.
doi:10.1371/journal.pone.0004607.g001
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next round starts, each participant passes her/his updated list to

the next participant, and at the same time receives an updated list

for a different task from another participant. After 7 rounds each

participant must guess the correct sequence for the one task he/

she has not contributed to yet. For each sequence that is identified

correctly, all members of the group receive $1. As participants

solve tasks in groups, we refer to this setting as EXP-1G.

Compared to EXP-1S, no differences in the dynamics of

information gain can be expected. If individuals behave optimally,

it does not matter whether the same or different participants

performed previous tests. Nevertheless, comparison of the two

settings helps to identify setting-specific factors such as the presence

of under-confidence towards results of other participants, or other

potential problems with the higher complexity of setting EXP-1G.

In the third setting, individuals interact in groups of 8

members. As in setting EXP-1G, they solve 8 tasks simultaneous-

ly, and each participant is involved exactly once in each of the

tasks. However, in this setting, after receiving the list of previous

results, individuals choose two tests. They receive both corre-

sponding results, but only one of the two can be made available

for the other participants. The other result has to be discarded.

After receiving the results, each participant has to decide which of

the two results they will add to the list of previous results. We refer

to this setting as EXP-2G. As in the other settings, after 7 rounds

each participant has to identify the correct sequence for the one

task she/he has not contributed to yet. As in setting EXP-1G, for

each correctly identified sequence all members of the group

receive $1.

Figure 2. Simulation Results. (A) Evolution of knowledge. The odds for the true hypothesis increase at the slowest rate for random test choice
(SIM-R), at intermediate rate for the scenario where the most informative test is chosen and published in each round (SIM-1), and at the fastest rate
for the scenario where two tests are chosen in each round and the most informative test result is published (SIM-2). This illustrates that informative
test choice leads to better performance than random test choice (SIM-1.SIM-R), and that there is an advantage of performing two tests even if only
one test can be published (SIM-2.SIM-1). (B) Fraction of false among the positive results. For random test choice, the fraction of false positives stays
constant at a level of 0.26. For both scenarios with informative test choice (SIM-1 and SIM-2), the fraction of false among the positives declines over
the rounds. (C) Fraction of false among the negative results. For random test choice, the fraction of false among the negative results remains
constant at a level of 0.15. For SIM-1 the fraction of false negatives tends to increase over the rounds, while for SIM-2 the fraction fluctuates around
the level for random test choice. (D) Frequency of tests that support the true hypothesis. For random test choice, the chance of picking a test that is
expected to support the true hypothesis (i.e. AB and BC for sequence ABC) is 1/3, because each hypothesis is supported by two of the six tests. Over
the rounds, tests that support the true hypothesis tend to be chosen preferentially in the scenarios with informative test choice. This leads to a
decrease of false among the positive findings. For scenario SIM-1, where all tests are published, this implies that there is an increase in the fraction of
false negatives as shown panel C. For SIM-2, where results can be selected for publication, accumulating knowledge can be used to avoid the
publication of false findings. The grey line shows the probability for a false finding to be published in SIM-2. The chance for a false finding to be
published declines over the rounds.
doi:10.1371/journal.pone.0004607.g002
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The fourth setting is similar to setting EXP-2G, but introduces

independent test choice. While in each round of EXP-2G, each

single participant chooses two tests, we now design a setting such

that these two tests are chosen independently. To achieve this,

there are three participants for each individual participant in EXP-

2G. Two of them are assigned to the role of independent

researchers while the third is assigned to the role of an editor. After

receiving the results from previous rounds of testing, the two

researchers independently choose one test each. They communi-

cate their test results to the editor, who then chooses which of the

two results to publish. Only this result is made available to the

other researchers and editors in subsequent rounds. Because of the

presence of editors, we refer to this setting as EXP-2E. It is

analogous to scenario SIM-2. In total, 24 participants (8 triplets of

two researchers and one editor) simultaneously solve 16 tasks, and

receive $1 for each correct answer.

Moreover, we investigate whether knowing the error rates

influences behavior in the experiments. Knowing the error rates is

essential for determining the most informative test. However,

given the complexity of the calculations required for determining

informativity, it is likely that the participants use more simple

heuristics. By not giving participants the error rates we can

determine whether knowing this information influences test

choice. In the four settings described above, participants were

informed about the error rates. We investigate two additional

settings that are identical to setting EXP-1S and EXP-2G, except

that the participants were only informed about the potential

presence of errors but not about the actual error rates. These

settings are referred to as EXP-1S* and EXP-2G*, respectively.

Experimental results
The correct sequence was identified in 283 of 440 tasks (64%).

For the simple settings, the solution was correct for 60% (59/99) of

the tasks in EXP-1S, 67% (59/88) in EXP-1G, and 70% (40/57)

in EXP-1S*. This ranking is unexpected. One might have

expected performance in EXP-1S to be better than in EXP-1S*,

because in EXP-1S* participants do not know the error rates; and

better than in EXP-1G, because the group setting might be more

complex and confusing for the participants. For the more complex

settings with selective publishing of results, the correct solution was

identified in 65% of the tasks (68/104) in setting EXP-2G, 67%

(32/48) in EXP-2G*, and 57% (25/44) in EXP-2E. This suggests

that performance was worst in the setting with independent

testing, and about equal in settings EXP-2G and EXP-2G*. A

more detailed statistical analysis of performance is presented

further below. To increase sensitivity, we use the probabilities

associated with the true hypothesis after the last round of testing

rather than the fraction of correct answers. For comparing

performance of two settings we use two-sided t-tests on log-odd

transformed probabilities. For comparing error frequencies in

published results, we use two-sided Fisher’s Exact Tests on the

total numbers of true and false positives and negatives over all

rounds. A summary of the results is given in Table 1.

Figure 3 shows that for the simple scenarios with single tests in

each round (EXP-1S, EXP-1S* and EXP-1G), the odds for the

true hypotheses lie between the odds from the simulations with

random test choice (SIM-R) and the simulations with informed test

choice (SIM-1). Performance is better than for random test choice

(t = 1.4, p = 0.17; t = 3.3, p = 0.002; t = 2.6, p = 0.01 for EXP-1S,

EXP-1G, EXP-1S* vs. SIM-R), but not as good as for informed

test choice (t = 24.4, p = 3e-5; t = 22.1, p = 0.04; t = 22.0,

p = 0.05 for EXP-1S, EXP-1G, EXP-1S* vs. SIM-1). This implies

that the participants preferentially choose informative tests, but

sometimes failed to pick the most informative one. As indicated

above, the performance in EXP-1G and EXP-1S* tends to be

better than the performance in setting EXP-1S (t = 1.4, p = 0.15;

t = 1.2, p = 0.23; for EXP-1G, EXP-1S* vs. EXP-1S). Thus,

participants had no problems with the somewhat more compli-

cated setting of solving several tasks simultaneously in groups

(EXP-1G) rather than individually (EXP-1S). The observation that

performance in EXP-1S* is better than performance in EXP-1S

suggests that the participants could not take advantage of knowing

the error rates. On the contrary, knowing the error rates seems to

have a negative effect on the heuristics used for solving the tasks.

The patterns of published true and false positives roughly follow

the predictions from the simulations. True positives increase over

time while false positives stay constant, leading to a decreasing

fraction of false among the positive findings (26% for SIM-R vs. 19%

for pooled data from EXP-1S, EXP-1G and EXP-1S*; p = 9e-5).

This decrease is less pronounced than in the simulations because the

most informative test was not always selected (15% for SIM-1 vs. 19%

for pooled data from EXP-1S, EXP-1G and EXP-1S*; p = 0.01).

For the more complex scenarios, we observe that the

performance in EXP-2G and EXP-2G* falls in between the

performance from the simulated scenarios with random test choice

and the simulated scenario with informative test choice and

Table 1. Results from the experiments and computer simulations.

Setting
Number of
tasks

Correctly
solved

Performance: mean
log odds, SE of mean

True
Pos.

True
Neg.

False
Pos.

False
Neg.

False among
Pos.

False among
Neg.

EXP-1S 99 59 0.42 0.20 191 353 59 90 24% 20%

EXP-1G 88 59 0.86 0.22 196 310 34 76 15% 20%

EXP-1G* 57 40 0.81 0.25 128 196 28 47 18% 19%

pooled 515 859 121 213 19% 20%

EXP-2G 104 68 0.93 0.18 241 346 52 89 18% 20%

EXP-2G* 32 48 1.6 0.33 152 114 24 46 14% 29%

EXP-2E 25 44 0.11 0.34 90 140 33 45 27% 24%

pooled 483 600 109 180 18% 23%

SIM-R 10000 N.A. 0.14 0.02 16221 41195 5639 6945 26% 14%

SIM-1 10000 N.A. 1.3 0.02 23567 32115 4287 10031 15% 24%

SIM-2 10000 N.A. 2.3 0.03 29594 29472 4336 6598 13% 18%

doi:10.1371/journal.pone.0004607.t001
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subsequent selection (Fig. 4A; t = 4.3, p = 4e-5; t = 4.3, p = 8e-5;

for EXP-2G, EXP-2G* vs. SIM-R; and t = 27.3, p = 6e-11;

t = 22.1, p = 0.04; for EXP-2G, EXP-2G* vs. SIM-2). Surpris-

ingly, performance in EXP-2G is not much better than in EXP-1G

(t = 20.23; p = 0.8). Thus, the participants did not take advantage

of the additional information they got from performing two tests,

although the computer simulations clearly demonstrate that this is

possible. Analogous to the differences between EXP-1S* and

EXP-1S, the performance tends to be better in EXP-2G* than in

EXP-2G (t = 1.7, p = 0.09). Again, we observe that informing

participants about the error rates seems to have a negative impact

on performance. Performance is worst in scenario EXP-2E

(t = 22.1, p = 0.04 for EXP-2E vs. EXP-2G). In this scenario,

performance is not better than random test choice (t = 20.07;

p = 0.94). This outcome is surprising. One could expect that

performance in EXP-2G is better than performance in EXP-2E,

because in EXP-2G the participant can choose tests in a

coordinated fashion, while in EXP-2E tests are chosen indepen-

dently. However, that performance in EXP-2E is not better than

random test choice indicates that in the experiments there is a

substantial negative effect arising from independent test choice.

Publication patterns for EXP-2G, EXP-2G* and EXP-2E are

similar to what is expected from the simulations. The frequency of

false among positive findings decreases over time (Fig. 4B, 26% for

SIM-R vs. 18% for pooled data from EXP-2G, EXP-2G* and

EXP-2E; p = 3e-5), although this decrease is less pronounced then

in the simulations with informative selection of tests and results

(12% for SIM-2 vs. 18%; p = 1e-4). However, the frequency of

false among negative findings (Fig. 4C) is higher than expected

from the simulations with random test choice (14% for SIM-R vs.

23%; p = 1e-10), and the simulations with informative selection of

tests and results (18% for SIM-2 vs. 23%; p = 0.0009). Over the

Figure 3. Experimental results for simple scenario where all results are published, and results from the corresponding simulations
(SIM-R and SIM-1). (A) Performance (mean log odds for the true hypothesis after the last round, and standard error of the mean). Performance falls
in between the performance for random test choice (SIM-R) and the simulated scenario with informative test choice (SIM-1). This indicates that
informative tests tend to be chosen preferentially but not always. The performance in EXP-1S seems to be worse in EXP-1S* and EXP-1G. This implies
that solving a task in the more complex group setting EXP-1G has no negative impact on performance. Moreover knowing the error rates seems not
to be of advantage for problem solving in the experiment. (B) Fraction of false among the positive results. Data from all three simple settings are
pooled for panels B–D. The dynamics of false positives follows the patterns expected from simulation SIM-1. Yet, it is less pronounced because the
participants sometimes fail to select the most informative tests. (C) Fraction of false among the negative results. The pattern is as expected from
simulation SIM-1. However, it is less pronounced because the participants sometimes fail to select the most informative test. (D) Frequency of those
among the chosen tests that support the true hypotheses. Over the rounds, participants more often select those tests that correspond to the correct
sequence. Thus false positives decrease while false negatives increase.
doi:10.1371/journal.pone.0004607.g003
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rounds, participants increasingly chose tests that correspond to the

true hypotheses, which explains the decrease in false positives

(Fig. 4D). However, in contrast to the simulations (SIM-2) they fail

to filter out false findings in the selection step (Fig. 4D). Thus,

when choosing which test to publish, background knowledge from

previous rounds of testing was not used efficiently.

Discussion

Sequential testing and the use of previously obtained knowledge

are essential characteristics of realistic research programs. In our

study we extended previous simple approaches [3–5] to study

reliability in research scenarios with sequential testing. We use

computer simulations to derive predictions for the temporal patterns

of reliability in these research scenarios. We then test these

predictions using lab experiments on human decision making.

Our computer simulations indicate that for the tasks studied

here, results tend to become more reliable over time if informative

tests are performed. Previous approaches [3–5] do not explicitly

capture this effect. They are therefore particularly suited to study

the reliability of published research at the beginning of a research

program, when little background knowledge is available and priors

of the tested hypotheses are low. However, previous recommen-

dations for improving the reliability of research [3,5,9] clearly

apply to our scenarios as well.

An increase in the reliability of published research over time is

in line with common intuition. At the beginning of a research

program little is known and one would intuitively expect more

false findings in the literature. Yet as research progresses,

knowledge accumulates. A few competing hypotheses are

developed, and are addressed more and more specifically. This

leads to the testing of hypotheses with increasing prior probabil-

Figure 4. Experimental results for complex scenarios where in each rounds, two tests can be performed but only one result can be
published. (A) Performance (mean log odds for the true hypothesis after the last round, and standard error of the mean). Performance for the
settings with coordinated test choice (EXP-2G and EXP-2G*) falls in between the performance of simulations with random test choice (SIM-R), and
informative test choice (SIM-2). Performance in the setting with independent test choice is worst, and not better than random. This suggests that
there are substantial negative effects arising from independent testing. Analogous to EXP-1S and EXP-1S*, there seems to be a disadvantage for
knowing the error rates: Participants in EXP-2G* outperform those in EXP-2G. (B) Fraction of false among the positive results. Data from all three
complex settings are pooled for panels B–D. The dynamics of false positives follows the patterns expected from simulation SIM-2. (C) Fraction of false
among the negative results. The fraction of false negatives in the experiments (EXP-2G, EXP-2G* and EXP-2E) is larger than expected from simulation
SIM-2. (D) Frequency of those among the chosen tests that support the true hypotheses. Over the rounds, participants frequently select those tests
that correspond to the correct sequence. This leads to a decline of false positives. In contrast to the simulations (SIM-2; dashed grey line), selection
against false findings does not work efficiently (solid grey line). While in the simulations, false findings are increasingly selected against, there is no
substantial improvement in avoiding publication of false findings in the experiment. This suggests that human subjects did not efficiently use
background knowledge to avoid the publication of false findings.
doi:10.1371/journal.pone.0004607.g004
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ities, which in turn leads to a decreasing fraction of false positives

among the positive findings in the literature.

Observations from the practice of scientific research support this

scenario. In early stages of research there are often strong and

contradictory claims. Many of these early claims eventually turn

out to be wrong [10,11], although this effect might not necessarily

be driven solely by statistical errors. It could be argued that in

research scenarios where not all findings can be published, an

initial preference for extreme findings might not be irrational. This

is because extreme findings tend to be more informative. In

functioning research programs, knowledge should eventually

converge towards a reliable consensus. However, early extreme

findings might become problematic if they receive a dispropor-

tionate share of attention compared to later findings that refute the

initial claim. This seems at least occasionally to be the case [12].

Unfortunately, it is difficult to get more detailed data for a

quantitative analysis of the dynamics of reliability in research. To

support our findings from the computer simulations, we therefore

use lab experiments. Although such experiments do not replace an

analysis of the practice of science, they can help identify factors

that influence the reliability of scientific reasoning. Experiments on

many aspects of human decision-making in the context of scientific

research have been performed by psychologists [8,13–17].

However, unlike in many of these experiments, here we do not

focus on the heuristics and strategies used by humans in research.

We mainly focus on the impact of the setting (i.e. sequential

testing, testing with publication of selected results, and indepen-

dent vs. coordinated test choice) on the performance of human

subjects, and on the consequences for the reliability of published

research.

Our experimental results roughly follow the patterns predicted

by the simulations. The reliability of research increases over the

rounds of testing. The increase is less pronounced than in the

simulations, because human subjects did not always choose the

most informative test. This is in agreement with the consensus in

the psychological literature [17], indicating that human heuristics

are well-adapted, but not necessarily optimal for a single, specific

setting such as in our experiments. Moreover, our experiments

indicate that in those settings where only a subset of findings can

be used for further rounds of testing, performance is worse than

the simulations predict. Additionally we find that independent

rather than coordinated testing has a strong negative effect. This is

in line with a call for more coordination rather than competition

and independent testing in research [18].

Important aspects of scientific research are not reflected in our

study. One phenomenon that may influence the outcome of our

scenarios is herding behavior. Herding refers to a situation where

individuals adopt the observed behavior or implied beliefs of other

individuals. It has predominately been studied in the context of

financial markets, where it can contribute to the formation of

speculative bubbles [19,20]. In the context of science, herding

behavior occurs when numerous researchers perform similar

experiments or interpret experimental results in a similar fashion.

Several studies indicate that such behavior plays a role in scientific

research [21,22]. Because herding may lead to several groups

independently performing the same set of experiments, it can

amplify the negative effects of independent testing which are

observed in our experiments.

Additionally, the incentive structure used in our experiments

ensures that the interests of all participants are aligned with

identifying the true hypothesis. This is not necessarily the case in

scientific research, where editors and researchers may have

conflicting incentives, or where competing researchers may follow

different agendas. The impact of incentive structures on the

performance of scientific research is an important issue which

merits future theoretical and empirical studies.

Because of the inherent restrictions of laboratory approaches for

studying human decision-making, we use very simple research

tasks and scenarios to investigate the reliability of scientific results.

We could not include important processes such as the develop-

ment of tests or the emergence and formulation of hypotheses. We

omitted these processes in order to focus solely on the impact of

errors in a situation with well-defined hypotheses and tests with

known error rates. It might be argued that tests with known error

rates and hypotheses with well-defined prior probabilities hardly

ever exist in real science. Because of the presence of systematic

errors, error rates can be difficult to judge, and tend to be under-

estimated by researchers [23]. Similarly, the prior probabilities of

hypotheses are often subjective, and not as assessable as in our

experiment. In the absence of well-defined probabilities of

hypotheses it becomes impossible to quantify informativity.

Yet, assessing informativity is crucial for optimizing the

allocation of resources such as time and money into experiments,

and optimizing the publishing of experimental results. Therefore it

is important to estimate prior probabilities. Modern information

technology offers a number of mechanisms that may help

researchers to efficiently ‘‘negotiate’’ their priors. Such mecha-

nisms include Wikis, reputation systems and prediction markets

[24–26]. We believe that a combination of theory and lab

experiments can be helpful for investigating such novel mecha-

nisms. While theory can help to optimize a novel implementation,

experiments are essential to ensure that an implementation is not

at odds with human heuristics and intuitions.

Materials and Methods

Bayesian Updating
The posterior probabilities after test ej are given by p(hi|ej) =

p(hi)p(ej|hi) / Si p(hi)p(ej|hi) for a positive test result, and

p(hi|,ej) = p(hi)(12p(ej|hi)) / Si p(hi)(12p(ej|hi)) for a negative test

result. The probability p(ej|hi) of getting a positive result on test j

given hypothesis i is true equals 12b if test j supports hypothesis i,

and a if it does not support hypothesis i.

Informativity of tests
A test is more informative if it is expected to change knowledge,

i.e. the probabilities associated with the hypotheses. This can, for

example, be quantified by the expected absolute changes of the

probabilities (expected Manhattan distance between priors and

posteriors probabilities [27]), or by the expected information gain

(expected Kullback–Leibler divergence between priors and

posteriors [28]). Although the optimal informativity measure

may depend on the objectives of a research program and on what

exactly the hypotheses are, different informativity measures

typically yield very similar results [8]. For our simulations, we

use the expected absolute changes of probabilities.

Informativity of results
To compare the informativity of two results, we first calculate

the posterior probabilities of the hypotheses using both results

together. We next calculate the posterior probabilities using only

result one, and only result two. Since only one of the two results

can be published, we select the single result that brings us closest to

the posterior after both results together. Thus, the result that

minimizes the distance between the posterior after two results and

the posterior after one result is chosen for publication, while the

other test is discarded. As for the informativity of a test, we use

absolute differences (Manhattan distance) as a distance measure.
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Experiments
In total, 212 participants were recruited by the CLER-Lab at

Harvard Business School. Most participants were students from

the Boston area. Median age was 21, and we had roughly equal

numbers of male and female participants. Participants received a

performance-independent show-up fee of $15 in addition to the

payments earned in the experiments. The experiments were

performed with 33 participants for setting EXP-1S, 19 participants

for setting EXP-1S*, 4 groups of 8 participants for setting EXP-

1G, 5 groups of 8 participants for setting EXP-2G, 2 groups of 8

participants for setting EXP-2G*, and 3 groups of 24 participants

for setting EXP-2E. Participants in EXP-1S and EXP-1S* did 3

runs of problem solving. The participants in settings EXP-1G,

EXP-2G, and EXP-2G* did either two or three runs of problem

solving; in each of the runs the 8 members of a group solved 8

tasks simultaneously. Participants in setting EXP-2E did a single

run of problem solving, where 16 tasks were solved simultaneously

by 24 participants. In total, 440 tasks were solved (99, 57, 88, 104,

48, and 44 for EXP-1S, EXP-1S*, EXP-1G, EXP-2G, EXP-2G*,

and EXP-2E respectively; four tasks in setting EXP-2E could not

be used because participants failed to follow the instructions in

these tasks). This involves almost 1,700 test choices in the settings

EXP-1S, EXP-1S* and EXP-1G, more than 2,700 test choices and

1,300 choices of what result to publish in setting EXP-2G, EXP-

2G*, and EXP-2E. The experiments have been approved by

Harvard University CUHS (F14796-104). Written informed

consent was obtained from all participants.
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